Properties

Label 289.3.e.l.131.1
Level $289$
Weight $3$
Character 289.131
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 131.1
Root \(0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.131
Dual form 289.3.e.l.214.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.509666 + 1.23044i) q^{2} +(-2.23044 + 1.49033i) q^{3} +(1.57420 - 1.57420i) q^{4} +(-1.59379 - 0.317025i) q^{5} +(-2.97055 - 1.98486i) q^{6} +(-8.69552 + 1.72965i) q^{7} +(7.66104 + 3.17331i) q^{8} +(-0.690373 + 1.66671i) q^{9} +(-0.422221 - 2.12265i) q^{10} +(4.60119 - 6.88617i) q^{11} +(-1.16508 + 5.85724i) q^{12} +(-16.1480 - 16.1480i) q^{13} +(-6.56004 - 9.81779i) q^{14} +(4.02734 - 1.66818i) q^{15} +2.13880i q^{16} -2.40265 q^{18} +(-0.500280 - 1.20778i) q^{19} +(-3.00801 + 2.00989i) q^{20} +(16.8171 - 16.8171i) q^{21} +(10.8181 + 2.15186i) q^{22} +(-22.2452 - 14.8638i) q^{23} +(-21.8168 + 4.33963i) q^{24} +(-20.6573 - 8.55654i) q^{25} +(11.6391 - 28.0993i) q^{26} +(-5.65414 - 28.4253i) q^{27} +(-10.9657 + 16.4113i) q^{28} +(-3.22816 + 16.2291i) q^{29} +(4.10520 + 4.10520i) q^{30} +(-7.63208 - 11.4222i) q^{31} +(28.0125 - 11.6032i) q^{32} +22.2165i q^{33} +14.4072 q^{35} +(1.53694 + 3.71051i) q^{36} +(16.0776 - 10.7427i) q^{37} +(1.23113 - 1.23113i) q^{38} +(60.0832 + 11.9513i) q^{39} +(-11.2041 - 7.48635i) q^{40} +(25.9249 - 5.15679i) q^{41} +(29.2636 + 12.1214i) q^{42} +(-9.06895 + 21.8944i) q^{43} +(-3.59701 - 18.0834i) q^{44} +(1.62870 - 2.43752i) q^{45} +(6.95139 - 34.9470i) q^{46} +(-26.8680 - 26.8680i) q^{47} +(-3.18752 - 4.77046i) q^{48} +(27.3503 - 11.3288i) q^{49} -29.7786i q^{50} -50.8404 q^{52} +(10.8340 + 26.1557i) q^{53} +(32.0939 - 21.4445i) q^{54} +(-9.51644 + 9.51644i) q^{55} +(-72.1055 - 14.3427i) q^{56} +(2.91584 + 1.94830i) q^{57} +(-21.6142 + 4.29933i) q^{58} +(-22.0193 - 9.12070i) q^{59} +(3.71379 - 8.96587i) q^{60} +(10.0745 + 50.6480i) q^{61} +(10.1646 - 15.2124i) q^{62} +(3.12033 - 15.6870i) q^{63} +(34.6035 + 34.6035i) q^{64} +(20.6173 + 30.8560i) q^{65} +(-27.3362 + 11.3230i) q^{66} +70.4415i q^{67} +71.7687 q^{69} +(7.34286 + 17.7272i) q^{70} +(-87.2049 + 58.2684i) q^{71} +(-10.5780 + 10.5780i) q^{72} +(-34.9000 - 6.94205i) q^{73} +(21.4125 + 14.3074i) q^{74} +(58.8271 - 11.7014i) q^{75} +(-2.68883 - 1.11375i) q^{76} +(-28.0991 + 67.8373i) q^{77} +(15.9170 + 80.0201i) q^{78} +(4.03239 - 6.03490i) q^{79} +(0.678052 - 3.40880i) q^{80} +(43.4936 + 43.4936i) q^{81} +(19.5582 + 29.2709i) q^{82} +(-124.385 + 51.5218i) q^{83} -52.9469i q^{84} -31.5619 q^{86} +(-16.9865 - 41.0090i) q^{87} +(57.1019 - 38.1543i) q^{88} +(-38.6522 + 38.6522i) q^{89} +(3.82932 + 0.761700i) q^{90} +(168.346 + 112.485i) q^{91} +(-58.4169 + 11.6198i) q^{92} +(34.0458 + 14.1023i) q^{93} +(19.3658 - 46.7533i) q^{94} +(0.414445 + 2.08356i) q^{95} +(-45.1877 + 67.6282i) q^{96} +(-15.4672 + 77.7590i) q^{97} +(27.8790 + 27.8790i) q^{98} +(8.30069 + 12.4229i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 16 q^{5} + 8 q^{6} - 40 q^{7} + 40 q^{8} - 8 q^{9} + 48 q^{10} + 8 q^{11} - 72 q^{12} - 16 q^{13} - 104 q^{14} + 56 q^{18} + 48 q^{19} + 16 q^{20} + 64 q^{21} + 24 q^{22} - 56 q^{23} - 24 q^{24}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.509666 + 1.23044i 0.254833 + 0.615221i 0.998582 0.0532379i \(-0.0169542\pi\)
−0.743749 + 0.668459i \(0.766954\pi\)
\(3\) −2.23044 + 1.49033i −0.743481 + 0.496778i −0.868692 0.495352i \(-0.835039\pi\)
0.125211 + 0.992130i \(0.460039\pi\)
\(4\) 1.57420 1.57420i 0.393549 0.393549i
\(5\) −1.59379 0.317025i −0.318759 0.0634051i 0.0331178 0.999451i \(-0.489456\pi\)
−0.351877 + 0.936046i \(0.614456\pi\)
\(6\) −2.97055 1.98486i −0.495092 0.330810i
\(7\) −8.69552 + 1.72965i −1.24222 + 0.247092i −0.772094 0.635509i \(-0.780790\pi\)
−0.470123 + 0.882601i \(0.655790\pi\)
\(8\) 7.66104 + 3.17331i 0.957631 + 0.396664i
\(9\) −0.690373 + 1.66671i −0.0767081 + 0.185190i
\(10\) −0.422221 2.12265i −0.0422221 0.212265i
\(11\) 4.60119 6.88617i 0.418290 0.626015i −0.561159 0.827708i \(-0.689644\pi\)
0.979449 + 0.201693i \(0.0646442\pi\)
\(12\) −1.16508 + 5.85724i −0.0970898 + 0.488103i
\(13\) −16.1480 16.1480i −1.24216 1.24216i −0.959105 0.283051i \(-0.908654\pi\)
−0.283051 0.959105i \(-0.591346\pi\)
\(14\) −6.56004 9.81779i −0.468574 0.701271i
\(15\) 4.02734 1.66818i 0.268489 0.111212i
\(16\) 2.13880i 0.133675i
\(17\) 0 0
\(18\) −2.40265 −0.133480
\(19\) −0.500280 1.20778i −0.0263305 0.0635675i 0.910167 0.414241i \(-0.135953\pi\)
−0.936498 + 0.350673i \(0.885953\pi\)
\(20\) −3.00801 + 2.00989i −0.150400 + 0.100494i
\(21\) 16.8171 16.8171i 0.800814 0.800814i
\(22\) 10.8181 + 2.15186i 0.491732 + 0.0978116i
\(23\) −22.2452 14.8638i −0.967183 0.646251i −0.0316533 0.999499i \(-0.510077\pi\)
−0.935530 + 0.353248i \(0.885077\pi\)
\(24\) −21.8168 + 4.33963i −0.909034 + 0.180818i
\(25\) −20.6573 8.55654i −0.826293 0.342262i
\(26\) 11.6391 28.0993i 0.447658 1.08074i
\(27\) −5.65414 28.4253i −0.209412 1.05279i
\(28\) −10.9657 + 16.4113i −0.391631 + 0.586117i
\(29\) −3.22816 + 16.2291i −0.111316 + 0.559623i 0.884366 + 0.466794i \(0.154591\pi\)
−0.995682 + 0.0928290i \(0.970409\pi\)
\(30\) 4.10520 + 4.10520i 0.136840 + 0.136840i
\(31\) −7.63208 11.4222i −0.246196 0.368459i 0.687705 0.725991i \(-0.258618\pi\)
−0.933901 + 0.357532i \(0.883618\pi\)
\(32\) 28.0125 11.6032i 0.875391 0.362599i
\(33\) 22.2165i 0.673228i
\(34\) 0 0
\(35\) 14.4072 0.411634
\(36\) 1.53694 + 3.71051i 0.0426929 + 0.103070i
\(37\) 16.0776 10.7427i 0.434530 0.290344i −0.319003 0.947754i \(-0.603348\pi\)
0.753533 + 0.657410i \(0.228348\pi\)
\(38\) 1.23113 1.23113i 0.0323982 0.0323982i
\(39\) 60.0832 + 11.9513i 1.54059 + 0.306443i
\(40\) −11.2041 7.48635i −0.280103 0.187159i
\(41\) 25.9249 5.15679i 0.632315 0.125775i 0.131481 0.991319i \(-0.458027\pi\)
0.500834 + 0.865543i \(0.333027\pi\)
\(42\) 29.2636 + 12.1214i 0.696752 + 0.288604i
\(43\) −9.06895 + 21.8944i −0.210906 + 0.509172i −0.993563 0.113281i \(-0.963864\pi\)
0.782657 + 0.622453i \(0.213864\pi\)
\(44\) −3.59701 18.0834i −0.0817502 0.410986i
\(45\) 1.62870 2.43752i 0.0361933 0.0541672i
\(46\) 6.95139 34.9470i 0.151117 0.759718i
\(47\) −26.8680 26.8680i −0.571660 0.571660i 0.360932 0.932592i \(-0.382459\pi\)
−0.932592 + 0.360932i \(0.882459\pi\)
\(48\) −3.18752 4.77046i −0.0664067 0.0993846i
\(49\) 27.3503 11.3288i 0.558169 0.231201i
\(50\) 29.7786i 0.595572i
\(51\) 0 0
\(52\) −50.8404 −0.977699
\(53\) 10.8340 + 26.1557i 0.204416 + 0.493503i 0.992526 0.122031i \(-0.0389406\pi\)
−0.788111 + 0.615533i \(0.788941\pi\)
\(54\) 32.0939 21.4445i 0.594332 0.397120i
\(55\) −9.51644 + 9.51644i −0.173026 + 0.173026i
\(56\) −72.1055 14.3427i −1.28760 0.256119i
\(57\) 2.91584 + 1.94830i 0.0511551 + 0.0341808i
\(58\) −21.6142 + 4.29933i −0.372659 + 0.0741265i
\(59\) −22.0193 9.12070i −0.373209 0.154588i 0.188192 0.982132i \(-0.439737\pi\)
−0.561401 + 0.827544i \(0.689737\pi\)
\(60\) 3.71379 8.96587i 0.0618964 0.149431i
\(61\) 10.0745 + 50.6480i 0.165156 + 0.830295i 0.971168 + 0.238396i \(0.0766216\pi\)
−0.806012 + 0.591899i \(0.798378\pi\)
\(62\) 10.1646 15.2124i 0.163945 0.245361i
\(63\) 3.12033 15.6870i 0.0495291 0.249000i
\(64\) 34.6035 + 34.6035i 0.540679 + 0.540679i
\(65\) 20.6173 + 30.8560i 0.317189 + 0.474707i
\(66\) −27.3362 + 11.3230i −0.414184 + 0.171561i
\(67\) 70.4415i 1.05137i 0.850681 + 0.525683i \(0.176190\pi\)
−0.850681 + 0.525683i \(0.823810\pi\)
\(68\) 0 0
\(69\) 71.7687 1.04013
\(70\) 7.34286 + 17.7272i 0.104898 + 0.253246i
\(71\) −87.2049 + 58.2684i −1.22824 + 0.820682i −0.988657 0.150194i \(-0.952010\pi\)
−0.239581 + 0.970876i \(0.577010\pi\)
