Properties

Label 289.3.e.i.249.1
Level $289$
Weight $3$
Character 289.249
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,-8,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 249.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.249
Dual form 289.3.e.i.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23044 - 0.509666i) q^{2} +(0.523336 + 2.63099i) q^{3} +(-1.57420 - 1.57420i) q^{4} +(-1.35115 - 0.902812i) q^{5} +(0.696990 - 3.50400i) q^{6} +(-7.37170 + 4.92562i) q^{7} +(3.17331 + 7.66104i) q^{8} +(1.66671 - 0.690373i) q^{9} +(1.20238 + 1.79949i) q^{10} +(-8.12279 - 1.61572i) q^{11} +(3.31786 - 4.96553i) q^{12} +(16.1480 - 16.1480i) q^{13} +(11.5809 - 2.30358i) q^{14} +(1.66818 - 4.02734i) q^{15} -2.13880i q^{16} -2.40265 q^{18} +(1.20778 + 0.500280i) q^{19} +(0.705778 + 3.54819i) q^{20} +(-16.8171 - 16.8171i) q^{21} +(9.17115 + 6.12797i) q^{22} +(5.21946 - 26.2400i) q^{23} +(-18.4954 + 12.3582i) q^{24} +(-8.55654 - 20.6573i) q^{25} +(-28.0993 + 11.6391i) q^{26} +(16.1016 + 24.0978i) q^{27} +(19.3584 + 3.85063i) q^{28} +(9.19303 - 13.7583i) q^{29} +(-4.10520 + 4.10520i) q^{30} +(13.4734 - 2.68003i) q^{31} +(11.6032 - 28.0125i) q^{32} -22.2165i q^{33} +14.4072 q^{35} +(-3.71051 - 1.53694i) q^{36} +(-3.77234 - 18.9648i) q^{37} +(-1.23113 - 1.23113i) q^{38} +(50.9361 + 34.0344i) q^{39} +(2.62885 - 13.2161i) q^{40} +(21.9781 - 14.6853i) q^{41} +(12.1214 + 29.2636i) q^{42} +(21.8944 - 9.06895i) q^{43} +(10.2434 + 15.3303i) q^{44} +(-2.87525 - 0.571923i) q^{45} +(-19.7959 + 29.6266i) q^{46} +(26.8680 - 26.8680i) q^{47} +(5.62714 - 1.11931i) q^{48} +(11.3288 - 27.3503i) q^{49} +29.7786i q^{50} -50.8404 q^{52} +(-26.1557 - 10.8340i) q^{53} +(-7.53030 - 37.8574i) q^{54} +(9.51644 + 9.51644i) q^{55} +(-61.1281 - 40.8445i) q^{56} +(-0.684154 + 3.43947i) q^{57} +(-18.3236 + 12.2435i) q^{58} +(-9.12070 - 22.0193i) q^{59} +(-8.96587 + 3.71379i) q^{60} +(-28.6898 - 42.9373i) q^{61} +(-17.9442 - 3.56932i) q^{62} +(-8.88596 + 13.2988i) q^{63} +(-34.6035 + 34.6035i) q^{64} +(-36.3971 + 7.23983i) q^{65} +(-11.3230 + 27.3362i) q^{66} -70.4415i q^{67} +71.7687 q^{69} +(-17.7272 - 7.34286i) q^{70} +(20.4612 + 102.865i) q^{71} +(10.5780 + 10.5780i) q^{72} +(-29.5868 - 19.7693i) q^{73} +(-5.02408 + 25.2578i) q^{74} +(49.8712 - 33.3228i) q^{75} +(-1.11375 - 2.68883i) q^{76} +(67.8373 - 28.0991i) q^{77} +(-45.3277 - 67.8377i) q^{78} +(-7.11865 - 1.41599i) q^{79} +(-1.93093 + 2.88984i) q^{80} +(-43.4936 + 43.4936i) q^{81} +(-34.5274 + 6.86792i) q^{82} +(-51.5218 + 124.385i) q^{83} +52.9469i q^{84} -31.5619 q^{86} +(41.0090 + 16.9865i) q^{87} +(-13.3980 - 67.3563i) q^{88} +(38.6522 + 38.6522i) q^{89} +(3.24634 + 2.16914i) q^{90} +(-39.4995 + 198.577i) q^{91} +(-49.5234 + 33.0905i) q^{92} +(14.1023 + 34.0458i) q^{93} +(-46.7533 + 19.3658i) q^{94} +(-1.18024 - 1.76635i) q^{95} +(79.7729 + 15.8678i) q^{96} +(44.0470 - 65.9209i) q^{97} +(-27.8790 + 27.8790i) q^{98} +(-14.6538 + 2.91482i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 8 q^{3} - 16 q^{5} - 24 q^{6} + 8 q^{7} + 24 q^{8} + 16 q^{9} - 48 q^{10} - 48 q^{11} - 40 q^{12} + 16 q^{13} + 8 q^{14} + 16 q^{15} + 56 q^{18} - 32 q^{20} - 64 q^{21} - 56 q^{22} - 40 q^{23}+ \cdots - 272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23044 0.509666i −0.615221 0.254833i 0.0532379 0.998582i \(-0.483046\pi\)
−0.668459 + 0.743749i \(0.733046\pi\)
\(3\) 0.523336 + 2.63099i 0.174445 + 0.876995i 0.964525 + 0.263991i \(0.0850391\pi\)
−0.790080 + 0.613004i \(0.789961\pi\)
\(4\) −1.57420 1.57420i −0.393549 0.393549i
\(5\) −1.35115 0.902812i −0.270231 0.180562i 0.413070 0.910699i \(-0.364456\pi\)
−0.683301 + 0.730137i \(0.739456\pi\)
\(6\) 0.696990 3.50400i 0.116165 0.584001i
\(7\) −7.37170 + 4.92562i −1.05310 + 0.703659i −0.956520 0.291666i \(-0.905790\pi\)
−0.0965803 + 0.995325i \(0.530790\pi\)
\(8\) 3.17331 + 7.66104i 0.396664 + 0.957631i
\(9\) 1.66671 0.690373i 0.185190 0.0767081i
\(10\) 1.20238 + 1.79949i 0.120238 + 0.179949i
\(11\) −8.12279 1.61572i −0.738436 0.146884i −0.188479 0.982077i \(-0.560356\pi\)
−0.549957 + 0.835193i \(0.685356\pi\)
\(12\) 3.31786 4.96553i 0.276488 0.413794i
\(13\) 16.1480 16.1480i 1.24216 1.24216i 0.283051 0.959105i \(-0.408654\pi\)
0.959105 0.283051i \(-0.0913464\pi\)
\(14\) 11.5809 2.30358i 0.827205 0.164541i
\(15\) 1.66818 4.02734i 0.111212 0.268489i
\(16\) 2.13880i 0.133675i
\(17\) 0 0
\(18\) −2.40265 −0.133480
\(19\) 1.20778 + 0.500280i 0.0635675 + 0.0263305i 0.414241 0.910167i \(-0.364047\pi\)
−0.350673 + 0.936498i \(0.614047\pi\)
\(20\) 0.705778 + 3.54819i 0.0352889 + 0.177409i
\(21\) −16.8171 16.8171i −0.800814 0.800814i
\(22\) 9.17115 + 6.12797i 0.416870 + 0.278544i
\(23\) 5.21946 26.2400i 0.226933 1.14087i −0.684370 0.729135i \(-0.739923\pi\)
0.911303 0.411735i \(-0.135077\pi\)
\(24\) −18.4954 + 12.3582i −0.770642 + 0.514926i
\(25\) −8.55654 20.6573i −0.342262 0.826293i
\(26\) −28.0993 + 11.6391i −1.08074 + 0.447658i
\(27\) 16.1016 + 24.0978i 0.596356 + 0.892510i
\(28\) 19.3584 + 3.85063i 0.691372 + 0.137522i
\(29\) 9.19303 13.7583i 0.317001 0.474425i −0.638414 0.769694i \(-0.720409\pi\)
0.955414 + 0.295268i \(0.0954090\pi\)
\(30\) −4.10520 + 4.10520i −0.136840 + 0.136840i
\(31\) 13.4734 2.68003i 0.434627 0.0864526i 0.0270721 0.999633i \(-0.491382\pi\)
0.407555 + 0.913181i \(0.366382\pi\)
\(32\) 11.6032 28.0125i 0.362599 0.875391i
\(33\) 22.2165i 0.673228i
\(34\) 0 0
\(35\) 14.4072 0.411634
\(36\) −3.71051 1.53694i −0.103070 0.0426929i
\(37\) −3.77234 18.9648i −0.101955 0.512563i −0.997687 0.0679693i \(-0.978348\pi\)
0.895732 0.444594i \(-0.146652\pi\)
\(38\) −1.23113 1.23113i −0.0323982 0.0323982i
\(39\) 50.9361 + 34.0344i 1.30605 + 0.872677i
\(40\) 2.62885 13.2161i 0.0657214 0.330404i
\(41\) 21.9781 14.6853i 0.536051 0.358178i −0.257888 0.966175i \(-0.583027\pi\)
0.793939 + 0.607997i \(0.208027\pi\)
\(42\) 12.1214 + 29.2636i 0.288604 + 0.696752i
\(43\) 21.8944 9.06895i 0.509172 0.210906i −0.113281 0.993563i \(-0.536136\pi\)
0.622453 + 0.782657i \(0.286136\pi\)
\(44\) 10.2434 + 15.3303i 0.232805 + 0.348417i
\(45\) −2.87525 0.571923i −0.0638945 0.0127094i
\(46\) −19.7959 + 29.6266i −0.430345 + 0.644058i
\(47\) 26.8680 26.8680i 0.571660 0.571660i −0.360932 0.932592i \(-0.617541\pi\)
0.932592 + 0.360932i \(0.117541\pi\)
\(48\) 5.62714 1.11931i 0.117232 0.0233189i
\(49\) 11.3288 27.3503i 0.231201 0.558169i
\(50\) 29.7786i 0.595572i
\(51\) 0 0
\(52\) −50.8404 −0.977699
\(53\) −26.1557 10.8340i −0.493503 0.204416i 0.122031 0.992526i \(-0.461059\pi\)
−0.615533 + 0.788111i \(0.711059\pi\)
\(54\) −7.53030 37.8574i −0.139450 0.701062i
\(55\) 9.51644 + 9.51644i 0.173026 + 0.173026i
\(56\) −61.1281 40.8445i −1.09157 0.729365i
\(57\) −0.684154 + 3.43947i −0.0120027 + 0.0603416i
\(58\) −18.3236 + 12.2435i −0.315925 + 0.211094i
\(59\) −9.12070 22.0193i −0.154588 0.373209i 0.827544 0.561401i \(-0.189737\pi\)
−0.982132 + 0.188192i \(0.939737\pi\)
\(60\) −8.96587 + 3.71379i −0.149431 + 0.0618964i
\(61\) −28.6898 42.9373i −0.470324 0.703890i 0.518148 0.855291i \(-0.326622\pi\)
−0.988472 + 0.151401i \(0.951622\pi\)
\(62\) −17.9442 3.56932i −0.289423 0.0575697i
\(63\) −8.88596 + 13.2988i −0.141047 + 0.211092i
\(64\) −34.6035 + 34.6035i −0.540679 + 0.540679i
\(65\) −36.3971 + 7.23983i −0.559955 + 0.111382i
\(66\) −11.3230 + 27.3362i −0.171561 + 0.414184i
\(67\) 70.4415i 1.05137i −0.850681 0.525683i \(-0.823810\pi\)
0.850681 0.525683i \(-0.176190\pi\)
\(68\) 0 0
\(69\) 71.7687 1.04013
\(70\) −17.7272 7.34286i −0.253246 0.104898i
\(71\) 20.4612 + 102.865i 0.288185 + 1.44881i 0.805289 + 0.592883i \(0.202010\pi\)
