L(s) = 1 | + (2.03 + 0.841i)2-s + (0.134 + 0.0897i)3-s + (0.590 + 0.590i)4-s + (0.197 + 0.295i)6-s + (−6.12 − 1.21i)7-s + (−2.66 − 6.42i)8-s + (−3.43 − 8.29i)9-s + (−12.1 + 8.11i)11-s + (0.0263 + 0.132i)12-s + (4.79 + 4.79i)13-s + (−11.4 − 7.62i)14-s − 18.6i·16-s + (−15.7 − 6.50i)17-s − 19.7i·18-s + (9.56 − 23.0i)19-s + ⋯ |
L(s) = 1 | + (1.01 + 0.420i)2-s + (0.0447 + 0.0299i)3-s + (0.147 + 0.147i)4-s + (0.0329 + 0.0492i)6-s + (−0.874 − 0.174i)7-s + (−0.332 − 0.803i)8-s + (−0.381 − 0.921i)9-s + (−1.10 + 0.737i)11-s + (0.00219 + 0.0110i)12-s + (0.369 + 0.369i)13-s + (−0.815 − 0.544i)14-s − 1.16i·16-s + (−0.923 − 0.382i)17-s − 1.09i·18-s + (0.503 − 1.21i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.492497 - 0.879554i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.492497 - 0.879554i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (15.7 + 6.50i)T \) |
good | 2 | \( 1 + (-2.03 - 0.841i)T + (2.82 + 2.82i)T^{2} \) |
| 3 | \( 1 + (-0.134 - 0.0897i)T + (3.44 + 8.31i)T^{2} \) |
| 7 | \( 1 + (6.12 + 1.21i)T + (45.2 + 18.7i)T^{2} \) |
| 11 | \( 1 + (12.1 - 8.11i)T + (46.3 - 111. i)T^{2} \) |
| 13 | \( 1 + (-4.79 - 4.79i)T + 169iT^{2} \) |
| 19 | \( 1 + (-9.56 + 23.0i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (10.8 - 7.27i)T + (202. - 488. i)T^{2} \) |
| 29 | \( 1 + (32.3 - 6.44i)T + (776. - 321. i)T^{2} \) |
| 31 | \( 1 + (1.00 + 0.674i)T + (367. + 887. i)T^{2} \) |
| 37 | \( 1 + (-38.6 - 25.8i)T + (523. + 1.26e3i)T^{2} \) |
| 41 | \( 1 + (-6.13 + 30.8i)T + (-1.55e3 - 643. i)T^{2} \) |
| 43 | \( 1 + (-67.3 + 27.8i)T + (1.30e3 - 1.30e3i)T^{2} \) |
| 47 | \( 1 + (-10.4 - 10.4i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (4.77 + 1.97i)T + (1.98e3 + 1.98e3i)T^{2} \) |
| 59 | \( 1 + (26.1 - 10.8i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (81.0 + 16.1i)T + (3.43e3 + 1.42e3i)T^{2} \) |
| 67 | \( 1 - 44.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-32.1 + 48.1i)T + (-1.92e3 - 4.65e3i)T^{2} \) |
| 73 | \( 1 + (-1.32 + 0.262i)T + (4.92e3 - 2.03e3i)T^{2} \) |
| 79 | \( 1 + (-24.7 + 16.5i)T + (2.38e3 - 5.76e3i)T^{2} \) |
| 83 | \( 1 + (-25.7 + 62.2i)T + (-4.87e3 - 4.87e3i)T^{2} \) |
| 89 | \( 1 + (90.1 + 90.1i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-13.1 - 66.3i)T + (-8.69e3 + 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72412454994337956298779047784, −9.490416652618584671329405879982, −9.185303283650714379292937146027, −7.49010423498484250691433799825, −6.68419942906061994191266637583, −5.86916072748216253831956965951, −4.81856554001312959936940382288, −3.81259759623651615810745207939, −2.72620834426648487284256126948, −0.28332990374468101582724456657,
2.33597386910193278950583245691, 3.21045420839820102088330805512, 4.30289914399119447954964143659, 5.60069476524126317300883828325, 6.00065772469750846088951287809, 7.77184659916199941348817361335, 8.374560114609519551535491677856, 9.561176087616348303180172677348, 10.80039267899170654372573926288, 11.18161343553669938133322716364