\(72\) −10.5780 + 10.5780i −0.146916 + 0.146916i
\(73\) −34.9000 6.94205i −0.478083 0.0950966i −0.0498341 0.998758i \(-0.515869\pi\)
−0.428249 + 0.903661i \(0.640869\pi\)
\(74\) 21.4125 + 14.3074i 0.289358 + 0.193343i
\(75\) 58.8271 11.7014i 0.784361 0.156019i
\(76\) −2.68883 1.11375i −0.0353793 0.0146546i
\(77\) −28.0991 + 67.8373i −0.364924 + 0.881003i
\(78\) 15.9170 + 80.0201i 0.204064 + 1.02590i
\(79\) 4.03239 6.03490i 0.0510429 0.0763911i −0.805070 0.593179i \(-0.797873\pi\)
0.856113 + 0.516788i \(0.172873\pi\)
\(80\) 0.678052 3.40880i 0.00847565 0.0426100i
\(81\) 43.4936 + 43.4936i 0.536958 + 0.536958i
\(82\) 19.5582 + 29.2709i 0.238514 + 0.356962i
\(83\) −124.385 + 51.5218i −1.49861 + 0.620745i −0.973170 0.230085i \(-0.926099\pi\)
−0.525441 + 0.850830i \(0.676099\pi\)
\(84\) 52.9469i 0.630320i
\(85\) 0 0
\(86\) −31.5619 −0.366999
\(87\) −16.9865 41.0090i −0.195247 0.471368i
\(88\) 57.1019 38.1543i 0.648885 0.433571i
\(89\) −38.6522 + 38.6522i −0.434294 + 0.434294i −0.890086 0.455792i \(-0.849356\pi\)
0.455792 + 0.890086i \(0.349356\pi\)
\(90\) 3.82932 + 0.761700i 0.0425480 + 0.00846333i
\(91\) 168.346 + 112.485i 1.84995 + 1.23610i
\(92\) −58.4169 + 11.6198i −0.634966 + 0.126303i
\(93\) 34.0458 + 14.1023i 0.366084 + 0.151637i
\(94\) 19.3658 46.7533i 0.206020 0.497375i
\(95\) 0.414445 + 2.08356i 0.00436258 + 0.0219322i
\(96\) −45.1877 + 67.6282i −0.470705 + 0.704460i
\(97\) −15.4672 + 77.7590i −0.159456 + 0.801640i 0.815416 + 0.578875i \(0.196508\pi\)
−0.974872 + 0.222765i \(0.928492\pi\)
\(98\) 27.8790 + 27.8790i 0.284480 + 0.284480i
\(99\) 8.30069 + 12.4229i 0.0838454 + 0.125483i
\(100\) −45.9884 + 19.0490i −0.459884 + 0.190490i
\(101\) 140.647i 1.39254i −0.717779 0.696271i \(-0.754841\pi\)
0.717779 0.696271i \(-0.245159\pi\)
\(102\) 0 0
\(103\) −42.3283 −0.410954 −0.205477 0.978662i \(-0.565875\pi\)
−0.205477 + 0.978662i \(0.565875\pi\)
\(104\) −72.4681 174.953i −0.696808 1.68224i
\(105\) −32.1344 + 21.4715i −0.306042 + 0.204491i
\(106\) −26.6613 + 26.6613i −0.251522 + 0.251522i
\(107\) −72.3344 14.3882i −0.676022 0.134469i −0.154872 0.987934i \(-0.549497\pi\)
−0.521150 + 0.853465i \(0.674497\pi\)
\(108\) −53.6477 35.8462i −0.496738 0.331910i
\(109\) 206.191 41.0140i 1.89166 0.376275i 0.894211 0.447645i \(-0.147737\pi\)
0.997450 + 0.0713703i \(0.0227372\pi\)
\(110\) −16.5596 6.85923i −0.150542 0.0623566i
\(111\) −19.8500 + 47.9220i −0.178828 + 0.431730i
\(112\) −3.69936 18.5979i −0.0330300 0.166053i
\(113\) 79.8003 119.430i 0.706198 1.05690i −0.288838 0.957378i \(-0.593269\pi\)
0.995035 0.0995215i \(-0.0317312\pi\)
\(114\) −0.911170 + 4.58076i −0.00799272 + 0.0401821i
\(115\) 30.7421 + 30.7421i 0.267323 + 0.267323i
\(116\) 20.4660 + 30.6295i 0.176431 + 0.264048i
\(117\) 38.0622 15.7659i 0.325318 0.134751i
\(118\) 31.7420i 0.269000i
\(119\) 0 0
\(120\) 36.1473 0.301227
\(121\) 20.0563 + 48.4202i 0.165755 + 0.400167i
\(122\) −57.1848 + 38.2097i −0.468728 + 0.313194i
\(123\) −50.1387 + 50.1387i −0.407632 + 0.407632i
\(124\) −29.9952 5.96643i −0.241897 0.0481163i
\(125\) 63.9897 + 42.7565i 0.511918 + 0.342052i
\(126\) 20.8923 4.15573i 0.165812 0.0329820i
\(127\) −100.009 41.4251i −0.787472 0.326182i −0.0475454 0.998869i \(-0.515140\pi\)
−0.739927 + 0.672687i \(0.765140\pi\)
\(128\) 21.4713 51.8363i 0.167744 0.404971i
\(129\) −12.4022 62.3499i −0.0961408 0.483333i
\(130\) −27.4585 + 41.0946i −0.211220 + 0.316112i
\(131\) 18.0821 90.9051i 0.138032 0.693932i −0.848347 0.529441i \(-0.822402\pi\)
0.986379 0.164491i \(-0.0525982\pi\)
\(132\) 34.9732 + 34.9732i 0.264948 + 0.264948i
\(133\) 6.43923 + 9.63698i 0.0484152 + 0.0724585i
\(134\) −86.6742 + 35.9016i −0.646822 + 0.267923i
\(135\) 47.0965i 0.348863i
\(136\) 0 0
\(137\) 102.046 0.744863 0.372431 0.928060i \(-0.378524\pi\)
0.372431 + 0.928060i \(0.378524\pi\)
\(138\) 36.5780 + 88.3072i 0.265058 + 0.639907i
\(139\) 25.6379 17.1307i 0.184445 0.123242i −0.459920 0.887961i \(-0.652122\pi\)
0.644365 + 0.764718i \(0.277122\pi\)
\(140\) 22.6798 22.6798i 0.161999 0.161999i
\(141\) 99.9699 + 19.8853i 0.709006 + 0.141030i
\(142\) −116.141 77.6032i −0.817897 0.546501i
\(143\) −185.498 + 36.8979i −1.29719 + 0.258027i
\(144\) −3.56475 1.47657i −0.0247552 0.0102539i
\(145\) 10.2900 24.8424i 0.0709659 0.171327i
\(146\) −9.24557 46.4806i −0.0633258 0.318360i
\(147\) −44.1194 + 66.0294i −0.300132 + 0.449179i
\(148\) 8.39818 42.2205i 0.0567445 0.285274i
\(149\) −23.3099 23.3099i −0.156443 0.156443i 0.624546 0.780988i \(-0.285284\pi\)
−0.780988 + 0.624546i \(0.785284\pi\)
\(150\) 44.3801 + 66.4195i 0.295867 + 0.442797i
\(151\) 130.239 53.9466i 0.862507 0.357262i 0.0928198 0.995683i \(-0.470412\pi\)
0.769688 + 0.638421i \(0.220412\pi\)
\(152\) 10.8404i 0.0713185i
\(153\) 0 0
\(154\) −97.7910 −0.635006
\(155\) 8.54284 + 20.6242i 0.0551151 + 0.133060i
\(156\) 113.397 75.7691i 0.726901 0.485699i
\(157\) 78.3942 78.3942i 0.499326 0.499326i −0.411902 0.911228i \(-0.635135\pi\)
0.911228 + 0.411902i \(0.135135\pi\)
\(158\) 9.48077 + 1.88584i 0.0600049 + 0.0119357i
\(159\) −63.1453 42.1924i −0.397140 0.265361i
\(160\) −48.3247 + 9.61238i −0.302029 + 0.0600773i
\(161\) 219.143 + 90.7719i 1.36113 + 0.563800i
\(162\) −31.3491 + 75.6835i −0.193513 + 0.467182i
\(163\) 31.8642 + 160.192i 0.195486 + 0.982774i 0.946553 + 0.322548i \(0.104539\pi\)
−0.751067 + 0.660226i \(0.770461\pi\)
\(164\) 32.6932 48.9288i 0.199349 0.298346i
\(165\) 7.04320 35.4086i 0.0426861 0.214597i
\(166\) −126.789 126.789i −0.763791 0.763791i
\(167\) −92.6251 138.623i −0.554641 0.830079i 0.443154 0.896445i \(-0.353859\pi\)
−0.997795 + 0.0663664i \(0.978859\pi\)
\(168\) 182.202 75.4707i 1.08454 0.449230i
\(169\) 352.517i 2.08590i
\(170\) 0 0
\(171\) 2.35840 0.0137918
\(172\) 20.1898 + 48.7424i 0.117382 + 0.283386i
\(173\) 13.8988 9.28690i 0.0803401 0.0536815i −0.514751 0.857339i \(-0.672116\pi\)
0.595092 + 0.803658i \(0.297116\pi\)
\(174\) 41.8018 41.8018i 0.240240 0.240240i
\(175\) 194.426 + 38.6737i 1.11100 + 0.220993i
\(176\) 14.7281 + 9.84101i 0.0836824 + 0.0559148i
\(177\) 62.7057 12.4729i 0.354270 0.0704686i
\(178\) −67.2590 27.8596i −0.377859 0.156514i
\(179\) −14.8215 + 35.7824i −0.0828019 + 0.199901i −0.959858 0.280487i \(-0.909504\pi\)
0.877056 + 0.480388i \(0.159504\pi\)
\(180\) −1.27325 6.40104i −0.00707359 0.0355613i
\(181\) −23.9973 + 35.9145i −0.132582 + 0.198423i −0.891820 0.452390i \(-0.850572\pi\)
0.759238 + 0.650813i \(0.225572\pi\)
\(182\) −52.6063 + 264.470i −0.289045 + 1.45313i
\(183\) −97.9531 97.9531i −0.535263 0.535263i
\(184\) −123.254 184.463i −0.669860 1.00252i
\(185\) −29.0301 + 12.0247i −0.156920 + 0.0649982i
\(186\) 49.0789i 0.263865i
\(187\) 0 0
\(188\) −84.5912 −0.449953
\(189\) 98.3313 + 237.393i 0.520271 + 1.25605i
\(190\) −2.35247 + 1.57187i −0.0123814 + 0.00827300i
\(191\) 107.196 107.196i 0.561234 0.561234i −0.368424 0.929658i \(-0.620102\pi\)
0.929658 + 0.368424i \(0.120102\pi\)
\(192\) −128.752 25.6103i −0.670582 0.133387i
\(193\) −171.004 114.261i −0.886033 0.592028i 0.0271259 0.999632i \(-0.491364\pi\)
−0.913159 + 0.407604i \(0.866364\pi\)
\(194\) −103.561 + 20.5996i −0.533820 + 0.106183i
\(195\) −91.9714 38.0958i −0.471648 0.195363i
\(196\) 25.2209 60.8886i 0.128678 0.310656i
\(197\) −27.3151 137.322i −0.138655 0.697067i −0.986096 0.166177i \(-0.946858\pi\)
0.847441 0.530890i \(-0.178142\pi\)
\(198\) −11.0550 + 16.5450i −0.0558335 + 0.0835608i
\(199\) 28.9262 145.422i 0.145358 0.730763i −0.837506 0.546429i \(-0.815987\pi\)
0.982864 0.184335i \(-0.0590130\pi\)
\(200\) −131.104 131.104i −0.655520 0.655520i