−0.517104 + 0.855923i \(0.672990\pi\)
\(72\) 10.5780 + 10.5780i 0.146916 + 0.146916i
\(73\) −29.5868 19.7693i −0.405299 0.270812i 0.336167 0.941802i \(-0.390869\pi\)
−0.741466 + 0.670990i \(0.765869\pi\)
\(74\) −5.02408 + 25.2578i −0.0678930 + 0.341321i
\(75\) 49.8712 33.3228i 0.664949 0.444305i
\(76\) −1.11375 2.68883i −0.0146546 0.0353793i
\(77\) 67.8373 28.0991i 0.881003 0.364924i
\(78\) −45.3277 67.8377i −0.581125 0.869715i
\(79\) −7.11865 1.41599i −0.0901095 0.0179239i 0.149830 0.988712i \(-0.452127\pi\)
−0.239939 + 0.970788i \(0.577127\pi\)
\(80\) −1.93093 + 2.88984i −0.0241366 + 0.0361230i
\(81\) −43.4936 + 43.4936i −0.536958 + 0.536958i
\(82\) −34.5274 + 6.86792i −0.421066 + 0.0837551i
\(83\) −51.5218 + 124.385i −0.620745 + 1.49861i 0.230085 + 0.973170i \(0.426099\pi\)
−0.850830 + 0.525441i \(0.823901\pi\)
\(84\) 52.9469i 0.630320i
\(85\) 0 0
\(86\) −31.5619 −0.366999
\(87\) 41.0090 + 16.9865i 0.471368 + 0.195247i
\(88\) −13.3980 67.3563i −0.152250 0.765412i
\(89\) 38.6522 + 38.6522i 0.434294 + 0.434294i 0.890086 0.455792i \(-0.150644\pi\)
−0.455792 + 0.890086i \(0.650644\pi\)
\(90\) 3.24634 + 2.16914i 0.0360705 + 0.0241015i
\(91\) −39.4995 + 198.577i −0.434060 + 2.18217i
\(92\) −49.5234 + 33.0905i −0.538298 + 0.359679i
\(93\) 14.1023 + 34.0458i 0.151637 + 0.366084i
\(94\) −46.7533 + 19.3658i −0.497375 + 0.206020i
\(95\) −1.18024 1.76635i −0.0124236 0.0185932i
\(96\) 79.7729 + 15.8678i 0.830968 + 0.165290i
\(97\) 44.0470 65.9209i 0.454092 0.679597i −0.531820 0.846857i \(-0.678492\pi\)
0.985913 + 0.167260i \(0.0534919\pi\)
\(98\) −27.8790 + 27.8790i −0.284480 + 0.284480i
\(99\) −14.6538 + 2.91482i −0.148018 + 0.0294426i
\(100\) −19.0490 + 45.9884i −0.190490 + 0.459884i
\(101\) 140.647i 1.39254i 0.717779 + 0.696271i \(0.245159\pi\)
−0.717779 + 0.696271i \(0.754841\pi\)
\(102\) 0 0
\(103\) −42.3283 −0.410954 −0.205477 0.978662i \(-0.565875\pi\)
−0.205477 + 0.978662i \(0.565875\pi\)
\(104\) 174.953 + 72.4681i 1.68224 + 0.696808i
\(105\) 7.53981 + 37.9052i 0.0718077 + 0.361002i
\(106\) 26.6613 + 26.6613i 0.251522 + 0.251522i
\(107\) −61.3221 40.9741i −0.573104 0.382936i 0.234983 0.972000i \(-0.424497\pi\)
−0.808086 + 0.589064i \(0.799497\pi\)
\(108\) 12.5875 63.2818i 0.116551 0.585942i
\(109\) 174.800 116.798i 1.60367 1.07154i 0.654837 0.755770i \(-0.272737\pi\)
0.948836 0.315770i \(-0.102263\pi\)
\(110\) −6.85923 16.5596i −0.0623566 0.150542i
\(111\) 47.9220 19.8500i 0.431730 0.178828i
\(112\) 10.5349 + 15.7666i 0.0940615 + 0.140773i
\(113\) −140.877 28.0222i −1.24670 0.247984i −0.472729 0.881208i \(-0.656731\pi\)
−0.773969 + 0.633224i \(0.781731\pi\)
\(114\) 2.59479 3.88338i 0.0227613 0.0340648i
\(115\) −30.7421 + 30.7421i −0.267323 + 0.267323i
\(116\) −36.1300 + 7.18670i −0.311465 + 0.0619543i
\(117\) 15.7659 38.0622i 0.134751 0.325318i
\(118\) 31.7420i 0.269000i
\(119\) 0 0
\(120\) 36.1473 0.301227
\(121\) −48.4202 20.0563i −0.400167 0.165755i
\(122\) 13.4175 + 67.4541i 0.109979 + 0.552902i
\(123\) 50.1387 + 50.1387i 0.407632 + 0.407632i
\(124\) −25.4287 16.9909i −0.205070 0.137024i
\(125\) −15.0141 + 75.4810i −0.120113 + 0.603848i
\(126\) 17.7116 11.8345i 0.140568 0.0939247i
\(127\) −41.4251 100.009i −0.326182 0.787472i −0.998869 0.0475454i \(-0.984860\pi\)
0.672687 0.739927i \(-0.265140\pi\)
\(128\) −51.8363 + 21.4713i −0.404971 + 0.167744i
\(129\) 35.3184 + 52.8577i 0.273786 + 0.409750i
\(130\) 48.4744 + 9.64216i 0.372880 + 0.0741705i
\(131\) −51.4936 + 77.0656i −0.393081 + 0.588287i −0.974243 0.225501i \(-0.927598\pi\)
0.581162 + 0.813788i \(0.302598\pi\)
\(132\) −34.9732 + 34.9732i −0.264948 + 0.264948i
\(133\) −11.3676 + 2.26116i −0.0854707 + 0.0170012i
\(134\) −35.9016 + 86.6742i −0.267923 + 0.646822i
\(135\) 47.0965i 0.348863i
\(136\) 0 0
\(137\) 102.046 0.744863 0.372431 0.928060i \(-0.378524\pi\)
0.372431 + 0.928060i \(0.378524\pi\)
\(138\) −88.3072 36.5780i −0.639907 0.265058i
\(139\) −6.01550 30.2420i −0.0432770 0.217568i 0.953095 0.302671i \(-0.0978782\pi\)
−0.996372 + 0.0851025i \(0.972878\pi\)
\(140\) −22.6798 22.6798i −0.161999 0.161999i
\(141\) 84.7504 + 56.6284i 0.601067 + 0.401620i
\(142\) 27.2506 136.998i 0.191906 0.964775i
\(143\) −157.258 + 105.076i −1.09970 + 0.734799i
\(144\) −1.47657 3.56475i −0.0102539 0.0247552i
\(145\) −24.8424 + 10.2900i −0.171327 + 0.0709659i
\(146\) 26.3292 + 39.4044i 0.180337 + 0.269893i
\(147\) 77.8870 + 15.4927i 0.529843 + 0.105392i
\(148\) −23.9160 + 35.7928i −0.161595 + 0.241843i
\(149\) 23.3099 23.3099i 0.156443 0.156443i −0.624546 0.780988i \(-0.714716\pi\)
0.780988 + 0.624546i \(0.214716\pi\)
\(150\) −78.3471 + 15.5842i −0.522314 + 0.103895i
\(151\) 53.9466 130.239i 0.357262 0.862507i −0.638421 0.769688i \(-0.720412\pi\)
0.995683 0.0928198i \(-0.0295880\pi\)
\(152\) 10.8404i 0.0713185i
\(153\) 0 0
\(154\) −97.7910 −0.635006
\(155\) −20.6242 8.54284i −0.133060 0.0551151i
\(156\) −26.6066 133.760i −0.170555 0.857438i
\(157\) −78.3942 78.3942i −0.499326 0.499326i 0.411902 0.911228i \(-0.364865\pi\)
−0.911228 + 0.411902i \(0.864865\pi\)
\(158\) 8.03741 + 5.37042i 0.0508697 + 0.0339900i
\(159\) 14.8160 74.4850i 0.0931823 0.468459i
\(160\) −40.9677 + 27.3737i −0.256048 + 0.171086i
\(161\) 90.7719 + 219.143i 0.563800 + 1.36113i
\(162\) 75.6835 31.3491i 0.467182 0.193513i
\(163\) −90.7416 135.804i −0.556697 0.833156i 0.441238 0.897390i \(-0.354539\pi\)
−0.997935 + 0.0642345i \(0.979539\pi\)
\(164\) −57.7154 11.4803i −0.351923 0.0700019i
\(165\) −20.0573 + 30.0179i −0.121560 + 0.181927i
\(166\) 126.789 126.789i 0.763791 0.763791i
\(167\) 163.517 32.5256i 0.979145 0.194764i 0.320525 0.947240i \(-0.396141\pi\)
0.658620 + 0.752476i \(0.271141\pi\)
\(168\) 75.4707 182.202i 0.449230 1.08454i
\(169\) 352.517i 2.08590i
\(170\) 0 0
\(171\) 2.35840 0.0137918
\(172\) −48.7424 20.1898i −0.283386 0.117382i
\(173\) −3.26113 16.3948i −0.0188504 0.0947676i 0.970215 0.242246i \(-0.0778842\pi\)
−0.989065 + 0.147479i \(0.952884\pi\)
\(174\) −41.8018 41.8018i −0.240240 0.240240i
\(175\) 164.826 + 110.133i 0.941864 + 0.629334i
\(176\) −3.45570 + 17.3730i −0.0196347 + 0.0987102i
\(177\) 53.1594 35.5199i 0.300335 0.200678i
\(178\) −27.8596 67.2590i −0.156514 0.377859i
\(179\) 35.7824 14.8215i 0.199901 0.0828019i −0.280487 0.959858i \(-0.590496\pi\)
0.480388 + 0.877056i \(0.340496\pi\)
\(180\) 3.62590 + 5.42654i 0.0201439 + 0.0301474i
\(181\) 42.3641 + 8.42674i 0.234056 + 0.0465566i 0.310724 0.950500i \(-0.399428\pi\)
−0.0766687 + 0.997057i \(0.524428\pi\)
\(182\) 149.810 224.207i 0.823132 1.23190i
\(183\) 97.9531 97.9531i 0.535263 0.535263i
\(184\) 217.589 43.2811i 1.18255 0.235223i
\(185\) −12.0247 + 29.0301i −0.0649982 + 0.156920i
\(186\) 49.0789i 0.263865i
\(187\) 0 0
\(188\) −84.5912 −0.449953
\(189\) −237.393 98.3313i −1.25605 0.520271i
\(190\) 0.551967 + 2.77493i 0.00290509 + 0.0146049i
\(191\) −107.196 107.196i −0.561234 0.561234i 0.368424 0.929658i \(-0.379898\pi\)
−0.929658 + 0.368424i \(0.879898\pi\)
\(192\) −109.151 72.9320i −0.568492 0.379854i
\(193\) 40.1233 201.713i 0.207893 1.04515i −0.726028 0.687666i \(-0.758636\pi\)
0.933920 0.357482i \(-0.116364\pi\)
\(194\) −87.7949 + 58.6627i −0.452551 + 0.302385i
\(195\) −38.0958 91.9714i −0.195363 0.471648i
\(196\) −60.8886 + 25.2209i −0.310656 + 0.128678i
\(197\) 77.7868 + 116.416i 0.394857 + 0.590945i 0.974627 0.223835i \(-0.0718578\pi\)
−0.579770 + 0.814780i \(0.696858\pi\)
\(198\) 19.5162 + 3.88201i 0.0985667 + 0.0196061i
\(199\) −82.3749 + 123.283i −0.413944 + 0.619511i −0.978589 0.205823i \(-0.934013\pi\)
0.564645 + 0.825334i \(0.309013\pi\)
\(200\) 131.104 131.104i 0.655520 0.655520i