\(201\) −104.981 157.116i −0.522295 0.781670i
\(202\) 173.058 71.6828i 0.856721 0.354865i
\(203\) 146.704i 0.722678i
\(204\) 0 0
\(205\) −42.9538 −0.209531
\(206\) −21.5733 52.0825i −0.104725 0.252828i
\(207\) 40.1310 26.8147i 0.193870 0.129540i
\(208\) 34.5373 34.5373i 0.166045 0.166045i
\(209\) −10.6189 2.11223i −0.0508080 0.0101063i
\(210\) −42.7973 28.5963i −0.203797 0.136173i
\(211\) −200.746 + 39.9308i −0.951401 + 0.189245i −0.646308 0.763077i \(-0.723688\pi\)
−0.305094 + 0.952322i \(0.598688\pi\)
\(212\) 58.2291 + 24.1193i 0.274665 + 0.113770i
\(213\) 107.666 259.929i 0.505474 1.22032i
\(214\) −19.1625 96.3364i −0.0895444 0.450170i
\(215\) 21.3951 32.0200i 0.0995121 0.148930i
\(216\) 46.8855 235.709i 0.217063 1.09125i
\(217\) 86.1213 + 86.1213i 0.396872 + 0.396872i
\(218\) 155.554 + 232.803i 0.713550 + 1.06790i
\(219\) 88.1885 36.5289i 0.402687 0.166799i
\(220\) 29.9615i 0.136189i
\(221\) 0 0
\(222\) −69.0821 −0.311181
\(223\) −44.4897 107.408i −0.199506 0.481649i 0.792187 0.610278i \(-0.208942\pi\)
−0.991693 + 0.128629i \(0.958942\pi\)
\(224\) −223.514 + 149.347i −0.997830 + 0.666729i
\(225\) 28.5225 28.5225i 0.126767 0.126767i
\(226\) 187.623 + 37.3205i 0.830190 + 0.165135i
\(227\) −127.562 85.2339i −0.561945 0.375480i 0.241916 0.970297i \(-0.422224\pi\)
−0.803861 + 0.594818i \(0.797224\pi\)
\(228\) 7.65713 1.52310i 0.0335839 0.00668025i
\(229\) −8.91000 3.69064i −0.0389083 0.0161164i 0.363144 0.931733i \(-0.381703\pi\)
−0.402053 + 0.915617i \(0.631703\pi\)
\(230\) −22.1582 + 53.4946i −0.0963399 + 0.232585i
\(231\) −38.4267 193.184i −0.166349 0.836295i
\(232\) −76.2309 + 114.088i −0.328582 + 0.491757i
\(233\) −76.0950 + 382.555i −0.326588 + 1.64187i 0.373369 + 0.927683i \(0.378203\pi\)
−0.699956 + 0.714185i \(0.746797\pi\)
\(234\) 38.7980 + 38.7980i 0.165803 + 0.165803i
\(235\) 34.3043 + 51.3399i 0.145976 + 0.218468i
\(236\) −49.0206 + 20.3050i −0.207714 + 0.0860381i
\(237\) 19.4701i 0.0821523i
\(238\) 0 0
\(239\) 372.281 1.55766 0.778831 0.627233i \(-0.215813\pi\)
0.778831 + 0.627233i \(0.215813\pi\)
\(240\) 3.56789 + 8.61365i 0.0148662 + 0.0358902i
\(241\) 115.562 77.2160i 0.479510 0.320398i −0.292217 0.956352i \(-0.594393\pi\)
0.771727 + 0.635954i \(0.219393\pi\)
\(242\) −49.3563 + 49.3563i −0.203952 + 0.203952i
\(243\) 93.9975 + 18.6973i 0.386821 + 0.0769434i
\(244\) 95.5892 + 63.8707i 0.391759 + 0.261765i
\(245\) −47.1822 + 9.38513i −0.192580 + 0.0383066i
\(246\) −87.2468 36.1388i −0.354662 0.146906i
\(247\) −11.4248 + 27.5818i −0.0462541 + 0.111667i
\(248\) −22.2235 111.725i −0.0896109 0.450504i
\(249\) 200.648 300.291i 0.805816 1.20599i
\(250\) −19.9961 + 100.527i −0.0799844 + 0.402109i
\(251\) −154.052 154.052i −0.613754 0.613754i 0.330168 0.943922i \(-0.392894\pi\)
−0.943922 + 0.330168i \(0.892894\pi\)
\(252\) −19.7824 29.6064i −0.0785015 0.117486i
\(253\) −204.709 + 84.7932i −0.809126 + 0.335151i
\(254\) 144.168i 0.567591i
\(255\) 0 0
\(256\) 270.472 1.05653
\(257\) −162.362 391.977i −0.631760 1.52520i −0.837408 0.546578i \(-0.815930\pi\)
0.205648 0.978626i \(-0.434070\pi\)
\(258\) 70.3970 47.0378i 0.272857 0.182317i
\(259\) −121.222 + 121.222i −0.468039 + 0.468039i
\(260\) 81.0291 + 16.1177i 0.311650 + 0.0619911i
\(261\) −24.8205 16.5845i −0.0950976 0.0635422i
\(262\) 121.069 24.0822i 0.462097 0.0919168i
\(263\) 132.058 + 54.7003i 0.502122 + 0.207986i 0.619344 0.785120i \(-0.287399\pi\)
−0.117221 + 0.993106i \(0.537399\pi\)
\(264\) −70.4999 + 170.202i −0.267045 + 0.644704i
\(265\) −8.97520 45.1214i −0.0338687 0.170269i
\(266\) −8.57590 + 12.8347i −0.0322402 + 0.0482509i
\(267\) 28.6068 143.816i 0.107142 0.538637i
\(268\) 110.889 + 110.889i 0.413764 + 0.413764i
\(269\) −25.4480 38.0856i −0.0946022 0.141582i 0.781149 0.624344i \(-0.214634\pi\)
−0.875752 + 0.482762i \(0.839634\pi\)
\(270\) −57.9495 + 24.0035i −0.214628 + 0.0889018i
\(271\) 329.809i 1.21701i −0.793550 0.608504i \(-0.791770\pi\)
0.793550 0.608504i \(-0.208230\pi\)
\(272\) 0 0
\(273\) −543.126 −1.98947
\(274\) 52.0095 + 125.562i 0.189816 + 0.458255i
\(275\) −153.970 + 102.880i −0.559891 + 0.374107i
\(276\) 112.978 112.978i 0.409341 0.409341i
\(277\) −276.779 55.0547i −0.999201 0.198753i −0.331718 0.943379i \(-0.607628\pi\)
−0.667483 + 0.744625i \(0.732628\pi\)
\(278\) 34.1451 + 22.8150i 0.122824 + 0.0820684i
\(279\) 24.3065 4.83486i 0.0871200 0.0173292i
\(280\) 110.374 + 45.7185i 0.394194 + 0.163280i
\(281\) 58.4999 141.231i 0.208185 0.502603i −0.784953 0.619556i \(-0.787313\pi\)
0.993137 + 0.116953i \(0.0373127\pi\)
\(282\) 26.4836 + 133.142i 0.0939135 + 0.472135i
\(283\) −176.613 + 264.320i −0.624073 + 0.933992i 0.375900 + 0.926660i \(0.377334\pi\)
−0.999973 + 0.00733142i \(0.997666\pi\)
\(284\) −45.5517 + 229.004i −0.160393 + 0.806351i
\(285\) −4.02959 4.02959i −0.0141389 0.0141389i
\(286\) −139.943 209.439i −0.489311 0.732305i
\(287\) −216.511 + 89.6819i −0.754395 + 0.312480i
\(288\) 54.6992i 0.189928i
\(289\) 0 0
\(290\) 35.8116 0.123488
\(291\) −81.3882 196.488i −0.279684 0.675218i
\(292\) −65.8677 + 44.0114i −0.225574 + 0.150724i
\(293\) 27.2633 27.2633i 0.0930488 0.0930488i −0.659050 0.752099i \(-0.729042\pi\)
0.752099 + 0.659050i \(0.229042\pi\)
\(294\) −103.732 20.6335i −0.352828 0.0701819i
\(295\) 32.2028 + 21.5172i 0.109162 + 0.0729397i
\(296\) 157.261 31.2812i 0.531288 0.105680i
\(297\) −221.757 91.8547i −0.746656 0.309275i
\(298\) 16.8013 40.5618i 0.0563801 0.136114i
\(299\) 119.196 + 599.237i 0.398647 + 2.00414i
\(300\) 74.1851 111.026i 0.247284 0.370086i
\(301\) 40.9897 206.069i 0.136178 0.684615i
\(302\) 132.756 + 132.756i 0.439591 + 0.439591i
\(303\) 209.610 + 313.704i 0.691784 + 1.03533i
\(304\) 2.58320 1.07000i 0.00849736 0.00351972i
\(305\) 83.9164i 0.275136i
\(306\) 0 0
\(307\) −4.80965 −0.0156666 −0.00783330 0.999969i \(-0.502493\pi\)
−0.00783330 + 0.999969i \(0.502493\pi\)
\(308\) 62.5557 + 151.023i 0.203103 + 0.490334i
\(309\) 94.4108 63.0833i 0.305537 0.204153i
\(310\) −21.0229 + 21.0229i −0.0678159 + 0.0678159i
\(311\) −471.395 93.7663i −1.51574 0.301499i −0.634037 0.773303i \(-0.718603\pi\)
−0.881704 + 0.471804i \(0.843603\pi\)
\(312\) 422.375 + 282.222i 1.35377 + 0.904557i
\(313\) 86.9871 17.3028i 0.277914 0.0552805i −0.0541654 0.998532i \(-0.517250\pi\)
0.332079 + 0.943251i \(0.392250\pi\)
\(314\) 136.414 + 56.5047i 0.434441 + 0.179951i
\(315\) −9.94634 + 24.0126i −0.0315757 + 0.0762305i
\(316\) −3.15234 15.8479i −0.00997577 0.0501516i
\(317\) 66.8346 100.025i 0.210835 0.315537i −0.710947 0.703246i \(-0.751733\pi\)
0.921782 + 0.387709i \(0.126733\pi\)
\(318\) 19.7323 99.2007i 0.0620511 0.311952i
\(319\) 96.9027 + 96.9027i 0.303770 + 0.303770i
\(320\) −44.1806 66.1210i −0.138064 0.206628i
\(321\) 182.781 75.7103i 0.569411 0.235858i
\(322\) 315.906i 0.981074i
\(323\) 0 0
\(324\) 136.935 0.422639
\(325\) 195.404 + 471.746i 0.601242 + 1.45153i
\(326\) −180.867 + 120.852i −0.554807 + 0.370710i
\(327\) −398.773 + 398.773i −1.21949 + 1.21949i
\(328\) 214.976 + 42.7614i 0.655415 + 0.130370i
\(329\) 280.104 + 187.159i 0.851379 + 0.568873i
\(330\) 47.1579 9.38028i 0.142903 0.0284251i
\(331\) −93.9184 38.9023i −0.283741 0.117530i 0.236274 0.971687i \(-0.424074\pi\)
−0.520015 + 0.854157i \(0.674074\pi\)
\(332\) −114.701 + 276.912i −0.345484 + 0.834071i
\(333\) 6.80542 + 34.2132i 0.0204367 + 0.102742i
\(334\) 123.360 184.621i 0.369341 0.552758i
\(335\) 22.3317 112.269i 0.0666619 0.335132i
\(336\) 35.9683 + 35.9683i 0.107049 + 0.107049i
\(337\) 305.344 + 456.980i 0.906066 + 1.35602i 0.934325 + 0.356423i \(0.116004\pi\)
−0.0282592 + 0.999601i \(0.508996\pi\)
\(338\) −433.752 + 179.666i −1.28329 + 0.531556i
\(339\) 385.310i 1.13661i
\(340\) 0 0
\(341\) −113.772 −0.333642
\(342\) 1.20200 + 2.90187i 0.00351461 + 0.00848501i
\(343\) 142.984 95.5387i 0.416862 0.278538i
\(344\) −138.955 + 138.955i −0.403940 + 0.403940i
\(345\) −114.384 22.7525i −0.331549 0.0659492i
\(346\) 18.5108 + 12.3685i 0.0534993 + 0.0357471i
\(347\) −250.376 + 49.8028i −0.721544 + 0.143524i −0.542184 0.840260i \(-0.682403\pi\)
−0.179360 + 0.983784i \(0.557403\pi\)
\(348\) −91.2964 37.8162i −0.262346 0.108667i
\(349\) −212.580 + 513.215i −0.609113 + 1.47053i 0.254854 + 0.966980i \(0.417973\pi\)
−0.863967 + 0.503549i \(0.832027\pi\)
\(350\) 51.5065 + 258.940i 0.147161 + 0.739830i
\(351\) −367.709 + 550.315i −1.04760 + 1.56785i
\(352\) 48.9896 246.287i 0.139175 0.699680i
\(353\) 408.644 + 408.644i 1.15763 + 1.15763i 0.984984 + 0.172648i \(0.0552323\pi\)
0.172648 + 0.984984i \(0.444768\pi\)
\(354\) 47.3062 + 70.7988i 0.133633 + 0.199997i
\(355\) 157.459 65.2217i 0.443547 0.183723i
\(356\) 121.692i 0.341832i
\(357\) 0 0
\(358\) −51.5822 −0.144084
\(359\) −66.0778 159.526i −0.184061 0.444362i 0.804735 0.593634i \(-0.202307\pi\)
−0.988796 + 0.149272i \(0.952307\pi\)
\(360\) 20.2126 13.5056i 0.0561460 0.0375155i
\(361\) 254.057 254.057i 0.703759 0.703759i
\(362\) −56.4214 11.2229i −0.155860 0.0310025i
\(363\) −116.897 78.1079i −0.322030 0.215173i
\(364\) 442.083 87.9358i 1.21451 0.241582i
\(365\) 53.4227 + 22.1284i 0.146363 + 0.0606257i
\(366\) 70.6023 170.449i 0.192902 0.465708i
\(367\) 3.98311 + 20.0244i 0.0108531 + 0.0545625i 0.985832 0.167734i \(-0.0536448\pi\)
−0.974979 + 0.222296i \(0.928645\pi\)
\(368\) 31.7906 47.5779i 0.0863874 0.129288i
\(369\) −9.30301 + 46.7694i −0.0252114 + 0.126746i
\(370\) −29.5913 29.5913i −0.0799766 0.0799766i
\(371\) −139.448 208.698i −0.375869 0.562528i
\(372\) 75.7946 31.3952i 0.203749 0.0843956i
\(373\) 690.960i 1.85244i −0.376983 0.926220i \(-0.623039\pi\)
0.376983 0.926220i \(-0.376961\pi\)
\(374\) 0 0
\(375\) −206.447 −0.550525
\(376\) −120.577 291.098i −0.320682 0.774196i
\(377\) 314.196 209.939i 0.833410 0.556867i
\(378\) −241.982 + 241.982i −0.640164 + 0.640164i
\(379\) 171.489 + 34.1112i 0.452477 + 0.0900032i 0.416067 0.909334i \(-0.363408\pi\)
0.0364093 + 0.999337i \(0.488408\pi\)
\(380\) 3.93235 + 2.62751i 0.0103483 + 0.00691451i
\(381\) 284.801 56.6505i 0.747510 0.148689i
\(382\) 186.532 + 77.2642i 0.488304 + 0.202262i
\(383\) 182.466 440.512i 0.476412 1.15016i −0.484868 0.874588i \(-0.661132\pi\)
0.961280 0.275574i \(-0.0888678\pi\)
\(384\) 29.3629 + 147.617i 0.0764658 + 0.384420i
\(385\) 66.2903 99.2105i 0.172183 0.257690i
\(386\) 53.4371 268.646i 0.138438 0.695975i
\(387\) −30.2306 30.2306i −0.0781151 0.0781151i
\(388\) 98.0596 + 146.757i 0.252731 + 0.378239i
\(389\) −204.196 + 84.5808i −0.524926 + 0.217431i −0.629379 0.777098i \(-0.716691\pi\)
0.104453 + 0.994530i \(0.466691\pi\)
\(390\) 132.582i 0.339953i
\(391\) 0 0
\(392\) 245.482 0.626228
\(393\) 95.1478 + 229.707i 0.242106 + 0.584496i
\(394\) 155.045 103.598i 0.393516 0.262939i
\(395\) −8.34002 + 8.34002i −0.0211140 + 0.0211140i
\(396\) 32.6230 + 6.48911i 0.0823812 + 0.0163866i
\(397\) −100.601 67.2191i −0.253402 0.169318i 0.422381 0.906418i \(-0.361194\pi\)
−0.675783 + 0.737101i \(0.736194\pi\)
\(398\) 193.676 38.5245i 0.486623 0.0967953i
\(399\) −28.7246 11.8981i −0.0719916 0.0298199i
\(400\) 18.3007 44.1818i 0.0457517 0.110454i
\(401\) −101.865 512.110i −0.254028 1.27708i −0.871463 0.490461i \(-0.836828\pi\)
0.617435 0.786622i \(-0.288172\pi\)
\(402\) 139.816 209.250i 0.347802 0.520522i
\(403\) −61.2032 + 307.689i −0.151869 + 0.763497i
\(404\) −221.406 221.406i −0.548034 0.548034i
\(405\) −55.5312 83.1084i −0.137114 0.205206i
\(406\) 180.510 74.7699i 0.444607 0.184162i
\(407\) 160.142i 0.393471i
\(408\) 0 0
\(409\) 136.013 0.332550 0.166275 0.986079i \(-0.446826\pi\)
0.166275 + 0.986079i \(0.446826\pi\)
\(410\) −21.8921 52.8522i −0.0533954 0.128908i
\(411\) −227.608 + 152.083i −0.553791 + 0.370032i
\(412\) −66.6331 + 66.6331i −0.161731 + 0.161731i
\(413\) 207.245 + 41.2236i 0.501804 + 0.0998150i
\(414\) 53.4474 + 35.7124i 0.129100 + 0.0862618i
\(415\) 214.577 42.6821i 0.517054 0.102848i
\(416\) −639.715 264.979i −1.53778 0.636968i
\(417\) −31.6534 + 76.4181i −0.0759074 + 0.183257i
\(418\) −2.81311 14.1424i −0.00672992 0.0338336i
\(419\) −208.077 + 311.409i −0.496604 + 0.743220i −0.992108 0.125386i \(-0.959983\pi\)
0.495505 + 0.868605i \(0.334983\pi\)
\(420\) −16.7855 + 84.3864i −0.0399655 + 0.200920i
\(421\) 273.997 + 273.997i 0.650824 + 0.650824i 0.953192 0.302367i \(-0.0977769\pi\)
−0.302367 + 0.953192i \(0.597777\pi\)
\(422\) −151.446 226.655i −0.358876 0.537096i
\(423\) 63.3301 26.2322i 0.149716 0.0620146i
\(424\) 234.759i 0.553678i
\(425\) 0 0
\(426\) 374.701 0.879580
\(427\) −175.206 422.985i −0.410319 0.990598i
\(428\) −136.518 + 91.2187i −0.318968 + 0.213128i
\(429\) 358.753 358.753i 0.836254 0.836254i
\(430\) 50.3032 + 10.0059i 0.116984 + 0.0232696i
\(431\) 57.2309 + 38.2405i 0.132786 + 0.0887250i 0.620189 0.784452i \(-0.287056\pi\)
−0.487403 + 0.873177i \(0.662056\pi\)
\(432\) 60.7958 12.0930i 0.140731 0.0279931i
\(433\) 251.710 + 104.262i 0.581317 + 0.240790i 0.653910 0.756572i \(-0.273127\pi\)
−0.0725929 + 0.997362i \(0.523127\pi\)
\(434\) −62.0742 + 149.860i −0.143028 + 0.345301i
\(435\) 14.0721 + 70.7451i 0.0323496 + 0.162632i
\(436\) 260.021 389.150i 0.596379 0.892545i
\(437\) −6.82337 + 34.3034i −0.0156141 + 0.0784975i
\(438\) 89.8934 + 89.8934i 0.205236 + 0.205236i
\(439\) 81.7913 + 122.409i 0.186313 + 0.278837i 0.912854 0.408286i \(-0.133873\pi\)
−0.726541 + 0.687123i \(0.758873\pi\)
\(440\) −103.105 + 42.7073i −0.234328 + 0.0970620i
\(441\) 53.4060i 0.121102i
\(442\) 0 0
\(443\) −619.331 −1.39804 −0.699019 0.715103i \(-0.746380\pi\)
−0.699019 + 0.715103i \(0.746380\pi\)
\(444\) 44.1910 + 106.687i 0.0995293 + 0.240285i
\(445\) 73.8573 49.3499i 0.165971 0.110899i
\(446\) 109.484 109.484i 0.245480 0.245480i
\(447\) 86.7311 + 17.2519i 0.194029 + 0.0385948i
\(448\) −360.747 241.043i −0.805239 0.538043i
\(449\) −615.365 + 122.404i −1.37052 + 0.272614i −0.824835 0.565374i \(-0.808732\pi\)
−0.545688 + 0.837988i \(0.683732\pi\)
\(450\) 49.6322 + 20.5583i 0.110294 + 0.0456852i
\(451\) 83.7750 202.251i 0.185754 0.448450i
\(452\) −62.3844 313.627i −0.138019 0.693866i
\(453\) −210.091 + 314.424i −0.463778 + 0.694092i
\(454\) 39.8616 200.398i 0.0878009 0.441405i
\(455\) −232.648 232.648i −0.511314 0.511314i
\(456\) 16.1558 + 24.1789i 0.0354295 + 0.0530239i
\(457\) 127.865 52.9634i 0.279792 0.115894i −0.238375 0.971173i \(-0.576615\pi\)
0.518167 + 0.855280i \(0.326615\pi\)
\(458\) 12.8442i 0.0280442i
\(459\) 0 0
\(460\) 96.7883 0.210409
\(461\) −56.1709 135.609i −0.121846 0.294162i 0.851174 0.524884i \(-0.175891\pi\)
−0.973020 + 0.230722i \(0.925891\pi\)
\(462\) 218.117 145.741i 0.472115 0.315457i
\(463\) −522.332 + 522.332i −1.12815 + 1.12815i −0.137669 + 0.990478i \(0.543961\pi\)
−0.990478 + 0.137669i \(0.956039\pi\)
\(464\) −34.7106 6.90438i −0.0748074 0.0148801i
\(465\) −49.7913 33.2695i −0.107078 0.0715473i
\(466\) −509.495 + 101.345i −1.09334 + 0.217478i
\(467\) 7.06740 + 2.92741i 0.0151336 + 0.00626855i 0.390237 0.920714i \(-0.372393\pi\)
−0.375104 + 0.926983i \(0.622393\pi\)
\(468\) 35.0988 84.7360i 0.0749974 0.181060i
\(469\) −121.839 612.525i −0.259784 1.30602i
\(470\) −45.6871 + 68.3756i −0.0972067 + 0.145480i
\(471\) −58.0202 + 291.687i −0.123185 + 0.619294i
\(472\) −139.748 139.748i −0.296077 0.296077i