\(201\) 185.331 36.8645i 0.922043 0.183406i
\(202\) 71.6828 173.058i 0.354865 0.856721i
\(203\) 146.704i 0.722678i
\(204\) 0 0
\(205\) −42.9538 −0.209531
\(206\) 52.0825 + 21.5733i 0.252828 + 0.104725i
\(207\) −9.41607 47.3378i −0.0454883 0.228685i
\(208\) −34.5373 34.5373i −0.166045 0.166045i
\(209\) −9.00225 6.01511i −0.0430730 0.0287804i
\(210\) 10.0417 50.4829i 0.0478175 0.240395i
\(211\) −170.184 + 113.713i −0.806559 + 0.538925i −0.889127 0.457660i \(-0.848688\pi\)
0.0825683 + 0.996585i \(0.473688\pi\)
\(212\) 24.1193 + 58.2291i 0.113770 + 0.274665i
\(213\) −259.929 + 107.666i −1.22032 + 0.505474i
\(214\) 54.5702 + 81.6701i 0.255001 + 0.381636i
\(215\) −37.7702 7.51296i −0.175675 0.0349440i
\(216\) −133.519 + 199.825i −0.618142 + 0.925115i
\(217\) −86.1213 + 86.1213i −0.396872 + 0.396872i
\(218\) −274.610 + 54.6233i −1.25968 + 0.250565i
\(219\) 36.5289 88.1885i 0.166799 0.402687i
\(220\) 29.9615i 0.136189i
\(221\) 0 0
\(222\) −69.0821 −0.311181
\(223\) 107.408 + 44.4897i 0.481649 + 0.199506i 0.610278 0.792187i \(-0.291058\pi\)
−0.128629 + 0.991693i \(0.541058\pi\)
\(224\) 52.4438 + 263.653i 0.234124 + 1.17702i
\(225\) −28.5225 28.5225i −0.126767 0.126767i
\(226\) 159.059 + 106.280i 0.703801 + 0.470265i
\(227\) 29.9302 150.469i 0.131851 0.662859i −0.857164 0.515044i \(-0.827776\pi\)
0.989015 0.147816i \(-0.0472243\pi\)
\(228\) 6.49140 4.33742i 0.0284711 0.0190238i
\(229\) −3.69064 8.91000i −0.0161164 0.0389083i 0.915617 0.402053i \(-0.131703\pi\)
−0.931733 + 0.363144i \(0.881703\pi\)
\(230\) 53.4946 22.1582i 0.232585 0.0963399i
\(231\) 109.430 + 163.774i 0.473723 + 0.708977i
\(232\) 134.576 + 26.7687i 0.580067 + 0.115382i
\(233\) 216.700 324.315i 0.930044 1.39191i 0.0100614 0.999949i \(-0.496797\pi\)
0.919982 0.391960i \(-0.128203\pi\)
\(234\) −38.7980 + 38.7980i −0.165803 + 0.165803i
\(235\) −60.5596 + 12.0461i −0.257700 + 0.0512598i
\(236\) −20.3050 + 49.0206i −0.0860381 + 0.207714i
\(237\) 19.4701i 0.0821523i
\(238\) 0 0
\(239\) 372.281 1.55766 0.778831 0.627233i \(-0.215813\pi\)
0.778831 + 0.627233i \(0.215813\pi\)
\(240\) −8.61365 3.56789i −0.0358902 0.0148662i
\(241\) −27.1147 136.315i −0.112509 0.565621i −0.995381 0.0960065i \(-0.969393\pi\)
0.882872 0.469614i \(-0.155607\pi\)
\(242\) 49.3563 + 49.3563i 0.203952 + 0.203952i
\(243\) 79.6872 + 53.2453i 0.327931 + 0.219116i
\(244\) −22.4284 + 112.755i −0.0919197 + 0.462111i
\(245\) −39.9992 + 26.7266i −0.163262 + 0.109088i
\(246\) −36.1388 87.2468i −0.146906 0.354662i
\(247\) 27.5818 11.4248i 0.111667 0.0462541i
\(248\) 63.2872 + 94.7160i 0.255190 + 0.381919i
\(249\) −354.218 70.4583i −1.42256 0.282965i
\(250\) 56.9441 85.2228i 0.227776 0.340891i
\(251\) 154.052 154.052i 0.613754 0.613754i −0.330168 0.943922i \(-0.607106\pi\)
0.943922 + 0.330168i \(0.107106\pi\)
\(252\) 34.9232 6.94665i 0.138584 0.0275661i
\(253\) −84.7932 + 204.709i −0.335151 + 0.809126i
\(254\) 144.168i 0.567591i
\(255\) 0 0
\(256\) 270.472 1.05653
\(257\) 391.977 + 162.362i 1.52520 + 0.631760i 0.978626 0.205648i \(-0.0659301\pi\)
0.546578 + 0.837408i \(0.315930\pi\)
\(258\) −16.5175 83.0389i −0.0640212 0.321856i
\(259\) 121.222 + 121.222i 0.468039 + 0.468039i
\(260\) 68.6931 + 45.8993i 0.264204 + 0.176536i
\(261\) 5.82370 29.2777i 0.0223130 0.112175i
\(262\) 102.638 68.5803i 0.391747 0.261757i
\(263\) 54.7003 + 132.058i 0.207986 + 0.502122i 0.993106 0.117221i \(-0.0373987\pi\)
−0.785120 + 0.619344i \(0.787399\pi\)
\(264\) 170.202 70.4999i 0.644704 0.267045i
\(265\) 25.5592 + 38.2521i 0.0964499 + 0.144347i
\(266\) 15.1396 + 3.01146i 0.0569158 + 0.0113213i
\(267\) −81.4652 + 121.921i −0.305113 + 0.456634i
\(268\) −110.889 + 110.889i −0.413764 + 0.413764i
\(269\) 44.9250 8.93614i 0.167008 0.0332199i −0.110878 0.993834i \(-0.535366\pi\)
0.277886 + 0.960614i \(0.410366\pi\)
\(270\) −24.0035 + 57.9495i −0.0889018 + 0.214628i
\(271\) 329.809i 1.21701i 0.793550 + 0.608504i \(0.208230\pi\)
−0.793550 + 0.608504i \(0.791770\pi\)
\(272\) 0 0
\(273\) −543.126 −1.98947
\(274\) −125.562 52.0095i −0.458255 0.189816i
\(275\) 36.1265 + 181.620i 0.131369 + 0.660437i
\(276\) −112.978 112.978i −0.409341 0.409341i
\(277\) −234.642 156.783i −0.847082 0.566002i 0.0545479 0.998511i \(-0.482628\pi\)
−0.901629 + 0.432509i \(0.857628\pi\)
\(278\) −8.01157 + 40.2769i −0.0288186 + 0.144881i
\(279\) 20.6060 13.7685i 0.0738568 0.0493495i
\(280\) 45.7185 + 110.374i 0.163280 + 0.394194i
\(281\) −141.231 + 58.4999i −0.502603 + 0.208185i −0.619556 0.784953i \(-0.712687\pi\)
0.116953 + 0.993137i \(0.462687\pi\)
\(282\) −75.4189 112.872i −0.267443 0.400257i
\(283\) 311.786 + 62.0182i 1.10172 + 0.219145i 0.712272 0.701904i \(-0.247666\pi\)
0.389447 + 0.921049i \(0.372666\pi\)
\(284\) 129.720 194.140i 0.456761 0.683592i
\(285\) 4.02959 4.02959i 0.0141389 0.0141389i
\(286\) 247.050 49.1414i 0.863813 0.171823i
\(287\) −89.6819 + 216.511i −0.312480 + 0.754395i
\(288\) 54.6992i 0.189928i
\(289\) 0 0
\(290\) 35.8116 0.123488
\(291\) 196.488 + 81.3882i 0.675218 + 0.279684i
\(292\) 15.4548 + 77.6963i 0.0529272 + 0.266083i
\(293\) −27.2633 27.2633i −0.0930488 0.0930488i 0.659050 0.752099i \(-0.270958\pi\)
−0.752099 + 0.659050i \(0.770958\pi\)
\(294\) −87.9393 58.7592i −0.299113 0.199861i
\(295\) −7.55584 + 37.9858i −0.0256130 + 0.128765i
\(296\) 133.320 89.0814i 0.450404 0.300951i
\(297\) −91.8547 221.757i −0.309275 0.746656i
\(298\) −40.5618 + 16.8013i −0.136114 + 0.0563801i
\(299\) −339.440 508.008i −1.13525 1.69902i
\(300\) −130.964 26.0503i −0.436546 0.0868344i
\(301\) −116.729 + 174.697i −0.387803 + 0.580388i
\(302\) −132.756 + 132.756i −0.439591 + 0.439591i
\(303\) −370.039 + 73.6054i −1.22125 + 0.242922i
\(304\) 1.07000 2.58320i 0.00351972 0.00849736i
\(305\) 83.9164i 0.275136i
\(306\) 0 0
\(307\) −4.80965 −0.0156666 −0.00783330 0.999969i \(-0.502493\pi\)
−0.00783330 + 0.999969i \(0.502493\pi\)
\(308\) −151.023 62.5557i −0.490334 0.203103i
\(309\) −22.1519 111.365i −0.0716890 0.360405i
\(310\) 21.0229 + 21.0229i 0.0678159 + 0.0678159i
\(311\) −399.630 267.024i −1.28498 0.858598i −0.289843 0.957074i \(-0.593603\pi\)
−0.995139 + 0.0984763i \(0.968603\pi\)
\(312\) −99.1031 + 498.225i −0.317638 + 1.59688i
\(313\) 73.7441 49.2742i 0.235604 0.157426i −0.432164 0.901795i \(-0.642250\pi\)
0.667768 + 0.744369i \(0.267250\pi\)
\(314\) 56.5047 + 136.414i 0.179951 + 0.434441i
\(315\) 24.0126 9.94634i 0.0762305 0.0315757i
\(316\) 8.97712 + 13.4352i 0.0284086 + 0.0425165i
\(317\) −117.988 23.4692i −0.372201 0.0740353i 0.00544574 0.999985i \(-0.498267\pi\)
−0.377647 + 0.925950i \(0.623267\pi\)
\(318\) −56.1927 + 84.0983i −0.176707 + 0.264460i
\(319\) −96.9027 + 96.9027i −0.303770 + 0.303770i
\(320\) 77.9950 15.5142i 0.243734 0.0484818i
\(321\) 75.7103 182.781i 0.235858 0.569411i
\(322\) 315.906i 0.981074i
\(323\) 0 0
\(324\) 136.935 0.422639
\(325\) −471.746 195.404i −1.45153 0.601242i
\(326\) 42.4374 + 213.347i 0.130176 + 0.654440i
\(327\) 398.773 + 398.773i 1.21949 + 1.21949i
\(328\) 182.248 + 121.774i 0.555634 + 0.371263i
\(329\) −65.7216 + 330.405i −0.199762 + 1.00427i
\(330\) 39.9785 26.7128i 0.121147 0.0809478i
\(331\) −38.9023 93.9184i −0.117530 0.283741i 0.854157 0.520015i \(-0.174074\pi\)
−0.971687 + 0.236274i \(0.924074\pi\)
\(332\) 276.912 114.701i 0.834071 0.345484i
\(333\) −19.3802 29.0045i −0.0581988 0.0871006i
\(334\) −217.776 43.3183i −0.652023 0.129695i
\(335\) −63.5954 + 95.1772i −0.189837 + 0.284111i
\(336\) −35.9683 + 35.9683i −0.107049 + 0.107049i
\(337\) −539.044 + 107.223i −1.59954 + 0.318168i −0.912696 0.408639i \(-0.866004\pi\)
−0.686842 + 0.726807i \(0.741004\pi\)