\(473\) 109.040 + 163.191i 0.230529 + 0.345012i
\(474\) −23.9568 + 9.92325i −0.0505419 + 0.0209351i
\(475\) 29.2302i 0.0615372i
\(476\) 0 0
\(477\) −51.0733 −0.107072
\(478\) 189.739 + 458.071i 0.396944 + 0.958307i
\(479\) −629.340 + 420.512i −1.31386 + 0.877895i −0.997495 0.0707413i \(-0.977464\pi\)
−0.316368 + 0.948636i \(0.602464\pi\)
\(480\) 93.4598 93.4598i 0.194708 0.194708i
\(481\) −433.095 86.1480i −0.900406 0.179102i
\(482\) 153.908 + 102.838i 0.319311 + 0.213357i
\(483\) −624.066 + 124.134i −1.29206 + 0.257007i
\(484\) 107.796 + 44.6504i 0.222718 + 0.0922529i
\(485\) 49.3032 119.028i 0.101656 0.245419i
\(486\) 24.9014 + 125.188i 0.0512375 + 0.257588i
\(487\) −4.90730 + 7.34429i −0.0100766 + 0.0150807i −0.836474 0.548007i \(-0.815387\pi\)
0.826397 + 0.563088i \(0.190387\pi\)
\(488\) −83.5404 + 419.986i −0.171189 + 0.860627i
\(489\) −309.811 309.811i −0.633561 0.633561i
\(490\) −35.5950 53.2717i −0.0726429 0.108718i
\(491\) 542.252 224.608i 1.10438 0.457450i 0.245383 0.969426i \(-0.421086\pi\)
0.859000 + 0.511976i \(0.171086\pi\)
\(492\) 157.857i 0.320847i
\(493\) 0 0
\(494\) −39.7607 −0.0804871
\(495\) −9.29123 22.4310i −0.0187702 0.0453152i
\(496\) 24.4298 16.3235i 0.0492536 0.0329102i
\(497\) 657.508 657.508i 1.32295 1.32295i
\(498\) 471.755 + 93.8378i 0.947299 + 0.188429i
\(499\) −93.1992 62.2737i −0.186772 0.124797i 0.458669 0.888607i \(-0.348326\pi\)
−0.645441 + 0.763810i \(0.723326\pi\)
\(500\) 168.040 33.4252i 0.336079 0.0668503i
\(501\) 413.190 + 171.149i 0.824730 + 0.341614i
\(502\) 111.037 268.067i 0.221190 0.533999i
\(503\) 93.2434 + 468.766i 0.185375 + 0.931941i 0.955712 + 0.294304i \(0.0950879\pi\)
−0.770337 + 0.637637i \(0.779912\pi\)
\(504\) 73.6847 110.277i 0.146200 0.218803i
\(505\) −44.5886 + 224.162i −0.0882942 + 0.443885i
\(506\) −208.666 208.666i −0.412384 0.412384i
\(507\) −525.368 786.269i −1.03623 1.55083i
\(508\) −222.645 + 92.2226i −0.438278 + 0.181541i
\(509\) 235.103i 0.461891i 0.972967 + 0.230946i \(0.0741820\pi\)
−0.972967 + 0.230946i \(0.925818\pi\)
\(510\) 0 0
\(511\) 315.481 0.617380
\(512\) 51.9650 + 125.455i 0.101494 + 0.245029i
\(513\) −31.5029 + 21.0495i −0.0614091 + 0.0410322i
\(514\) 399.555 399.555i 0.777345 0.777345i
\(515\) 67.4626 + 13.4191i 0.130995 + 0.0260566i
\(516\) −117.675 78.6276i −0.228051 0.152379i
\(517\) −308.643 + 61.3929i −0.596988 + 0.118748i
\(518\) −210.940 87.3740i −0.407219 0.168676i
\(519\) −17.1600 + 41.4278i −0.0330635 + 0.0798223i
\(520\) 60.0345 + 301.814i 0.115451 + 0.580411i
\(521\) 336.082 502.982i 0.645071 0.965417i −0.354468 0.935068i \(-0.615338\pi\)
0.999539 0.0303489i \(-0.00966184\pi\)
\(522\) 7.75613 38.9927i 0.0148585 0.0746987i
\(523\) −721.650 721.650i −1.37983 1.37983i −0.844894 0.534934i \(-0.820336\pi\)
−0.534934 0.844894i \(-0.679664\pi\)
\(524\) −114.638 171.567i −0.218774 0.327419i
\(525\) −491.292 + 203.500i −0.935795 + 0.387619i
\(526\) 190.369i 0.361918i
\(527\) 0 0
\(528\) −47.5166 −0.0899935
\(529\) 71.4781 + 172.563i 0.135119 + 0.326207i
\(530\) 50.9449 34.0403i 0.0961225 0.0642270i
\(531\) 30.4031 30.4031i 0.0572563 0.0572563i
\(532\) 25.3071 + 5.03390i 0.0475698 + 0.00946222i
\(533\) −501.908 335.364i −0.941666 0.629201i
\(534\) 191.537 38.0991i 0.358684 0.0713467i
\(535\) 110.725 + 45.8636i 0.206962 + 0.0857264i
\(536\) −223.533 + 539.655i −0.417038 + 1.00682i
\(537\) −20.2691 101.900i −0.0377450 0.189757i
\(538\) 33.8922 50.7232i 0.0629966 0.0942811i
\(539\) 47.8314 240.465i 0.0887410 0.446131i
\(540\) 74.1392 + 74.1392i 0.137295 + 0.137295i
\(541\) −315.825 472.665i −0.583779 0.873688i 0.415577 0.909558i \(-0.363580\pi\)
−0.999356 + 0.0358703i \(0.988580\pi\)
\(542\) 405.812 168.093i 0.748730 0.310134i
\(543\) 115.869i 0.213387i
\(544\) 0 0
\(545\) −341.629 −0.626841
\(546\) −276.813 668.285i −0.506983 1.22397i
\(547\) −305.074 + 203.844i −0.557723 + 0.372658i −0.802254 0.596983i \(-0.796366\pi\)
0.244531 + 0.969641i \(0.421366\pi\)
\(548\) 160.641 160.641i 0.293140 0.293140i
\(549\) −91.3705 18.1747i −0.166431 0.0331052i
\(550\) −205.061 137.017i −0.372837 0.249122i
\(551\) 21.2162 4.22016i 0.0385048 0.00765908i
\(552\) 549.823 + 227.744i 0.996056 + 0.412580i
\(553\) −24.6255 + 59.4512i −0.0445307 + 0.107507i
\(554\) −73.3230 368.620i −0.132352 0.665379i
\(555\) 46.8292 70.0849i 0.0843770 0.126279i
\(556\) 13.3920 67.3262i 0.0240864 0.121090i
\(557\) 146.512 + 146.512i 0.263038 + 0.263038i 0.826287 0.563249i \(-0.190449\pi\)
−0.563249 + 0.826287i \(0.690449\pi\)
\(558\) 18.3372 + 27.4436i 0.0328624 + 0.0491820i
\(559\) 499.996 207.105i 0.894448 0.370493i
\(560\) 30.8141i 0.0550251i
\(561\) 0 0
\(562\) 203.593 0.362264
\(563\) 328.584 + 793.273i 0.583631 + 1.40901i 0.889499 + 0.456936i \(0.151053\pi\)
−0.305868 + 0.952074i \(0.598947\pi\)
\(564\) 188.676 126.069i 0.334531 0.223527i
\(565\) −165.048 + 165.048i −0.292120 + 0.292120i
\(566\) −415.244 82.5971i −0.733646 0.145931i
\(567\) −453.428 302.971i −0.799696 0.534340i
\(568\) −852.984 + 169.669i −1.50173 + 0.298713i
\(569\) −292.003 120.952i −0.513187 0.212569i 0.111034 0.993817i \(-0.464584\pi\)
−0.624221 + 0.781248i \(0.714584\pi\)
\(570\) 2.90444 7.01193i 0.00509550 0.0123016i
\(571\) −52.7480 265.182i −0.0923782 0.464417i −0.999089 0.0426646i \(-0.986415\pi\)
0.906711 0.421752i \(-0.138585\pi\)
\(572\) −233.926 + 350.095i −0.408962 + 0.612055i
\(573\) −79.3365 + 398.852i −0.138458 + 0.696076i
\(574\) −220.697 220.697i −0.384489 0.384489i
\(575\) 332.344 + 497.388i 0.577989 + 0.865022i
\(576\) −81.5632 + 33.7846i −0.141603 + 0.0586538i
\(577\) 63.2031i 0.109537i −0.998499 0.0547687i \(-0.982558\pi\)
0.998499 0.0547687i \(-0.0174421\pi\)
\(578\) 0 0
\(579\) 551.703 0.952855
\(580\) −22.9082 55.3054i −0.0394970 0.0953541i
\(581\) 992.475 663.151i 1.70822 1.14140i
\(582\) 200.287 200.287i 0.344136 0.344136i
\(583\) 229.962 + 45.7422i 0.394446 + 0.0784601i
\(584\) −245.342 163.932i −0.420105 0.280705i
\(585\) −65.6614 + 13.0609i −0.112242 + 0.0223263i
\(586\) 47.4411 + 19.6507i 0.0809575 + 0.0335337i
\(587\) 283.753 685.040i 0.483395 1.16702i −0.474592 0.880206i \(-0.657404\pi\)
0.957987 0.286812i \(-0.0925956\pi\)
\(588\) 34.4906 + 173.396i 0.0586575 + 0.294891i
\(589\) −9.97738 + 14.9322i −0.0169395 + 0.0253518i
\(590\) −10.0630 + 50.5903i −0.0170560 + 0.0857462i
\(591\) 265.581 + 265.581i 0.449375 + 0.449375i
\(592\) 22.9765 + 34.3867i 0.0388116 + 0.0580857i
\(593\) 185.647 76.8977i 0.313065 0.129676i −0.220618 0.975360i \(-0.570808\pi\)
0.533683 + 0.845685i \(0.320808\pi\)
\(594\) 319.674i 0.538172i
\(595\) 0 0
\(596\) −73.3889 −0.123136
\(597\) 152.209 + 367.465i 0.254956 + 0.615519i
\(598\) −676.576 + 452.074i −1.13140 + 0.755976i
\(599\) −457.825 + 457.825i −0.764316 + 0.764316i −0.977099 0.212784i \(-0.931747\pi\)
0.212784 + 0.977099i \(0.431747\pi\)
\(600\) 487.809 + 97.0312i 0.813015 + 0.161719i
\(601\) 596.295 + 398.432i 0.992171 + 0.662948i 0.941937 0.335790i \(-0.109003\pi\)
0.0502343 + 0.998737i \(0.484003\pi\)
\(602\) 274.447 54.5909i 0.455892 0.0906826i
\(603\) −117.405 48.6309i −0.194702 0.0806482i
\(604\) 120.099 289.944i 0.198839 0.480040i
\(605\) −16.6152 83.5302i −0.0274631 0.138067i
\(606\) −279.164 + 417.798i −0.460666 + 0.689436i
\(607\) 202.623 1018.65i 0.333810 1.67818i −0.340903 0.940098i \(-0.610733\pi\)
0.674713 0.738080i \(-0.264267\pi\)
\(608\) −28.0282 28.0282i −0.0460990 0.0460990i
\(609\) 218.638 + 327.214i 0.359011 + 0.537297i
\(610\) 103.254 42.7693i 0.169269 0.0701136i
\(611\) 867.731i 1.42018i
\(612\) 0 0
\(613\) −626.391 −1.02185 −0.510923 0.859627i \(-0.670696\pi\)