\(338\) −179.666 + 433.752i −0.531556 + 1.28329i
\(339\) 385.310i 1.13661i
\(340\) 0 0
\(341\) −113.772 −0.333642
\(342\) −2.90187 1.20200i −0.00848501 0.00351461i
\(343\) −33.5487 168.661i −0.0978097 0.491722i
\(344\) 138.955 + 138.955i 0.403940 + 0.403940i
\(345\) −96.9704 64.7936i −0.281074 0.187807i
\(346\) −4.34324 + 21.8349i −0.0125527 + 0.0631067i
\(347\) −212.258 + 141.826i −0.611695 + 0.408722i −0.822466 0.568814i \(-0.807403\pi\)
0.210771 + 0.977535i \(0.432403\pi\)
\(348\) −37.8162 91.2964i −0.108667 0.262346i
\(349\) 513.215 212.580i 1.47053 0.609113i 0.503549 0.863967i \(-0.332027\pi\)
0.966980 + 0.254854i \(0.0820273\pi\)
\(350\) −146.678 219.519i −0.419080 0.627198i
\(351\) 649.141 + 129.122i 1.84940 + 0.367869i
\(352\) −139.511 + 208.792i −0.396337 + 0.593160i
\(353\) −408.644 + 408.644i −1.15763 + 1.15763i −0.172648 + 0.984984i \(0.555232\pi\)
−0.984984 + 0.172648i \(0.944768\pi\)
\(354\) −83.5128 + 16.6117i −0.235912 + 0.0469258i
\(355\) 65.2217 157.459i 0.183723 0.443547i
\(356\) 121.692i 0.341832i
\(357\) 0 0
\(358\) −51.5822 −0.144084
\(359\) 159.526 + 66.0778i 0.444362 + 0.184061i 0.593634 0.804735i \(-0.297693\pi\)
−0.149272 + 0.988796i \(0.547693\pi\)
\(360\) −4.74254 23.8423i −0.0131737 0.0662287i
\(361\) −254.057 254.057i −0.703759 0.703759i
\(362\) −47.8317 31.9602i −0.132132 0.0882877i
\(363\) 27.4279 137.889i 0.0755588 0.379860i
\(364\) 374.780 250.420i 1.02962 0.687967i
\(365\) 22.1284 + 53.4227i 0.0606257 + 0.146363i
\(366\) −170.449 + 70.6023i −0.465708 + 0.192902i
\(367\) −11.3429 16.9759i −0.0309071 0.0462558i 0.815694 0.578483i \(-0.196355\pi\)
−0.846601 + 0.532227i \(0.821355\pi\)
\(368\) −56.1220 11.1634i −0.152505 0.0303352i
\(369\) 26.4927 39.6492i 0.0717960 0.107450i
\(370\) 29.5913 29.5913i 0.0799766 0.0799766i
\(371\) 246.176 48.9675i 0.663547 0.131988i
\(372\) 31.3952 75.7946i 0.0843956 0.203749i
\(373\) 690.960i 1.85244i 0.376983 + 0.926220i \(0.376961\pi\)
−0.376983 + 0.926220i \(0.623039\pi\)
\(374\) 0 0
\(375\) −206.447 −0.550525
\(376\) 291.098 + 120.577i 0.774196 + 0.320682i
\(377\) −73.7207 370.619i −0.195546 0.983075i
\(378\) 241.982 + 241.982i 0.640164 + 0.640164i
\(379\) 145.381 + 97.1405i 0.383591 + 0.256308i 0.732383 0.680893i \(-0.238408\pi\)
−0.348792 + 0.937200i \(0.613408\pi\)
\(380\) −0.922659 + 4.63852i −0.00242805 + 0.0122066i
\(381\) 241.443 161.327i 0.633709 0.423431i
\(382\) 77.2642 + 186.532i 0.202262 + 0.488304i
\(383\) −440.512 + 182.466i −1.15016 + 0.476412i −0.874588 0.484868i \(-0.838868\pi\)
−0.275574 + 0.961280i \(0.588868\pi\)
\(384\) −83.6184 125.144i −0.217756 0.325895i
\(385\) −117.027 23.2781i −0.303966 0.0604625i
\(386\) −152.176 + 227.747i −0.394238 + 0.590019i
\(387\) 30.2306 30.2306i 0.0781151 0.0781151i
\(388\) −173.111 + 34.4340i −0.446163 + 0.0887473i
\(389\) −84.5808 + 204.196i −0.217431 + 0.524926i −0.994530 0.104453i \(-0.966691\pi\)
0.777098 + 0.629379i \(0.216691\pi\)
\(390\) 132.582i 0.339953i
\(391\) 0 0
\(392\) 245.482 0.626228
\(393\) −229.707 95.1478i −0.584496 0.242106i
\(394\) −36.3788 182.889i −0.0923320 0.464184i
\(395\) 8.34002 + 8.34002i 0.0211140 + 0.0211140i
\(396\) 27.6564 + 18.4794i 0.0698395 + 0.0466652i
\(397\) 23.6042 118.666i 0.0594565 0.298908i −0.939603 0.342266i \(-0.888806\pi\)
0.999060 + 0.0433581i \(0.0138056\pi\)
\(398\) 164.191 109.709i 0.412539 0.275650i
\(399\) −11.8981 28.7246i −0.0298199 0.0719916i
\(400\) −44.1818 + 18.3007i −0.110454 + 0.0457517i
\(401\) 290.087 + 434.146i 0.723409 + 1.08266i 0.992818 + 0.119633i \(0.0381718\pi\)
−0.269409 + 0.963026i \(0.586828\pi\)
\(402\) −246.827 49.0970i −0.613998 0.122132i
\(403\) 174.292 260.846i 0.432486 0.647262i
\(404\) 221.406 221.406i 0.548034 0.548034i
\(405\) 98.0330 19.5000i 0.242057 0.0481481i
\(406\) 74.7699 180.510i 0.184162 0.444607i
\(407\) 160.142i 0.393471i
\(408\) 0 0
\(409\) 136.013 0.332550 0.166275 0.986079i \(-0.446826\pi\)
0.166275 + 0.986079i \(0.446826\pi\)
\(410\) 52.8522 + 21.8921i 0.128908 + 0.0533954i
\(411\) 53.4044 + 268.482i 0.129938 + 0.653241i
\(412\) 66.6331 + 66.6331i 0.161731 + 0.161731i
\(413\) 175.694 + 117.395i 0.425409 + 0.284249i
\(414\) −12.5405 + 63.0455i −0.0302911 + 0.152284i
\(415\) 181.910 121.548i 0.438337 0.292887i
\(416\) −264.979 639.715i −0.636968 1.53778i
\(417\) 76.4181 31.6534i 0.183257 0.0759074i
\(418\) 8.01105 + 11.9894i 0.0191652 + 0.0286827i
\(419\) 367.332 + 73.0669i 0.876687 + 0.174384i 0.612865 0.790187i \(-0.290017\pi\)
0.263822 + 0.964571i \(0.415017\pi\)
\(420\) 47.8011 71.5394i 0.113812 0.170332i
\(421\) −273.997 + 273.997i −0.650824 + 0.650824i −0.953192 0.302367i \(-0.902223\pi\)
0.302367 + 0.953192i \(0.402223\pi\)
\(422\) 267.357 53.1807i 0.633548 0.126021i
\(423\) 26.2322 63.3301i 0.0620146 0.149716i
\(424\) 234.759i 0.553678i
\(425\) 0 0
\(426\) 374.701 0.879580
\(427\) 422.985 + 175.206i 0.990598 + 0.410319i
\(428\) 32.0318 + 161.034i 0.0748405 + 0.376249i
\(429\) −358.753 358.753i −0.836254 0.836254i
\(430\) 42.6450 + 28.4945i 0.0991744 + 0.0662662i
\(431\) −13.4283 + 67.5084i −0.0311561 + 0.156632i −0.993232 0.116151i \(-0.962944\pi\)
0.962075 + 0.272783i \(0.0879442\pi\)
\(432\) 51.5402 34.4381i 0.119306 0.0797177i
\(433\) 104.262 + 251.710i 0.240790 + 0.581317i 0.997362 0.0725929i \(-0.0231274\pi\)
−0.756572 + 0.653910i \(0.773127\pi\)
\(434\) 149.860 62.0742i 0.345301 0.143028i
\(435\) −40.0739 59.9748i −0.0921239 0.137873i
\(436\) −459.033 91.3074i −1.05283 0.209421i
\(437\) 19.4313 29.0810i 0.0444653 0.0665470i
\(438\) −89.8934 + 89.8934i −0.205236 + 0.205236i
\(439\) −144.392 + 28.7213i −0.328910 + 0.0654244i −0.356783 0.934187i \(-0.616127\pi\)
0.0278730 + 0.999611i \(0.491127\pi\)
\(440\) −42.7073 + 103.105i −0.0970620 + 0.234328i
\(441\) 53.4060i 0.121102i
\(442\) 0 0
\(443\) −619.331 −1.39804 −0.699019 0.715103i \(-0.746380\pi\)
−0.699019 + 0.715103i \(0.746380\pi\)
\(444\) −106.687 44.1910i −0.240285 0.0995293i
\(445\) −17.3294 87.1206i −0.0389424 0.195777i
\(446\) −109.484 109.484i −0.245480 0.245480i
\(447\) 73.5271 + 49.1292i 0.164490 + 0.109909i
\(448\) 84.6432 425.530i 0.188936 0.949844i
\(449\) −521.681 + 348.576i −1.16187 + 0.776339i −0.978407 0.206687i \(-0.933732\pi\)
−0.183466 + 0.983026i \(0.558732\pi\)
\(450\) 20.5583 + 49.6322i 0.0456852 + 0.110294i
\(451\) −202.251 + 83.7750i −0.448450 + 0.185754i
\(452\) 177.656 + 265.880i 0.393043 + 0.588231i
\(453\) 370.888 + 73.7743i 0.818738 + 0.162857i
\(454\) −113.516 + 169.889i −0.250036 + 0.374205i
\(455\) 232.648 232.648i 0.511314 0.511314i
\(456\) −28.5210 + 5.67318i −0.0625460 + 0.0124412i
\(457\) 52.9634 127.865i 0.115894 0.279792i −0.855280 0.518167i \(-0.826615\pi\)
0.971173 + 0.238375i \(0.0766147\pi\)
\(458\) 12.8442i 0.0280442i
\(459\) 0 0
\(460\) 96.7883 0.210409
\(461\) 135.609 + 56.1709i 0.294162 + 0.121846i 0.524884 0.851174i \(-0.324109\pi\)
−0.230722 + 0.973020i \(0.574109\pi\)
\(462\) −51.1775 257.287i −0.110774 0.556898i
\(463\) 522.332 + 522.332i 1.12815 + 1.12815i 0.990478 + 0.137669i \(0.0439609\pi\)
0.137669 + 0.990478i \(0.456039\pi\)
\(464\) −29.4263 19.6620i −0.0634187 0.0423750i
\(465\) 11.6827 58.7328i 0.0251241 0.126307i
\(466\) −431.929 + 288.606i −0.926887 + 0.619326i
\(467\) 2.92741 + 7.06740i 0.00626855 + 0.0151336i 0.926983 0.375104i \(-0.122393\pi\)
−0.920714 + 0.390237i \(0.872393\pi\)
\(468\) −84.7360 + 35.0988i −0.181060 + 0.0749974i
\(469\) 346.968 + 519.274i 0.739803 + 1.10719i
\(470\) 80.6546 + 16.0432i 0.171605 + 0.0341344i
\(471\) 165.228 247.281i 0.350802 0.525012i
\(472\) 139.748 139.748i 0.296077 0.296077i
\(473\) −192.496 + 38.2899i −0.406969 + 0.0809512i
\(474\) −9.92325 + 23.9568i −0.0209351 + 0.0505419i
\(475\) 29.2302i 0.0615372i
\(476\) 0 0
\(477\) −51.0733 −0.107072
\(478\) −458.071 189.739i −0.958307 0.396944i
\(479\) 147.664 + 742.358i 0.308276 + 1.54981i 0.755357 + 0.655314i \(0.227464\pi\)
−0.447081 + 0.894493i \(0.647536\pi\)
\(480\) −93.4598 93.4598i −0.194708 0.194708i
\(481\) −367.160 245.329i −0.763327 0.510039i
\(482\) −36.1119 + 181.547i −0.0749209 + 0.376653i
\(483\) −529.057 + 353.505i −1.09536 + 0.731894i
\(484\) 44.6504 + 107.796i 0.0922529 + 0.222718i
\(485\) −119.028 + 49.3032i −0.245419 + 0.101656i
\(486\) −70.9132 106.129i −0.145912 0.218373i
\(487\) 8.66318 + 1.72321i 0.0177889 + 0.00353843i 0.203977 0.978976i \(-0.434613\pi\)
−0.186188 + 0.982514i \(0.559613\pi\)
\(488\) 237.903 356.047i 0.487506 0.729605i
\(489\) 309.811 309.811i 0.633561 0.633561i
\(490\) 62.8383 12.4993i 0.128241 0.0255088i
\(491\) 224.608 542.252i 0.457450 1.10438i −0.511976 0.859000i \(-0.671086\pi\)
0.969426 0.245383i \(-0.0789137\pi\)
\(492\) 157.857i 0.320847i
\(493\) 0 0
\(494\) −39.7607 −0.0804871
\(495\) 22.4310 + 9.29123i 0.0453152 + 0.0187702i
\(496\) −5.73204 28.8169i −0.0115565 0.0580986i
\(497\) −657.508 657.508i −1.32295 1.32295i
\(498\) 399.934 + 267.228i 0.803081 + 0.536602i
\(499\) 21.8676 109.936i 0.0438229 0.220312i −0.952668 0.304012i \(-0.901674\pi\)
0.996491 + 0.0836997i \(0.0266736\pi\)
\(500\) 142.457 95.1868i 0.284914 0.190374i
\(501\) 171.149 + 413.190i 0.341614 + 0.824730i
\(502\) −268.067 + 111.037i −0.533999 + 0.221190i
\(503\) −265.535 397.401i −0.527902 0.790061i 0.467686 0.883895i \(-0.345088\pi\)
−0.995588 + 0.0938335i \(0.970088\pi\)
\(504\) −130.080 25.8746i −0.258096 0.0513385i
\(505\) 126.977 190.035i 0.251441 0.376307i
\(506\) 208.666 208.666i 0.412384 0.412384i
\(507\) 927.468 184.485i 1.82933 0.363875i
\(508\) −92.2226 + 222.645i −0.181541 + 0.438278i
\(509\) 235.103i 0.461891i −0.972967 0.230946i \(-0.925818\pi\)
0.972967 0.230946i \(-0.0741820\pi\)
\(510\) 0 0
\(511\) 315.481 0.617380
\(512\) −125.455 51.9650i −0.245029 0.101494i
\(513\) 7.39162 + 37.1602i 0.0144086 + 0.0724370i
\(514\) −399.555 399.555i −0.777345 0.777345i
\(515\) 57.1920 + 38.2145i 0.111052 + 0.0742029i
\(516\) 27.6104 138.807i 0.0535084 0.269005i
\(517\) −261.655 + 174.832i −0.506102 + 0.338166i
\(518\) −87.3740 210.940i −0.168676 0.407219i
\(519\) 41.4278 17.1600i 0.0798223 0.0330635i
\(520\) −170.964 255.865i −0.328777 0.492049i
\(521\) −593.308 118.016i −1.13879 0.226519i −0.410546 0.911840i \(-0.634662\pi\)
−0.728241 + 0.685321i \(0.759662\pi\)
\(522\) −22.0876 + 33.0564i −0.0423134 + 0.0633265i
\(523\) 721.650 721.650i 1.37983 1.37983i 0.534934 0.844894i \(-0.320336\pi\)
0.844894 0.534934i \(-0.179664\pi\)
\(524\) 202.378 40.2554i 0.386217 0.0768233i
\(525\) −203.500 + 491.292i −0.387619 + 0.935795i
\(526\) 190.369i 0.361918i
\(527\) 0 0
\(528\) −47.5166 −0.0899935
\(529\) −172.563 71.4781i −0.326207 0.135119i
\(530\) −11.9534 60.0936i −0.0225535 0.113384i
\(531\) −30.4031 30.4031i −0.0572563 0.0572563i
\(532\) 21.4544 + 14.3353i 0.0403277 + 0.0269461i
\(533\) 117.764 592.041i 0.220946 1.11077i
\(534\) 162.377 108.497i 0.304078 0.203178i
\(535\) 45.8636 + 110.725i 0.0857264 + 0.206962i
\(536\) 539.655 223.533i 1.00682 0.417038i
\(537\) 57.7215 + 86.3863i 0.107489 + 0.160868i
\(538\) −59.8321 11.9013i −0.111212 0.0221215i
\(539\) −136.212 + 203.856i −0.252713 + 0.378212i
\(540\) −74.1392 + 74.1392i −0.137295 + 0.137295i
\(541\) 557.546 110.903i 1.03058 0.204996i 0.349297 0.937012i \(-0.386420\pi\)
0.681288 + 0.732016i \(0.261420\pi\)
\(542\) 168.093 405.812i 0.310134 0.748730i
\(543\) 115.869i 0.213387i
\(544\) 0 0
\(545\) −341.629 −0.626841
\(546\) 668.285 + 276.813i 1.22397 + 0.506983i
\(547\) 71.5805 + 359.860i 0.130860 + 0.657879i 0.989410 + 0.145148i \(0.0463659\pi\)
−0.858550 + 0.512730i \(0.828634\pi\)
\(548\) −160.641 160.641i −0.293140 0.293140i
\(549\) −77.4602 51.7573i −0.141093 0.0942755i
\(550\) 48.1140 241.885i 0.0874800 0.439792i
\(551\) 17.9862 12.0180i 0.0326428 0.0218112i
\(552\) 227.744 + 549.823i 0.412580 + 0.996056i
\(553\) 59.4512 24.6255i 0.107507 0.0445307i
\(554\) 208.806 + 312.501i 0.376907 + 0.564081i
\(555\) −82.6708 16.4442i −0.148956 0.0296293i
\(556\) −38.1372 + 57.0764i −0.0685922 + 0.102655i
\(557\) −146.512 + 146.512i −0.263038 + 0.263038i −0.826287 0.563249i \(-0.809551\pi\)
0.563249 + 0.826287i \(0.309551\pi\)
\(558\) −32.3719 + 6.43917i −0.0580141 + 0.0115397i
\(559\) 207.105 499.996i 0.370493 0.894448i
\(560\) 30.8141i 0.0550251i
\(561\) 0 0
\(562\) 203.593 0.362264
\(563\) −793.273 328.584i −1.40901 0.583631i −0.456936 0.889499i \(-0.651053\pi\)
−0.952074 + 0.305868i \(0.901053\pi\)
\(564\) −44.2696 222.558i −0.0784922 0.394607i
\(565\) 165.048 + 165.048i 0.292120 + 0.292120i
\(566\) −352.027 235.217i −0.621955 0.415577i
\(567\) 106.389 534.854i 0.187635 0.943306i
\(568\) −723.125 + 483.177i −1.27311 + 0.850663i
\(569\) −120.952 292.003i −0.212569 0.513187i 0.781248 0.624221i \(-0.214584\pi\)
−0.993817 + 0.111034i \(0.964584\pi\)
\(570\) −7.01193 + 2.90444i −0.0123016 + 0.00509550i
\(571\) 150.213 + 224.810i 0.263071 + 0.393713i 0.939365 0.342918i \(-0.111415\pi\)
−0.676294 + 0.736631i \(0.736415\pi\)
\(572\) 412.966 + 82.1440i 0.721968 + 0.143608i
\(573\) 225.931 338.130i 0.394295 0.590105i
\(574\) 220.697 220.697i 0.384489 0.384489i
\(575\) −586.709 + 116.704i −1.02036 + 0.202963i
\(576\) −33.7846 + 81.5632i −0.0586538 + 0.141603i
\(577\) 63.2031i 0.109537i 0.998499 + 0.0547687i \(0.0174421\pi\)
−0.998499 + 0.0547687i \(0.982558\pi\)
\(578\) 0 0
\(579\) 551.703 0.952855
\(580\) 55.3054 + 22.9082i 0.0953541 + 0.0394970i
\(581\) −232.868 1170.70i −0.400805 2.01498i
\(582\) −200.287 200.287i −0.344136 0.344136i
\(583\) 194.952 + 130.263i 0.334395 + 0.223435i
\(584\) 57.5653 289.400i 0.0985706 0.495548i
\(585\) −55.6651 + 37.1942i −0.0951540 + 0.0635799i
\(586\) 19.6507 + 47.4411i 0.0335337 + 0.0809575i
\(587\) −685.040 + 283.753i −1.16702 + 0.483395i −0.880206 0.474592i \(-0.842596\pi\)
−0.286812 + 0.957987i \(0.592596\pi\)
\(588\) −98.2209 146.998i −0.167042 0.249997i
\(589\) 17.6137 + 3.50359i 0.0299045 + 0.00594837i
\(590\) 28.6571 42.8883i 0.0485713 0.0726921i
\(591\) −265.581 + 265.581i −0.449375 + 0.449375i
\(592\) −40.5619 + 8.06826i −0.0685167 + 0.0136288i
\(593\) 76.8977 185.647i 0.129676 0.313065i −0.845685 0.533683i \(-0.820808\pi\)
0.975360 + 0.220618i \(0.0708075\pi\)
\(594\) 319.674i 0.538172i
\(595\) 0 0
\(596\) −73.3889 −0.123136
\(597\) −367.465 152.209i −0.615519 0.254956i
\(598\) 158.747 + 798.076i 0.265464 + 1.33458i
\(599\) 457.825 + 457.825i 0.764316 + 0.764316i 0.977099 0.212784i \(-0.0682529\pi\)
−0.212784 + 0.977099i \(0.568253\pi\)
\(600\) 413.544 + 276.322i 0.689241 + 0.460536i
\(601\) −139.911 + 703.378i −0.232796 + 1.17035i 0.670693 + 0.741735i \(0.265997\pi\)
−0.903489 + 0.428611i \(0.859003\pi\)
\(602\) 232.665 155.462i 0.386487 0.258242i
\(603\) −48.6309 117.405i −0.0806482 0.194702i
\(604\) −289.944 + 120.099i −0.480040 + 0.198839i
\(605\) 47.3161 + 70.8135i 0.0782084 + 0.117047i
\(606\) 492.826 + 98.0293i 0.813245 + 0.161764i
\(607\) −577.021 + 863.573i −0.950612 + 1.42269i −0.0448067 + 0.998996i \(0.514267\pi\)
−0.905805 + 0.423695i \(0.860733\pi\)
\(608\) 28.0282 28.0282i 0.0460990 0.0460990i
\(609\) −385.975 + 76.7753i −0.633786 + 0.126068i
\(610\) 42.7693 103.254i 0.0701136 0.169269i
\(611\) 867.731i 1.42018i
\(612\) 0 0
\(613\) −626.391 −1.02185 −0.510923 0.859627i \(-0.670696\pi\)