−0.510923 + 0.859627i \(0.670696\pi\)
\(614\) −2.45131 5.91799i −0.00399237 0.00963842i
\(615\) 95.8060 64.0155i 0.155782 0.104090i
\(616\) −430.537 + 430.537i −0.698924 + 0.698924i
\(617\) 657.155 + 130.716i 1.06508 + 0.211858i 0.696368 0.717685i \(-0.254798\pi\)
0.368714 + 0.929543i \(0.379798\pi\)
\(618\) 125.738 + 84.0157i 0.203460 + 0.135948i
\(619\) 771.905 153.541i 1.24702 0.248047i 0.472916 0.881107i \(-0.343201\pi\)
0.774103 + 0.633060i \(0.218201\pi\)
\(620\) 45.9147 + 19.0185i 0.0740560 + 0.0306750i
\(621\) −296.729 + 716.368i −0.477825 + 1.15357i
\(622\) −124.880 627.814i −0.200772 1.00935i
\(623\) 269.246 402.955i 0.432177 0.646798i
\(624\) −25.5614 + 128.506i −0.0409637 + 0.205938i
\(625\) 306.829 + 306.829i 0.490927 + 0.490927i
\(626\) 65.6245 + 98.2140i 0.104831 + 0.156891i
\(627\) 26.8327 11.1145i 0.0427954 0.0177264i
\(628\) 246.816i 0.393019i
\(629\) 0 0
\(630\) −34.6154 −0.0549451
\(631\) −317.894 767.465i −0.503794 1.21627i −0.947402 0.320046i \(-0.896302\pi\)
0.443608 0.896221i \(-0.353698\pi\)
\(632\) 50.0429 33.4376i 0.0791818 0.0529076i
\(633\) 388.241 388.241i 0.613336 0.613336i
\(634\) 157.138 + 31.2568i 0.247852 + 0.0493009i
\(635\) 146.261 + 97.7284i 0.230332 + 0.153903i
\(636\) −165.822 + 32.9841i −0.260727 + 0.0518618i
\(637\) −624.591 258.714i −0.980520 0.406145i
\(638\) −69.8452 + 168.621i −0.109475 + 0.264297i
\(639\) −36.9126 185.572i −0.0577661 0.290410i
\(640\) −50.6542 + 75.8094i −0.0791472 + 0.118452i
\(641\) 164.996 829.492i 0.257404 1.29406i −0.608381 0.793645i \(-0.708181\pi\)
0.865786 0.500415i \(-0.166819\pi\)
\(642\) 186.314 + 186.314i 0.290209 + 0.290209i
\(643\) 410.655 + 614.589i 0.638655 + 0.955814i 0.999729 + 0.0232773i \(0.00741006\pi\)
−0.361074 + 0.932537i \(0.617590\pi\)
\(644\) 487.867 202.081i 0.757557 0.313790i
\(645\) 103.305i 0.160162i
\(646\) 0 0
\(647\) 874.070 1.35096 0.675479 0.737379i \(-0.263937\pi\)
0.675479 + 0.737379i \(0.263937\pi\)
\(648\) 195.188 + 471.225i 0.301216 + 0.727199i
\(649\) −164.122 + 109.663i −0.252884 + 0.168972i
\(650\) −480.866 + 480.866i −0.739793 + 0.739793i
\(651\) −320.438 63.7391i −0.492225 0.0979096i
\(652\) 302.335 + 202.014i 0.463704 + 0.309837i
\(653\) 1133.57 225.482i 1.73595 0.345301i 0.777133 0.629337i \(-0.216673\pi\)
0.958814 + 0.284036i \(0.0916734\pi\)
\(654\) −693.908 287.426i −1.06102 0.439489i
\(655\) −57.6384 + 139.151i −0.0879976 + 0.212445i
\(656\) 11.0293 + 55.4481i 0.0168130 + 0.0845246i
\(657\) 35.6644 53.3755i 0.0542837 0.0812413i
\(658\) −87.5294 + 440.040i −0.133023 + 0.668754i
\(659\) 318.726 + 318.726i 0.483651 + 0.483651i 0.906295 0.422645i \(-0.138898\pi\)
−0.422645 + 0.906295i \(0.638898\pi\)
\(660\) −44.6527 66.8275i −0.0676556 0.101254i
\(661\) −461.408 + 191.121i −0.698045 + 0.289140i −0.703347 0.710846i \(-0.748312\pi\)
0.00530241 + 0.999986i \(0.498312\pi\)
\(662\) 135.388i 0.204514i
\(663\) 0 0
\(664\) −1116.41 −1.68134
\(665\) −7.20763 17.4008i −0.0108385 0.0261666i
\(666\) −38.6288 + 25.8110i −0.0580012 + 0.0387552i
\(667\) 313.036 313.036i 0.469320 0.469320i
\(668\) −364.030 72.4102i −0.544956 0.108398i
\(669\) 259.305 + 173.262i 0.387601 + 0.258987i
\(670\) 149.523 29.7419i 0.223168 0.0443909i
\(671\) 395.126 + 163.666i 0.588861 + 0.243914i
\(672\) 275.958 666.221i 0.410651 0.991400i
\(673\) 183.323 + 921.629i 0.272397 + 1.36943i 0.838411 + 0.545038i \(0.183485\pi\)
−0.566014 + 0.824396i \(0.691515\pi\)
\(674\) −406.664 + 608.615i −0.603359 + 0.902990i
\(675\) −126.423 + 635.569i −0.187293 + 0.941584i
\(676\) 554.932 + 554.932i 0.820905 + 0.820905i
\(677\) −618.247 925.272i −0.913216 1.36672i −0.930272 0.366870i \(-0.880430\pi\)
0.0170566 0.999855i \(-0.494570\pi\)
\(678\) −474.102 + 196.379i −0.699265 + 0.289645i
\(679\) 702.908i 1.03521i
\(680\) 0 0
\(681\) 411.546 0.604325
\(682\) −57.9857 139.990i −0.0850231 0.205264i
\(683\) 1093.01 730.324i 1.60030 1.06929i 0.649110 0.760695i \(-0.275142\pi\)
0.951194 0.308594i \(-0.0998583\pi\)
\(684\) 3.71259 3.71259i 0.00542776 0.00542776i
\(685\) −162.641 32.3512i −0.237432 0.0472281i
\(686\) 190.429 + 127.240i 0.277593 + 0.185482i
\(687\) 25.3735 5.04711i 0.0369338 0.00734660i
\(688\) −46.8276 19.3966i −0.0680634 0.0281928i
\(689\) 247.414 597.310i 0.359091 0.866923i
\(690\) −30.3022 152.340i −0.0439163 0.220782i
\(691\) −266.235 + 398.449i −0.385290 + 0.576627i −0.972528 0.232787i \(-0.925215\pi\)
0.587238 + 0.809415i \(0.300215\pi\)
\(692\) 7.26009 36.4989i 0.0104915 0.0527441i
\(693\) −93.6660 93.6660i −0.135160 0.135160i
\(694\) −188.887 282.690i −0.272172 0.407334i
\(695\) −46.2924 + 19.1749i −0.0666078 + 0.0275898i
\(696\) 368.075i 0.528844i
\(697\) 0 0
\(698\) −739.826 −1.05992
\(699\) −400.410 966.675i −0.572832 1.38294i
\(700\) 366.945 245.185i 0.524207 0.350264i
\(701\) −777.458 + 777.458i −1.10907 + 1.10907i −0.115796 + 0.993273i \(0.536942\pi\)
−0.993273 + 0.115796i \(0.963058\pi\)
\(702\) −864.539 171.968i −1.23154 0.244968i
\(703\) −21.0182 14.0439i −0.0298978 0.0199771i
\(704\) 397.503 79.0682i 0.564635 0.112313i
\(705\) −153.027 63.3860i −0.217060 0.0899092i
\(706\) −294.541 + 711.085i −0.417197 + 1.00720i
\(707\) 243.269 + 1223.00i 0.344086 + 1.72984i
\(708\) 79.0764 118.346i 0.111690 0.167156i
\(709\) −101.816 + 511.863i −0.143605 + 0.721951i 0.840138 + 0.542372i \(0.182474\pi\)
−0.983744 + 0.179579i \(0.942526\pi\)
\(710\) 160.503 + 160.503i 0.226061 + 0.226061i
\(711\) 7.27456 + 10.8871i 0.0102314 + 0.0153124i
\(712\) −418.771 + 173.461i −0.588162 + 0.243625i
\(713\) 367.531i 0.515472i
\(714\) 0 0
\(715\) 307.343 0.429851
\(716\) 32.9965 + 79.6605i 0.0460845 + 0.111258i
\(717\) −830.352 + 554.824i −1.15809 + 0.773813i
\(718\) 162.610 162.610i 0.226476 0.226476i
\(719\) 609.667 + 121.270i 0.847938 + 0.168665i 0.599890 0.800082i \(-0.295211\pi\)
0.248048 + 0.968748i \(0.420211\pi\)
\(720\) 5.21336 + 3.48346i 0.00724078 + 0.00483813i
\(721\) 368.066 73.2130i 0.510494 0.101544i
\(722\) 442.087 + 183.118i 0.612309 + 0.253627i
\(723\) −142.677 + 344.452i −0.197340 + 0.476420i
\(724\) 18.7600 + 94.3131i 0.0259117 + 0.130267i
\(725\) 205.550 307.627i 0.283517 0.424313i
\(726\) 36.5290 183.644i 0.0503154 0.252953i
\(727\) −181.405 181.405i −0.249526 0.249526i 0.571250 0.820776i \(-0.306459\pi\)
−0.820776 + 0.571250i \(0.806459\pi\)
\(728\) 932.755 + 1395.97i 1.28126 + 1.91754i
\(729\) −748.965 + 310.231i −1.02739 + 0.425557i
\(730\) 77.0116i 0.105495i
\(731\) 0 0
\(732\) −308.395 −0.421305
\(733\) 84.8211 + 204.776i 0.115718 + 0.279367i 0.971118 0.238600i \(-0.0766886\pi\)
−0.855400 + 0.517968i \(0.826689\pi\)
\(734\) −22.6088 + 15.1067i −0.0308022 + 0.0205814i
\(735\) 91.2502 91.2502i 0.124150 0.124150i
\(736\) −795.611 158.257i −1.08099 0.215023i
\(737\) 485.072 + 324.115i 0.658171 + 0.439776i
\(738\) −62.2884 + 12.3899i −0.0844017 + 0.0167885i
\(739\) −272.978 113.071i −0.369388 0.153006i 0.190265 0.981733i \(-0.439065\pi\)
−0.559653 + 0.828727i \(0.689065\pi\)
\(740\) −26.7699 + 64.6284i −0.0361756 + 0.0873356i
\(741\) −15.6238 78.5464i −0.0210848 0.106000i
\(742\) 185.719 277.948i 0.250295 0.374594i
\(743\) 146.076 734.372i 0.196602 0.988387i −0.748878 0.662708i \(-0.769407\pi\)
0.945480 0.325679i \(-0.105593\pi\)
\(744\) 216.076 + 216.076i 0.290425 + 0.290425i
\(745\) 29.7614 + 44.5411i 0.0399482 + 0.0597867i
\(746\) 850.187 352.159i 1.13966 0.472063i
\(747\) 242.882i 0.325143i
\(748\) 0 0
\(749\) 653.871 0.872992
\(750\) −105.219 254.021i −0.140292 0.338695i
\(751\) −579.170 + 386.989i −0.771199 + 0.515298i −0.877814 0.479002i \(-0.840999\pi\)
0.106615 + 0.994300i \(0.465999\pi\)