−0.510923 + 0.859627i \(0.670696\pi\)
\(614\) 5.91799 + 2.45131i 0.00963842 + 0.00399237i
\(615\) −22.4793 113.011i −0.0365517 0.183758i
\(616\) 430.537 + 430.537i 0.698924 + 0.698924i
\(617\) 557.109 + 372.249i 0.902933 + 0.603320i 0.918006 0.396566i \(-0.129798\pi\)
−0.0150736 + 0.999886i \(0.504798\pi\)
\(618\) −29.5024 + 148.319i −0.0477385 + 0.239998i
\(619\) 654.389 437.249i 1.05717 0.706379i 0.0997323 0.995014i \(-0.468201\pi\)
0.957439 + 0.288635i \(0.0932013\pi\)
\(620\) 19.0185 + 45.9147i 0.0306750 + 0.0740560i
\(621\) 716.368 296.729i 1.15357 0.477825i
\(622\) 355.628 + 532.235i 0.571749 + 0.855684i
\(623\) −475.318 94.5466i −0.762950 0.151760i
\(624\) 72.7926 108.942i 0.116655 0.174586i
\(625\) −306.829 + 306.829i −0.490927 + 0.490927i
\(626\) −115.851 + 23.0442i −0.185066 + 0.0368119i
\(627\) 11.1145 26.8327i 0.0177264 0.0427954i
\(628\) 246.816i 0.393019i
\(629\) 0 0
\(630\) −34.6154 −0.0549451
\(631\) 767.465 + 317.894i 1.21627 + 0.503794i 0.896221 0.443608i \(-0.146302\pi\)
0.320046 + 0.947402i \(0.396302\pi\)
\(632\) −11.7417 59.0297i −0.0185787 0.0934013i
\(633\) −388.241 388.241i −0.613336 0.613336i
\(634\) 133.216 + 89.0118i 0.210119 + 0.140397i
\(635\) −34.3176 + 172.526i −0.0540435 + 0.271695i
\(636\) −140.577 + 93.9308i −0.221034 + 0.147690i
\(637\) −258.714 624.591i −0.406145 0.980520i
\(638\) 168.621 69.8452i 0.264297 0.109475i
\(639\) 105.118 + 157.320i 0.164504 + 0.246198i
\(640\) 89.4233 + 17.7874i 0.139724 + 0.0277928i
\(641\) −469.870 + 703.209i −0.733026 + 1.09705i 0.258357 + 0.966050i \(0.416819\pi\)
−0.991382 + 0.131001i \(0.958181\pi\)
\(642\) −186.314 + 186.314i −0.290209 + 0.290209i
\(643\) −724.957 + 144.203i −1.12746 + 0.224266i −0.723375 0.690456i \(-0.757410\pi\)
−0.404085 + 0.914721i \(0.632410\pi\)
\(644\) 202.081 487.867i 0.313790 0.757557i
\(645\) 103.305i 0.160162i
\(646\) 0 0
\(647\) 874.070 1.35096 0.675479 0.737379i \(-0.263937\pi\)
0.675479 + 0.737379i \(0.263937\pi\)
\(648\) −471.225 195.188i −0.727199 0.301216i
\(649\) 38.5084 + 193.595i 0.0593350 + 0.298297i
\(650\) 480.866 + 480.866i 0.739793 + 0.739793i
\(651\) −271.654 181.514i −0.417288 0.278823i
\(652\) −70.9377 + 356.628i −0.108800 + 0.546976i
\(653\) 960.997 642.117i 1.47166 0.983335i 0.477140 0.878827i \(-0.341673\pi\)
0.994524 0.104507i \(-0.0333266\pi\)
\(654\) −287.426 693.908i −0.439489 1.06102i
\(655\) 139.151 57.6384i 0.212445 0.0879976i
\(656\) −31.4088 47.0066i −0.0478793 0.0716565i
\(657\) −62.9607 12.5237i −0.0958307 0.0190619i
\(658\) 249.263 373.048i 0.378819 0.566942i
\(659\) −318.726 + 318.726i −0.483651 + 0.483651i −0.906295 0.422645i \(-0.861102\pi\)
0.422645 + 0.906295i \(0.361102\pi\)
\(660\) 78.8284 15.6799i 0.119437 0.0237575i
\(661\) −191.121 + 461.408i −0.289140 + 0.698045i −0.999986 0.00530241i \(-0.998312\pi\)
0.710846 + 0.703347i \(0.248312\pi\)
\(662\) 135.388i 0.204514i
\(663\) 0 0
\(664\) −1116.41 −1.68134
\(665\) 17.4008 + 7.20763i 0.0261666 + 0.0108385i
\(666\) 9.06360 + 45.5658i 0.0136090 + 0.0684171i
\(667\) −313.036 313.036i −0.469320 0.469320i
\(668\) −308.610 206.207i −0.461991 0.308693i
\(669\) −60.8416 + 305.871i −0.0909441 + 0.457207i
\(670\) 126.759 84.6977i 0.189193 0.126414i
\(671\) 163.666 + 395.126i 0.243914 + 0.588861i
\(672\) −666.221 + 275.958i −0.991400 + 0.410651i
\(673\) −522.061 781.320i −0.775722 1.16095i −0.983168 0.182704i \(-0.941515\pi\)
0.207446 0.978247i \(-0.433485\pi\)
\(674\) 717.911 + 142.801i 1.06515 + 0.211871i
\(675\) 360.021 538.810i 0.533365 0.798236i
\(676\) −554.932 + 554.932i −0.820905 + 0.820905i
\(677\) 1091.43 217.100i 1.61216 0.320679i 0.694943 0.719065i \(-0.255430\pi\)
0.917218 + 0.398386i \(0.130430\pi\)
\(678\) −196.379 + 474.102i −0.289645 + 0.699265i
\(679\) 702.908i 1.03521i
\(680\) 0 0
\(681\) 411.546 0.604325
\(682\) 139.990 + 57.9857i 0.205264 + 0.0850231i
\(683\) −256.456 1289.29i −0.375484 1.88769i −0.454387 0.890804i \(-0.650142\pi\)
0.0789027 0.996882i \(-0.474858\pi\)
\(684\) −3.71259 3.71259i −0.00542776 0.00542776i
\(685\) −137.880 92.1285i −0.201285 0.134494i
\(686\) −44.6809 + 224.626i −0.0651325 + 0.327443i
\(687\) 21.5107 14.3730i 0.0313110 0.0209213i
\(688\) −19.3966 46.8276i −0.0281928 0.0680634i
\(689\) −597.310 + 247.414i −0.866923 + 0.359091i
\(690\) 86.2935 + 129.147i 0.125063 + 0.187170i
\(691\) 470.003 + 93.4894i 0.680178 + 0.135296i 0.523075 0.852286i \(-0.324785\pi\)
0.157103 + 0.987582i \(0.449785\pi\)
\(692\) −20.6750 + 30.9423i −0.0298771 + 0.0447143i
\(693\) 93.6660 93.6660i 0.135160 0.135160i
\(694\) 333.456 66.3285i 0.480484 0.0955742i
\(695\) −19.1749 + 46.2924i −0.0275898 + 0.0666078i
\(696\) 368.075i 0.528844i
\(697\) 0 0
\(698\) −739.826 −1.05992
\(699\) 966.675 + 400.410i 1.38294 + 0.572832i
\(700\) −86.0974 432.841i −0.122996 0.618344i
\(701\) 777.458 + 777.458i 1.10907 + 1.10907i 0.993273 + 0.115796i \(0.0369420\pi\)
0.115796 + 0.993273i \(0.463058\pi\)
\(702\) −732.921 489.722i −1.04405 0.697610i
\(703\) 4.93156 24.7926i 0.00701502 0.0352669i
\(704\) 336.987 225.167i 0.478674 0.319840i
\(705\) −63.3860 153.027i −0.0899092 0.217060i
\(706\) 711.085 294.541i 1.00720 0.417197i
\(707\) −692.771 1036.81i −0.979875 1.46649i
\(708\) −139.599 27.7679i −0.197173 0.0392202i
\(709\) 289.947 433.937i 0.408953 0.612041i −0.568630 0.822593i \(-0.692526\pi\)
0.977583 + 0.210553i \(0.0675264\pi\)
\(710\) −160.503 + 160.503i −0.226061 + 0.226061i
\(711\) −12.8423 + 2.55448i −0.0180623 + 0.00359281i
\(712\) −173.461 + 418.771i −0.243625 + 0.588162i
\(713\) 367.531i 0.515472i
\(714\) 0 0
\(715\) 307.343 0.429851
\(716\) −79.6605 32.9965i −0.111258 0.0460845i
\(717\) 194.828 + 979.467i 0.271727 + 1.36606i
\(718\) −162.610 162.610i −0.226476 0.226476i
\(719\) 516.851 + 345.349i 0.718847 + 0.480318i 0.860404 0.509612i \(-0.170211\pi\)
−0.141557 + 0.989930i \(0.545211\pi\)
\(720\) −1.22323 + 6.14958i −0.00169893 + 0.00854108i
\(721\) 312.032 208.493i 0.432776 0.289172i
\(722\) 183.118 + 442.087i 0.253627 + 0.612309i
\(723\) 344.452 142.677i 0.476420 0.197340i
\(724\) −53.4241 79.9548i −0.0737902 0.110435i
\(725\) −362.871 72.1795i −0.500511 0.0995579i
\(726\) −104.026 + 155.686i −0.143286 + 0.214443i
\(727\) 181.405 181.405i 0.249526 0.249526i −0.571250 0.820776i \(-0.693541\pi\)
0.820776 + 0.571250i \(0.193541\pi\)
\(728\) −1646.65 + 327.540i −2.26189 + 0.449917i
\(729\) −310.231 + 748.965i −0.425557 + 1.02739i
\(730\) 77.0116i 0.105495i
\(731\) 0 0
\(732\) −308.395 −0.421305
\(733\) −204.776 84.8211i −0.279367 0.115718i 0.238600 0.971118i \(-0.423311\pi\)
−0.517968 + 0.855400i \(0.673311\pi\)
\(734\) 5.30478 + 26.6690i 0.00722723 + 0.0363337i
\(735\) −91.2502 91.2502i −0.124150 0.124150i
\(736\) −674.487 450.677i −0.916422 0.612334i
\(737\) −113.814 + 572.182i −0.154429 + 0.776366i
\(738\) −52.8056 + 35.2836i −0.0715523 + 0.0478097i
\(739\) −113.071 272.978i −0.153006 0.369388i 0.828727 0.559653i \(-0.189065\pi\)
−0.981733 + 0.190265i \(0.939065\pi\)
\(740\) 64.6284 26.7699i 0.0873356 0.0361756i
\(741\) 44.4929 + 66.5884i 0.0600445 + 0.0898629i
\(742\) −327.862 65.2159i −0.441863 0.0878920i
\(743\) −415.988 + 622.570i −0.559876 + 0.837914i −0.998142 0.0609312i \(-0.980593\pi\)
0.438265 + 0.898846i \(0.355593\pi\)
\(744\) −216.076 + 216.076i −0.290425 + 0.290425i
\(745\) −52.5398 + 10.4508i −0.0705232 + 0.0140279i
\(746\) 352.159 850.187i 0.472063 1.13966i
\(747\) 242.882i 0.325143i
\(748\) 0 0
\(749\) 653.871 0.872992
\(750\) 254.021 + 105.219i 0.338695 + 0.140292i
\(751\) 135.892 + 683.178i 0.180949 + 0.909691i 0.959414 + 0.282003i \(0.0909987\pi\)