\(752\) 57.4652 57.4652i 0.0764165 0.0764165i
\(753\) 573.194 + 114.015i 0.761213 + 0.151415i
\(754\) 418.453 + 279.601i 0.554977 + 0.370824i
\(755\) −224.676 + 44.6908i −0.297584 + 0.0591931i
\(756\) 528.496 + 218.910i 0.699069 + 0.289564i
\(757\) −262.415 + 633.525i −0.346651 + 0.836889i 0.650360 + 0.759626i \(0.274618\pi\)
−0.997011 + 0.0772631i \(0.975382\pi\)
\(758\) 45.4301 + 228.392i 0.0599341 + 0.301309i
\(759\) 330.221 494.211i 0.435074 0.651135i
\(760\) −3.43669 + 17.2774i −0.00452195 + 0.0227334i
\(761\) 305.005 + 305.005i 0.400795 + 0.400795i 0.878513 0.477718i \(-0.158536\pi\)
−0.477718 + 0.878513i \(0.658536\pi\)
\(762\) 214.859 + 321.559i 0.281967 + 0.421993i
\(763\) −1722.00 + 713.275i −2.25688 + 0.934830i
\(764\) 337.495i 0.441747i
\(765\) 0 0
\(766\) 635.021 0.829009
\(767\) 208.287 + 502.850i 0.271561 + 0.655606i
\(768\) −603.271 + 403.093i −0.785509 + 0.524861i
\(769\) −303.275 + 303.275i −0.394376 + 0.394376i −0.876244 0.481868i \(-0.839959\pi\)
0.481868 + 0.876244i \(0.339959\pi\)
\(770\) 155.859 + 31.0022i 0.202414 + 0.0402626i
\(771\) 946.317 + 632.309i 1.22739 + 0.820115i
\(772\) −449.065 + 89.3246i −0.581690 + 0.115705i
\(773\) 192.675 + 79.8088i 0.249257 + 0.103246i 0.503814 0.863812i \(-0.331930\pi\)
−0.254557 + 0.967058i \(0.581930\pi\)
\(774\) 21.7895 52.6045i 0.0281518 0.0679644i
\(775\) 59.9237 + 301.257i 0.0773209 + 0.388718i
\(776\) −365.249 + 546.633i −0.470681 + 0.704424i
\(777\) 89.7175 451.040i 0.115467 0.580489i
\(778\) −208.144 208.144i −0.267537 0.267537i
\(779\) −19.1980 28.7318i −0.0246444 0.0368830i
\(780\) −204.751 + 84.8108i −0.262502 + 0.108732i
\(781\) 868.612i 1.11218i
\(782\) 0 0
\(783\) 479.568 0.612475
\(784\) 24.2301 + 58.4966i 0.0309057 + 0.0746130i
\(785\) −149.797 + 100.091i −0.190824 + 0.127505i
\(786\) −234.148 + 234.148i −0.297898 + 0.297898i
\(787\) −1084.81 215.783i −1.37842 0.274184i −0.550407 0.834896i \(-0.685527\pi\)
−0.828011 + 0.560712i \(0.810527\pi\)
\(788\) −259.172 173.173i −0.328898 0.219763i
\(789\) −376.070 + 74.8050i −0.476641 + 0.0948098i
\(790\) −14.5125 6.01129i −0.0183703 0.00760922i
\(791\) −487.334 + 1176.53i −0.616099 + 1.48739i
\(792\) 24.1704 + 121.513i 0.0305182 + 0.153425i
\(793\) 655.182 980.548i 0.826206 1.23650i
\(794\) 31.4366 158.042i 0.0395927 0.199046i
\(795\) 87.2646 + 87.2646i 0.109767 + 0.109767i
\(796\) −183.387 274.458i −0.230386 0.344797i
\(797\) 56.6619 23.4701i 0.0710940 0.0294481i −0.346853 0.937919i \(-0.612750\pi\)
0.417947 + 0.908471i \(0.362750\pi\)
\(798\) 41.4081i 0.0518899i
\(799\) 0 0
\(800\) −677.946 −0.847433
\(801\) −37.7374 91.1062i −0.0471129 0.113741i
\(802\) 578.205 386.344i 0.720954 0.481726i
\(803\) −208.386 + 208.386i −0.259509 + 0.259509i
\(804\) −412.593 82.0698i −0.513175 0.102077i
\(805\) −320.491 214.145i −0.398126 0.266019i
\(806\) −409.787 + 81.5117i −0.508421 + 0.101131i
\(807\) 113.521 + 47.0217i 0.140670 + 0.0582673i
\(808\) 446.315 1077.50i 0.552370 1.33354i
\(809\) −158.661 797.643i −0.196120 0.985962i −0.945945 0.324326i \(-0.894862\pi\)
0.749825 0.661636i \(-0.230138\pi\)
\(810\) 73.9577 110.685i 0.0913058 0.136649i
\(811\) −225.686 + 1134.60i −0.278281 + 1.39901i 0.548340 + 0.836256i \(0.315260\pi\)
−0.826621 + 0.562759i \(0.809740\pi\)
\(812\) −230.941 230.941i −0.284410 0.284410i
\(813\) 491.526 + 735.621i 0.604583 + 0.904823i
\(814\) 197.046 81.6192i 0.242071 0.100269i
\(815\) 265.415i 0.325663i
\(816\) 0 0
\(817\) 30.9806 0.0379200
\(818\) 69.3211 + 167.356i 0.0847446 + 0.204592i
\(819\) −303.701 + 202.926i −0.370819 + 0.247773i
\(820\) −67.6178 + 67.6178i −0.0824608 + 0.0824608i
\(821\) −981.470 195.226i −1.19546 0.237791i −0.443054 0.896495i \(-0.646105\pi\)
−0.752402 + 0.658704i \(0.771105\pi\)
\(822\) −303.133 202.547i −0.368776 0.246408i
\(823\) −53.1391 + 10.5700i −0.0645676 + 0.0128433i −0.227268 0.973832i \(-0.572979\pi\)
0.162701 + 0.986675i \(0.447979\pi\)
\(824\) −324.279 134.321i −0.393542 0.163011i
\(825\) 190.097 458.934i 0.230420 0.556283i
\(826\) 54.9025 + 276.013i 0.0664679 + 0.334157i
\(827\) −227.897 + 341.072i −0.275570 + 0.412420i −0.943278 0.332003i \(-0.892276\pi\)
0.667708 + 0.744423i \(0.267276\pi\)
\(828\) 20.9625 105.386i 0.0253171 0.127278i
\(829\) 153.097 + 153.097i 0.184677 + 0.184677i 0.793390 0.608713i \(-0.208314\pi\)
−0.608713 + 0.793390i \(0.708314\pi\)
\(830\) 161.881 + 242.271i 0.195037 + 0.291893i
\(831\) 699.389 289.696i 0.841623 0.348612i
\(832\) 1117.56i 1.34322i
\(833\) 0 0
\(834\) −110.161 −0.132087
\(835\) 103.678 + 250.301i 0.124165 + 0.299762i
\(836\) −20.0413 + 13.3911i −0.0239728 + 0.0160181i
\(837\) −281.527 + 281.527i −0.336352 + 0.336352i
\(838\) −489.221 97.3120i −0.583796 0.116124i
\(839\) −235.891 157.618i −0.281158 0.187864i 0.406993 0.913431i \(-0.366577\pi\)
−0.688151 + 0.725568i \(0.741577\pi\)
\(840\) −314.319 + 62.5220i −0.374190 + 0.0744309i
\(841\) 524.021 + 217.057i 0.623093 + 0.258094i
\(842\) −197.491 + 476.785i −0.234549 + 0.566252i
\(843\) 80.0011 + 402.193i 0.0949005 + 0.477097i
\(844\) −253.154 + 378.872i −0.299946 + 0.448901i
\(845\) 111.757 561.840i 0.132257 0.664899i
\(846\) 64.5544 + 64.5544i 0.0763054 + 0.0763054i
\(847\) −258.150 386.349i −0.304782 0.456138i
\(848\) −55.9416 + 23.1718i −0.0659689 + 0.0273252i
\(849\) 852.762i 1.00443i
\(850\) 0 0
\(851\) −517.327 −0.607905
\(852\) −239.692 578.667i −0.281328 0.679187i
\(853\) −474.002 + 316.718i −0.555688 + 0.371299i −0.801478 0.598024i \(-0.795953\pi\)
0.245790 + 0.969323i \(0.420953\pi\)
\(854\) 431.162 431.162i 0.504874 0.504874i
\(855\) −3.75880 0.747672i −0.00439626 0.000874470i
\(856\) −508.499 339.768i −0.594040 0.396925i
\(857\) 1303.19 259.221i 1.52065 0.302475i 0.637086 0.770792i \(-0.280139\pi\)
0.883561 + 0.468317i \(0.155139\pi\)
\(858\) 624.269 + 258.581i 0.727586 + 0.301376i
\(859\) 107.826 260.316i 0.125526 0.303046i −0.848607 0.529024i \(-0.822558\pi\)
0.974132 + 0.225979i \(0.0725580\pi\)
\(860\) −16.7257 84.0860i −0.0194485 0.0977744i
\(861\) 349.260 522.704i 0.405645 0.607090i
\(862\) −17.8841 + 89.9092i −0.0207472 + 0.104303i
\(863\) −44.4457 44.4457i −0.0515014 0.0515014i 0.680887 0.732388i \(-0.261594\pi\)
−0.732388 + 0.680887i \(0.761594\pi\)
\(864\) −488.209 730.657i −0.565057 0.845668i
\(865\) −25.0961 + 10.3951i −0.0290128 + 0.0120175i
\(866\) 362.854i 0.419000i
\(867\) 0 0
\(868\) 271.144 0.312378
\(869\) −23.0035 55.5355i −0.0264713 0.0639073i
\(870\) −79.8757 + 53.3712i −0.0918112 + 0.0613463i
\(871\) 1137.49 1137.49i 1.30596 1.30596i
\(872\) 1709.79 + 340.098i 1.96077 + 0.390021i
\(873\) −118.923 79.4621i −0.136224 0.0910218i
\(874\) −45.6860 + 9.08751i −0.0522723 + 0.0103976i
\(875\) −630.377 261.111i −0.720431 0.298412i
\(876\) 81.3225 196.330i 0.0928339 0.224121i
\(877\) −87.9713 442.261i −0.100309 0.504289i −0.997975 0.0636113i \(-0.979738\pi\)
0.897665 0.440678i \(-0.145262\pi\)
\(878\) −108.931 + 163.027i −0.124068 + 0.185680i
\(879\) −20.1778 + 101.441i −0.0229554 + 0.115405i
\(880\) −20.3537 20.3537i −0.0231292 0.0231292i
\(881\) −546.902 818.497i −0.620774 0.929054i −0.999993 0.00374731i \(-0.998807\pi\)
0.379219 0.925307i \(-0.376193\pi\)
\(882\) −65.7130 + 27.2192i −0.0745046 + 0.0308608i
\(883\) 908.452i 1.02882i 0.857543 + 0.514412i \(0.171990\pi\)
−0.857543 + 0.514412i \(0.828010\pi\)
\(884\) 0 0
\(885\) −103.894 −0.117395
\(886\) −315.652 762.051i −0.356266 0.860103i
\(887\) 208.233 139.137i 0.234761 0.156862i −0.432626 0.901574i \(-0.642413\pi\)
0.667387 + 0.744711i \(0.267413\pi\)
\(888\) −304.143 + 304.143i −0.342503 + 0.342503i