−0.778465 + 0.627688i \(0.784001\pi\)
\(752\) −57.4652 57.4652i −0.0764165 0.0764165i
\(753\) 485.930 + 324.688i 0.645326 + 0.431193i
\(754\) −98.1828 + 493.598i −0.130216 + 0.654640i
\(755\) −190.471 + 127.269i −0.252280 + 0.168568i
\(756\) 218.910 + 528.496i 0.289564 + 0.699069i
\(757\) 633.525 262.415i 0.836889 0.346651i 0.0772631 0.997011i \(-0.475382\pi\)
0.759626 + 0.650360i \(0.225382\pi\)
\(758\) −129.374 193.622i −0.170678 0.255438i
\(759\) −582.962 115.958i −0.768066 0.152778i
\(760\) 9.78685 14.6471i 0.0128774 0.0192724i
\(761\) −305.005 + 305.005i −0.400795 + 0.400795i −0.878513 0.477718i \(-0.841464\pi\)
0.477718 + 0.878513i \(0.341464\pi\)
\(762\) −379.305 + 75.4484i −0.497775 + 0.0990136i
\(763\) −713.275 + 1722.00i −0.934830 + 2.25688i
\(764\) 337.495i 0.441747i
\(765\) 0 0
\(766\) 635.021 0.829009
\(767\) −502.850 208.287i −0.655606 0.271561i
\(768\) 141.547 + 711.607i 0.184307 + 0.926572i
\(769\) 303.275 + 303.275i 0.394376 + 0.394376i 0.876244 0.481868i \(-0.160041\pi\)
−0.481868 + 0.876244i \(0.660041\pi\)
\(770\) 132.131 + 88.2869i 0.171598 + 0.114658i
\(771\) −222.037 + 1116.26i −0.287986 + 1.44780i
\(772\) −380.699 + 254.375i −0.493133 + 0.329501i
\(773\) 79.8088 + 192.675i 0.103246 + 0.249257i 0.967058 0.254557i \(-0.0819297\pi\)
−0.863812 + 0.503814i \(0.831930\pi\)
\(774\) −52.6045 + 21.7895i −0.0679644 + 0.0281518i
\(775\) −170.648 255.393i −0.220191 0.329539i
\(776\) 644.798 + 128.258i 0.830925 + 0.165281i
\(777\) −255.494 + 382.373i −0.328821 + 0.492115i
\(778\) 208.144 208.144i 0.267537 0.267537i
\(779\) 33.8915 6.74144i 0.0435064 0.00865396i
\(780\) −84.8108 + 204.751i −0.108732 + 0.262502i
\(781\) 868.612i 1.11218i
\(782\) 0 0
\(783\) 479.568 0.612475
\(784\) −58.4966 24.2301i −0.0746130 0.0309057i
\(785\) 35.1474 + 176.698i 0.0447737 + 0.225093i
\(786\) 234.148 + 234.148i 0.297898 + 0.297898i
\(787\) −919.662 614.498i −1.16857 0.780811i −0.189009 0.981975i \(-0.560527\pi\)
−0.979558 + 0.201164i \(0.935527\pi\)
\(788\) 60.8102 305.714i 0.0771703 0.387962i
\(789\) −318.817 + 213.027i −0.404077 + 0.269996i
\(790\) −6.01129 14.5125i −0.00760922 0.0183703i
\(791\) 1176.53 487.334i 1.48739 0.616099i
\(792\) −68.8315 103.014i −0.0869084 0.130068i
\(793\) −1156.64 230.069i −1.45856 0.290125i
\(794\) −89.5239 + 133.982i −0.112750 + 0.168743i
\(795\) −87.2646 + 87.2646i −0.109767 + 0.109767i
\(796\) 323.746 64.3970i 0.406716 0.0809008i
\(797\) 23.4701 56.6619i 0.0294481 0.0710940i −0.908471 0.417947i \(-0.862750\pi\)
0.937919 + 0.346853i \(0.112750\pi\)
\(798\) 41.4081i 0.0518899i
\(799\) 0 0
\(800\) −677.946 −0.847433
\(801\) 91.1062 + 37.7374i 0.113741 + 0.0471129i
\(802\) −135.666 682.039i −0.169160 0.850423i
\(803\) 208.386 + 208.386i 0.259509 + 0.259509i
\(804\) −349.779 233.715i −0.435049 0.290690i
\(805\) 75.1979 378.045i 0.0934135 0.469621i
\(806\) −347.401 + 232.126i −0.431018 + 0.287997i
\(807\) 47.0217 + 113.521i 0.0582673 + 0.140670i
\(808\) −1077.50 + 446.315i −1.33354 + 0.552370i
\(809\) 451.829 + 676.209i 0.558503 + 0.835858i 0.998054 0.0623592i \(-0.0198624\pi\)
−0.439551 + 0.898218i \(0.644862\pi\)
\(810\) −130.562 25.9705i −0.161188 0.0320623i
\(811\) 642.700 961.868i 0.792478 1.18603i −0.186579 0.982440i \(-0.559740\pi\)
0.979057 0.203587i \(-0.0652601\pi\)
\(812\) 230.941 230.941i 0.284410 0.284410i
\(813\) −867.724 + 172.601i −1.06731 + 0.212301i
\(814\) 81.6192 197.046i 0.100269 0.242071i
\(815\) 265.415i 0.325663i
\(816\) 0 0
\(817\) 30.9806 0.0379200
\(818\) −167.356 69.3211i −0.204592 0.0847446i
\(819\) 71.2583 + 358.240i 0.0870065 + 0.437411i
\(820\) 67.6178 + 67.6178i 0.0824608 + 0.0824608i
\(821\) −832.050 555.958i −1.01346 0.677172i −0.0662547 0.997803i \(-0.521105\pi\)
−0.947204 + 0.320631i \(0.896105\pi\)
\(822\) 71.1252 357.570i 0.0865270 0.435000i
\(823\) −45.0492 + 30.1009i −0.0547378 + 0.0365746i −0.582638 0.812732i \(-0.697979\pi\)
0.527900 + 0.849306i \(0.322979\pi\)
\(824\) −134.321 324.279i −0.163011 0.393542i
\(825\) −458.934 + 190.097i −0.556283 + 0.230420i
\(826\) −156.349 233.993i −0.189285 0.283284i
\(827\) 402.321 + 80.0267i 0.486483 + 0.0967675i 0.432237 0.901760i \(-0.357724\pi\)
0.0542461 + 0.998528i \(0.482724\pi\)
\(828\) −59.6963 + 89.3418i −0.0720970 + 0.107901i
\(829\) −153.097 + 153.097i −0.184677 + 0.184677i −0.793390 0.608713i \(-0.791686\pi\)
0.608713 + 0.793390i \(0.291686\pi\)
\(830\) −285.779 + 56.8449i −0.344312 + 0.0684878i
\(831\) 289.696 699.389i 0.348612 0.841623i
\(832\) 1117.56i 1.34322i
\(833\) 0 0
\(834\) −110.161 −0.132087
\(835\) −250.301 103.678i −0.299762 0.124165i
\(836\) 4.70235 + 23.6403i 0.00562482 + 0.0282779i
\(837\) 281.527 + 281.527i 0.336352 + 0.336352i
\(838\) −414.741 277.121i −0.494918 0.330694i
\(839\) 55.3480 278.253i 0.0659690 0.331648i −0.933681 0.358106i \(-0.883423\pi\)
0.999650 + 0.0264576i \(0.00842268\pi\)
\(840\) −266.467 + 178.048i −0.317223 + 0.211961i
\(841\) 217.057 + 524.021i 0.258094 + 0.623093i
\(842\) 476.785 197.491i 0.566252 0.234549i
\(843\) −227.824 340.963i −0.270254 0.404463i
\(844\) 446.910 + 88.8960i 0.529515 + 0.105327i
\(845\) −318.257 + 476.305i −0.376635 + 0.563674i
\(846\) −64.5544 + 64.5544i −0.0763054 + 0.0763054i
\(847\) 455.729 90.6502i 0.538051 0.107025i
\(848\) −23.1718 + 55.9416i −0.0273252 + 0.0659689i
\(849\) 852.762i 1.00443i
\(850\) 0 0
\(851\) −517.327 −0.607905
\(852\) 578.667 + 239.692i 0.679187 + 0.281328i
\(853\) 111.217 + 559.124i 0.130383 + 0.655479i 0.989598 + 0.143864i \(0.0459527\pi\)
−0.859215 + 0.511615i \(0.829047\pi\)
\(854\) −431.162 431.162i −0.504874 0.504874i
\(855\) −3.18656 2.12919i −0.00372697 0.00249028i
\(856\) 119.311 599.815i 0.139382 0.700718i
\(857\) 1104.79 738.200i 1.28914 0.861377i 0.293622 0.955922i \(-0.405139\pi\)
0.995521 + 0.0945445i \(0.0301395\pi\)
\(858\) 258.581 + 624.269i 0.301376 + 0.727586i
\(859\) −260.316 + 107.826i −0.303046 + 0.125526i −0.529024 0.848607i \(-0.677442\pi\)
0.225979 + 0.974132i \(0.427442\pi\)
\(860\) 47.6309 + 71.2847i 0.0553848 + 0.0828892i
\(861\) −616.572 122.644i −0.716111 0.142443i
\(862\) 50.9295 76.2213i 0.0590829 0.0884238i
\(863\) 44.4457 44.4457i 0.0515014 0.0515014i −0.680887 0.732388i \(-0.738406\pi\)
0.732388 + 0.680887i \(0.238406\pi\)
\(864\) 861.869 171.436i 0.997533 0.198422i
\(865\) −10.3951 + 25.0961i −0.0120175 + 0.0290128i
\(866\) 362.854i 0.419000i
\(867\) 0 0
\(868\) 271.144 0.312378
\(869\) 55.5355 + 23.0035i 0.0639073 + 0.0264713i
\(870\) 18.7415 + 94.2198i 0.0215419 + 0.108299i
\(871\) −1137.49 1137.49i −1.30596 1.30596i
\(872\) 1449.49 + 968.518i 1.66226 + 1.11069i
\(873\) 27.9034 140.280i 0.0319626 0.160687i
\(874\) −38.7307 + 25.8790i −0.0443143 + 0.0296099i
\(875\) −261.111 630.377i −0.298412 0.720431i
\(876\) −196.330 + 81.3225i −0.224121 + 0.0928339i
\(877\) 250.521 + 374.931i 0.285657 + 0.427515i 0.946351 0.323139i \(-0.104738\pi\)
−0.660695 + 0.750655i \(0.729738\pi\)
\(878\) 192.304 + 38.2516i 0.219025 + 0.0435668i
\(879\) 57.4615 85.9972i 0.0653714 0.0978353i
\(880\) 20.3537 20.3537i 0.0231292 0.0231292i
\(881\) 965.483 192.046i 1.09589 0.217987i 0.386143 0.922439i \(-0.373807\pi\)
0.709752 + 0.704452i \(0.248807\pi\)
\(882\) −27.2192 + 65.7130i −0.0308608 + 0.0745046i
\(883\) 908.452i 1.02882i −0.857543 0.514412i \(-0.828010\pi\)
0.857543 0.514412i \(-0.171990\pi\)
\(884\) 0 0
\(885\) −103.894 −0.117395
\(886\) 762.051 + 315.652i 0.860103 + 0.356266i
\(887\) −48.8583 245.627i −0.0550827 0.276919i 0.943421 0.331596i \(-0.107587\pi\)
−0.998504 + 0.0546769i \(0.982587\pi\)
\(888\) 304.143 + 304.143i 0.342503 + 0.342503i
\(889\) 797.979 + 533.193i 0.897614 + 0.599767i
\(890\) −23.0796 + 116.029i −0.0259322 + 0.130370i
\(891\) 423.563 283.016i 0.475379 0.317638i
\(892\) −99.0454 239.117i −0.111037 0.268068i
\(893\) 45.8922 19.0092i 0.0513911 0.0212869i
\(894\) −65.4313 97.9249i −0.0731894 0.109536i
\(895\) −61.7285 12.2786i −0.0689704 0.0137191i
\(896\) 276.362 413.605i 0.308440 0.461613i
\(897\) 1158.92 1158.92i 1.29200 1.29200i
\(898\) 819.556 163.020i 0.912646 0.181537i
\(899\) 86.9888 210.010i 0.0967617 0.233604i
\(900\) 89.8001i 0.0997779i
\(901\) 0 0
\(902\) 291.555 0.323232
\(903\) −520.713 215.687i −0.576648 0.238856i
\(904\) −232.367 1168.19i −0.257043 1.29224i
\(905\) −49.6326 49.6326i −0.0548427 0.0548427i
\(906\) −418.756 279.804i −0.462204 0.308835i
\(907\) −338.757 + 1703.05i −0.373492 + 1.87767i 0.0970321 + 0.995281i \(0.469065\pi\)
−0.470524 + 0.882387i \(0.655935\pi\)
\(908\) −283.984 + 189.752i −0.312758 + 0.208978i
\(909\) 97.0986 + 234.417i 0.106819 + 0.257884i
\(910\) −404.833 + 167.687i −0.444871 + 0.184272i
\(911\) 997.265 + 1492.51i 1.09469 + 1.63832i 0.689882 + 0.723922i \(0.257663\pi\)
0.404811 + 0.914401i \(0.367337\pi\)
\(912\) 7.35633 + 1.46326i 0.00806615 + 0.00160446i
\(913\) 619.472 927.106i 0.678502 1.01545i
\(914\) −130.337 + 130.337i −0.142600 + 0.142600i
\(915\) −220.783 + 43.9164i −0.241293 + 0.0479961i
\(916\) −8.21630 + 19.8359i −0.00896976 + 0.0216549i
\(917\) 821.743i 0.896121i
\(918\) 0 0
\(919\) −506.869 −0.551544 −0.275772 0.961223i \(-0.588933\pi\)
−0.275772 + 0.961223i \(0.588933\pi\)
\(920\) −333.071 137.962i −0.362033 0.149959i
\(921\) −2.51706 12.6541i −0.00273296 0.0137395i
\(922\) −138.230 138.230i −0.149924 0.149924i
\(923\) 1991.48 + 1330.66i 2.15761 + 1.44167i
\(924\) 85.5476 430.077i 0.0925839 0.465451i
\(925\) −359.484 + 240.200i −0.388632 + 0.259675i
\(926\) −376.485 908.914i −0.406571 0.981549i
\(927\) −70.5489 + 29.2223i −0.0761045 + 0.0315235i
\(928\) −278.737 417.160i −0.300364 0.449526i
\(929\) 1367.79 + 272.070i 1.47232 + 0.292863i 0.865073 0.501646i \(-0.167272\pi\)
0.607251 + 0.794510i \(0.292272\pi\)
\(930\) −44.3090 + 66.3131i −0.0476441 + 0.0713044i
\(931\) 27.3656 27.3656i 0.0293937 0.0293937i
\(932\) −851.665 + 169.407i −0.913803 + 0.181767i
\(933\) 493.396 1191.16i 0.528827 1.27670i
\(934\) 10.1880i 0.0109080i
\(935\) 0 0
\(936\) 341.626 0.364985
\(937\) 185.233 + 76.7261i 0.197687 + 0.0818848i 0.479331 0.877634i \(-0.340879\pi\)
−0.281643 + 0.959519i \(0.590879\pi\)
\(938\) −162.268 815.774i −0.172993 0.869695i
\(939\) 168.233 + 168.233i 0.179162 + 0.179162i
\(940\) 114.296 + 76.3699i 0.121591 + 0.0812446i
\(941\) 297.945 1497.87i 0.316626 1.59179i −0.414830 0.909899i \(-0.636159\pi\)
0.731456 0.681889i \(-0.238841\pi\)
\(942\) −329.334 + 220.054i −0.349611 + 0.233603i
\(943\) −270.628 653.355i −0.286987 0.692847i
\(944\) −47.0948 + 19.5073i −0.0498886 + 0.0206645i
\(945\) 231.979 + 347.182i 0.245481 + 0.367388i
\(946\) 256.371 + 50.9953i 0.271005 + 0.0539063i
\(947\) −565.096 + 845.726i −0.596723 + 0.893058i −0.999755 0.0221273i \(-0.992956\pi\)
0.403033 + 0.915186i \(0.367956\pi\)
\(948\) −30.6498 + 30.6498i −0.0323310 + 0.0323310i
\(949\) −797.004 + 158.534i −0.839835 + 0.167054i
\(950\) −14.8976 + 35.9661i −0.0156817 + 0.0378590i
\(951\) 322.706i 0.339334i
\(952\) 0 0
\(953\) 297.230 0.311889 0.155945 0.987766i \(-0.450158\pi\)
0.155945 + 0.987766i \(0.450158\pi\)
\(954\) 62.8428 + 26.0303i 0.0658730 + 0.0272855i
\(955\) 48.0603 + 241.616i 0.0503249 + 0.253001i
\(956\) −586.045 586.045i −0.613017 0.613017i
\(957\) −305.662 204.237i −0.319396 0.213414i
\(958\) 196.662 988.688i 0.205284 1.03203i
\(959\) −752.255 + 502.640i −0.784416 + 0.524130i
\(960\) 81.6352 + 197.085i 0.0850366 + 0.205297i
\(961\) −713.498 + 295.540i −0.742453 + 0.307534i
\(962\) 326.734 + 488.992i 0.339640 + 0.508308i
\(963\) −130.493 25.9567i −0.135507 0.0269540i
\(964\) −171.902 + 257.270i −0.178322 + 0.266878i
\(965\) −236.322 + 236.322i −0.244893 + 0.244893i
\(966\) 831.144 165.325i 0.860397 0.171144i
\(967\) 452.787 1093.12i 0.468239 1.13043i −0.496692 0.867927i \(-0.665452\pi\)
0.964931 0.262502i \(-0.0845477\pi\)
\(968\) 434.595i 0.448961i
\(969\) 0 0
\(970\) 171.586 0.176893
\(971\) −510.211 211.336i −0.525449 0.217648i 0.104160 0.994561i \(-0.466785\pi\)
−0.629608 + 0.776913i \(0.716785\pi\)
\(972\) −41.6248 209.262i −0.0428239 0.215290i
\(973\) 193.305 + 193.305i 0.198669 + 0.198669i
\(974\) −9.78129 6.53565i −0.0100424 0.00671011i
\(975\) 267.223 1343.42i 0.274074 1.37787i
\(976\) −91.8341 + 61.3616i −0.0940923 + 0.0628705i
\(977\) 125.177 + 302.204i 0.128124 + 0.309318i 0.974904 0.222624i \(-0.0714623\pi\)
−0.846781 + 0.531942i \(0.821462\pi\)
\(978\) −539.105 + 223.305i −0.551232 + 0.228328i
\(979\) −251.512 376.415i −0.256907 0.384489i
\(980\) 105.039 + 20.8937i 0.107183 + 0.0213201i
\(981\) 210.707 315.345i 0.214788 0.321453i
\(982\) −552.735 + 552.735i −0.562866 + 0.562866i
\(983\) 1004.98 199.903i 1.02236 0.203360i 0.344683 0.938719i \(-0.387986\pi\)
0.677678 + 0.735359i \(0.262986\pi\)
\(984\) −225.009 + 543.221i −0.228668 + 0.552053i
\(985\) 227.523i 0.230988i
\(986\) 0 0
\(987\) −903.685 −0.915587
\(988\) −61.4041 25.4344i −0.0621499 0.0257433i
\(989\) −123.692 621.844i −0.125068 0.628760i
\(990\) −22.8646 22.8646i −0.0230956 0.0230956i
\(991\) 343.118 + 229.264i 0.346234 + 0.231346i 0.716512 0.697575i \(-0.245738\pi\)
−0.370278 + 0.928921i \(0.620738\pi\)
\(992\) 81.2600 408.521i 0.0819153 0.411816i
\(993\) 226.739 151.502i 0.228338 0.152570i
\(994\) 473.916 + 1144.14i 0.476777 + 1.15104i
\(995\) 222.602 92.2048i 0.223721 0.0926682i
\(996\) 446.693 + 668.524i 0.448487 + 0.671209i
\(997\) 1233.85 + 245.429i 1.23757 + 0.246167i 0.770146 0.637867i \(-0.220183\pi\)
0.467421 + 0.884035i \(0.345183\pi\)
\(998\) −82.9374 + 124.125i −0.0831037 + 0.124373i
\(999\) 396.270 396.270i 0.396666 0.396666i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.i.249.1 8
17.2 even 8 289.3.e.k.214.1 8
17.3 odd 16 289.3.e.m.65.1 8
17.4 even 4 289.3.e.c.40.1 8
17.5 odd 16 17.3.e.a.3.1 8
17.6 odd 16 289.3.e.d.158.1 8
17.7 odd 16 289.3.e.k.131.1 8
17.8 even 8 289.3.e.d.75.1 8
17.9 even 8 289.3.e.b.75.1 8
17.10 odd 16 289.3.e.l.131.1 8
17.11 odd 16 289.3.e.b.158.1 8
17.12 odd 16 289.3.e.c.224.1 8
17.13 even 4 17.3.e.a.6.1 yes 8
17.14 odd 16 inner 289.3.e.i.65.1 8
17.15 even 8 289.3.e.l.214.1 8
17.16 even 2 289.3.e.m.249.1 8
51.5 even 16 153.3.p.b.37.1 8
51.47 odd 4 153.3.p.b.91.1 8
68.39 even 16 272.3.bh.c.241.1 8
68.47 odd 4 272.3.bh.c.193.1 8
85.13 odd 4 425.3.t.c.74.1 8
85.22 even 16 425.3.t.c.224.1 8
85.39 odd 16 425.3.u.b.326.1 8
85.47 odd 4 425.3.t.a.74.1 8
85.64 even 4 425.3.u.b.176.1 8
85.73 even 16 425.3.t.a.224.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.3.1 8 17.5 odd 16
17.3.e.a.6.1 yes 8 17.13 even 4
153.3.p.b.37.1 8 51.5 even 16
153.3.p.b.91.1 8 51.47 odd 4
272.3.bh.c.193.1 8 68.47 odd 4
272.3.bh.c.241.1 8 68.39 even 16
289.3.e.b.75.1 8 17.9 even 8
289.3.e.b.158.1 8 17.11 odd 16
289.3.e.c.40.1 8 17.4 even 4
289.3.e.c.224.1 8 17.12 odd 16
289.3.e.d.75.1 8 17.8 even 8
289.3.e.d.158.1 8 17.6 odd 16
289.3.e.i.65.1 8 17.14 odd 16 inner
289.3.e.i.249.1 8 1.1 even 1 trivial
289.3.e.k.131.1 8 17.7 odd 16
289.3.e.k.214.1 8 17.2 even 8
289.3.e.l.131.1 8 17.10 odd 16
289.3.e.l.214.1 8 17.15 even 8
289.3.e.m.65.1 8 17.3 odd 16
289.3.e.m.249.1 8 17.16 even 2
425.3.t.a.74.1 8 85.47 odd 4
425.3.t.a.224.1 8 85.73 even 16
425.3.t.c.74.1 8 85.13 odd 4
425.3.t.c.224.1 8 85.22 even 16
425.3.u.b.176.1 8 85.64 even 4
425.3.u.b.326.1 8 85.39 odd 16