\(889\) 941.280 + 187.232i 1.05881 + 0.210610i
\(890\) 98.3647 + 65.7252i 0.110522 + 0.0738485i
\(891\) 499.626 99.3819i 0.560748 0.111540i
\(892\) −239.117 99.0454i −0.268068 0.111037i
\(893\) −19.0092 + 45.8922i −0.0212869 + 0.0513911i
\(894\) 22.9764 + 115.510i 0.0257007 + 0.129206i
\(895\) 34.9664 52.3309i 0.0390686 0.0584703i
\(896\) −97.0455 + 487.881i −0.108310 + 0.544510i
\(897\) −1158.92 1158.92i −1.29200 1.29200i
\(898\) −464.241 694.786i −0.516972 0.773704i
\(899\) 210.010 86.9888i 0.233604 0.0967617i
\(900\) 89.8001i 0.0997779i
\(901\) 0 0
\(902\) 291.555 0.323232
\(903\) 215.687 + 520.713i 0.238856 + 0.576648i
\(904\) 990.341 661.725i 1.09551 0.731996i
\(905\) 49.6326 49.6326i 0.0548427 0.0548427i
\(906\) −493.957 98.2541i −0.545206 0.108448i
\(907\) 1443.77 + 964.698i 1.59181 + 1.06361i 0.956653 + 0.291232i \(0.0940650\pi\)
0.635158 + 0.772382i \(0.280935\pi\)
\(908\) −334.982 + 66.6321i −0.368923 + 0.0733833i
\(909\) 234.417 + 97.0986i 0.257884 + 0.106819i
\(910\) 167.687 404.833i 0.184272 0.444871i
\(911\) −350.193 1760.54i −0.384405 1.93253i −0.360334 0.932823i \(-0.617337\pi\)
−0.0240704 0.999710i \(-0.507663\pi\)
\(912\) −4.16702 + 6.23639i −0.00456911 + 0.00683815i
\(913\) −217.530 + 1093.60i −0.238258 + 1.19781i
\(914\) 130.337 + 130.337i 0.142600 + 0.142600i
\(915\) 125.063 + 187.171i 0.136681 + 0.204558i
\(916\) −19.8359 + 8.21630i −0.0216549 + 0.00896976i
\(917\) 821.743i 0.896121i
\(918\) 0 0
\(919\) −506.869 −0.551544 −0.275772 0.961223i \(-0.588933\pi\)
−0.275772 + 0.961223i \(0.588933\pi\)
\(920\) 137.962 + 333.071i 0.149959 + 0.362033i
\(921\) 10.7276 7.16798i 0.0116478 0.00778282i
\(922\) 138.230 138.230i 0.149924 0.149924i
\(923\) 2349.11 + 467.266i 2.54508 + 0.506247i
\(924\) −364.601 243.619i −0.394590 0.263657i
\(925\) −424.041 + 84.3470i −0.458422 + 0.0911859i
\(926\) −908.914 376.485i −0.981549 0.406571i
\(927\) 29.2223 70.5489i 0.0315235 0.0761045i
\(928\) 97.8796 + 492.074i 0.105474 + 0.530252i
\(929\) −774.790 + 1159.56i −0.834005 + 1.24818i 0.132412 + 0.991195i \(0.457728\pi\)
−0.966416 + 0.256981i \(0.917272\pi\)
\(930\) 15.5593 78.2217i 0.0167304 0.0841093i
\(931\) −27.3656 27.3656i −0.0293937 0.0293937i
\(932\) 482.429 + 722.006i 0.517628 + 0.774685i
\(933\) 1191.16 493.396i 1.27670 0.528827i
\(934\) 10.1880i 0.0109080i
\(935\) 0 0
\(936\) 341.626 0.364985
\(937\) −76.7261 185.233i −0.0818848 0.197687i 0.877634 0.479331i \(-0.159121\pi\)
−0.959519 + 0.281643i \(0.909121\pi\)
\(938\) 691.580 462.099i 0.737292 0.492643i
\(939\) −168.233 + 168.233i −0.179162 + 0.179162i
\(940\) 134.821 + 26.8175i 0.143426 + 0.0285293i
\(941\) −1269.83 848.476i −1.34945 0.901675i −0.350067 0.936725i \(-0.613841\pi\)
−0.999386 + 0.0350495i \(0.988841\pi\)
\(942\) −388.476 + 77.2726i −0.412394 + 0.0820303i
\(943\) −653.355 270.628i −0.692847 0.286987i
\(944\) 19.5073 47.0948i 0.0206645 0.0498886i
\(945\) −81.4603 409.529i −0.0862014 0.433364i
\(946\) −145.222 + 217.341i −0.153512 + 0.229747i
\(947\) 198.435 997.602i 0.209541 1.05343i −0.722580 0.691287i \(-0.757044\pi\)
0.932121 0.362147i \(-0.117956\pi\)
\(948\) 30.6498 + 30.6498i 0.0323310 + 0.0323310i
\(949\) 451.466 + 675.667i 0.475728 + 0.711978i
\(950\) −35.9661 + 14.8976i −0.0378590 + 0.0156817i
\(951\) 322.706i 0.339334i
\(952\) 0 0
\(953\) 297.230 0.311889 0.155945 0.987766i \(-0.450158\pi\)
0.155945 + 0.987766i \(0.450158\pi\)
\(954\) −26.0303 62.8428i −0.0272855 0.0658730i
\(955\) −204.832 + 136.864i −0.214484 + 0.143313i
\(956\) 586.045 586.045i 0.613017 0.613017i
\(957\) −360.553 71.7185i −0.376754 0.0749410i
\(958\) −838.169 560.047i −0.874915 0.584600i
\(959\) −887.345 + 176.504i −0.925281 + 0.184050i
\(960\) 197.085 + 81.6352i 0.205297 + 0.0850366i
\(961\) 295.540 713.498i 0.307534 0.742453i
\(962\) −114.734 576.806i −0.119266 0.599590i
\(963\) 73.9186 110.627i 0.0767586 0.114877i
\(964\) 60.3641 303.471i 0.0626183 0.314804i
\(965\) 236.322 + 236.322i 0.244893 + 0.244893i
\(966\) −470.805 704.610i −0.487376 0.729410i
\(967\) 1093.12 452.787i 1.13043 0.468239i 0.262502 0.964931i \(-0.415452\pi\)
0.867927 + 0.496692i \(0.165452\pi\)
\(968\) 434.595i 0.448961i
\(969\) 0 0
\(970\) 171.586 0.176893
\(971\) 211.336 + 510.211i 0.217648 + 0.525449i 0.994561 0.104160i \(-0.0332153\pi\)
−0.776913 + 0.629608i \(0.783215\pi\)
\(972\) 177.404 118.537i 0.182514 0.121952i
\(973\) −193.305 + 193.305i −0.198669 + 0.198669i
\(974\) −11.5378 2.29501i −0.0118458 0.00235628i
\(975\) −1138.90 760.986i −1.16810 0.780498i
\(976\) −108.326 + 21.5473i −0.110989 + 0.0220772i
\(977\) 302.204 + 125.177i 0.309318 + 0.128124i 0.531942 0.846781i \(-0.321462\pi\)
−0.222624 + 0.974904i \(0.571462\pi\)
\(978\) 223.305 539.105i 0.228328 0.551232i
\(979\) 88.3194 + 444.011i 0.0902138 + 0.453536i
\(980\) −59.5001 + 89.0482i −0.0607144 + 0.0908655i
\(981\) −73.9904 + 371.975i −0.0754235 + 0.379179i
\(982\) 552.735 + 552.735i 0.562866 + 0.562866i
\(983\) −569.276 851.982i −0.579121 0.866716i 0.420047 0.907503i \(-0.362014\pi\)
−0.999168 + 0.0407862i \(0.987014\pi\)
\(984\) −543.221 + 225.009i −0.552053 + 0.228668i
\(985\) 227.523i 0.230988i
\(986\) 0 0
\(987\) −903.685 −0.915587
\(988\) 25.4344 + 61.4041i 0.0257433 + 0.0621499i
\(989\) 527.174 352.246i 0.533037 0.356164i
\(990\) 22.8646 22.8646i 0.0230956 0.0230956i
\(991\) 404.735 + 80.5068i 0.408411 + 0.0812380i 0.395020 0.918672i \(-0.370738\pi\)
0.0133905 + 0.999910i \(0.495738\pi\)
\(992\) −346.328 231.409i −0.349121 0.233275i
\(993\) 267.457 53.2005i 0.269342 0.0535755i
\(994\) 1144.14 + 473.916i 1.15104 + 0.476777i
\(995\) −92.2048 + 222.602i −0.0926682 + 0.223721i
\(996\) −156.858 788.578i −0.157488 0.791745i
\(997\) −698.922 + 1046.01i −0.701025 + 1.04916i 0.294590 + 0.955624i \(0.404817\pi\)
−0.995616 + 0.0935352i \(0.970183\pi\)
\(998\) 29.1238 146.415i 0.0291821 0.146708i
\(999\) −396.270 396.270i −0.396666 0.396666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.l.131.1 8
17.2 even 8 289.3.e.m.65.1 8
17.3 odd 16 17.3.e.a.6.1 yes 8
17.4 even 4 289.3.e.d.158.1 8
17.5 odd 16 289.3.e.m.249.1 8
17.6 odd 16 289.3.e.b.75.1 8
17.7 odd 16 289.3.e.k.214.1 8
17.8 even 8 289.3.e.c.224.1 8
17.9 even 8 17.3.e.a.3.1 8
17.10 odd 16 inner 289.3.e.l.214.1 8
17.11 odd 16 289.3.e.d.75.1 8
17.12 odd 16 289.3.e.i.249.1 8
17.13 even 4 289.3.e.b.158.1 8
17.14 odd 16 289.3.e.c.40.1 8
17.15 even 8 289.3.e.i.65.1 8
17.16 even 2 289.3.e.k.131.1 8
51.20 even 16 153.3.p.b.91.1 8
51.26 odd 8 153.3.p.b.37.1 8
68.3 even 16 272.3.bh.c.193.1 8
68.43 odd 8 272.3.bh.c.241.1 8
85.3 even 16 425.3.t.c.74.1 8
85.9 even 8 425.3.u.b.326.1 8
85.37 even 16 425.3.t.a.74.1 8
85.43 odd 8 425.3.t.a.224.1 8
85.54 odd 16 425.3.u.b.176.1 8
85.77 odd 8 425.3.t.c.224.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.3.1 8 17.9 even 8
17.3.e.a.6.1 yes 8 17.3 odd 16
153.3.p.b.37.1 8 51.26 odd 8
153.3.p.b.91.1 8 51.20 even 16
272.3.bh.c.193.1 8 68.3 even 16
272.3.bh.c.241.1 8 68.43 odd 8
289.3.e.b.75.1 8 17.6 odd 16
289.3.e.b.158.1 8 17.13 even 4
289.3.e.c.40.1 8 17.14 odd 16
289.3.e.c.224.1 8 17.8 even 8
289.3.e.d.75.1 8 17.11 odd 16
289.3.e.d.158.1 8 17.4 even 4
289.3.e.i.65.1 8 17.15 even 8
289.3.e.i.249.1 8 17.12 odd 16
289.3.e.k.131.1 8 17.16 even 2
289.3.e.k.214.1 8 17.7 odd 16
289.3.e.l.131.1 8 1.1 even 1 trivial
289.3.e.l.214.1 8 17.10 odd 16 inner
289.3.e.m.65.1 8 17.2 even 8
289.3.e.m.249.1 8 17.5 odd 16
425.3.t.a.74.1 8 85.37 even 16
425.3.t.a.224.1 8 85.43 odd 8
425.3.t.c.74.1 8 85.3 even 16
425.3.t.c.224.1 8 85.77 odd 8
425.3.u.b.176.1 8 85.54 odd 16
425.3.u.b.326.1 8 85.9 even 8