Properties

Label 425.2.e.d.251.5
Level $425$
Weight $2$
Character 425.251
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(251,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.5
Root \(2.80333i\) of defining polynomial
Character \(\chi\) \(=\) 425.251
Dual form 425.2.e.d.276.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80333i q^{2} +(-0.397180 - 0.397180i) q^{3} -1.25200 q^{4} +(0.716248 - 0.716248i) q^{6} +(2.20051 - 2.20051i) q^{7} +1.34889i q^{8} -2.68450i q^{9} +(3.96825 - 3.96825i) q^{11} +(0.497270 + 0.497270i) q^{12} +1.24880 q^{13} +(3.96825 + 3.96825i) q^{14} -4.93650 q^{16} +(-0.397180 + 4.10393i) q^{17} +4.84103 q^{18} -4.00000i q^{19} -1.74800 q^{21} +(7.15606 + 7.15606i) q^{22} +(-1.64598 + 1.64598i) q^{23} +(0.535753 - 0.535753i) q^{24} +2.25200i q^{26} +(-2.25777 + 2.25777i) q^{27} +(-2.75504 + 2.75504i) q^{28} +(4.68450 + 4.68450i) q^{29} +(3.22025 + 3.22025i) q^{31} -6.20435i q^{32} -3.15222 q^{33} +(-7.40074 - 0.716248i) q^{34} +3.36099i q^{36} +(-1.34889 - 1.34889i) q^{37} +7.21332 q^{38} +(-0.495999 - 0.495999i) q^{39} +(-4.18850 + 4.18850i) q^{41} -3.15222i q^{42} -2.04316i q^{43} +(-4.96825 + 4.96825i) q^{44} +(-2.96825 - 2.96825i) q^{46} +4.85546 q^{47} +(1.96068 + 1.96068i) q^{48} -2.68450i q^{49} +(1.78775 - 1.47225i) q^{51} -1.56350 q^{52} -9.11674i q^{53} +(-4.07151 - 4.07151i) q^{54} +(2.96825 + 2.96825i) q^{56} +(-1.58872 + 1.58872i) q^{57} +(-8.44769 + 8.44769i) q^{58} +6.00000i q^{59} +(-4.00000 + 4.00000i) q^{61} +(-5.80717 + 5.80717i) q^{62} +(-5.90726 - 5.90726i) q^{63} +1.31550 q^{64} -5.68450i q^{66} -8.46212 q^{67} +(0.497270 - 5.13812i) q^{68} +1.30750 q^{69} +(-6.22025 - 6.22025i) q^{71} +3.62109 q^{72} +(-1.10906 - 1.10906i) q^{73} +(2.43250 - 2.43250i) q^{74} +5.00800i q^{76} -17.4643i q^{77} +(0.894450 - 0.894450i) q^{78} +(3.47225 - 3.47225i) q^{79} -6.26000 q^{81} +(-7.55324 - 7.55324i) q^{82} +3.94658i q^{83} +2.18850 q^{84} +3.68450 q^{86} -3.72118i q^{87} +(5.35273 + 5.35273i) q^{88} +10.6130 q^{89} +(2.74800 - 2.74800i) q^{91} +(2.06077 - 2.06077i) q^{92} -2.55804i q^{93} +8.75600i q^{94} +(-2.46425 + 2.46425i) q^{96} +(-8.76239 - 8.76239i) q^{97} +4.84103 q^{98} +(-10.6527 - 10.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 20 q^{6} + 16 q^{11} + 16 q^{14} + 4 q^{16} - 24 q^{21} + 32 q^{24} - 4 q^{29} + 4 q^{31} - 12 q^{39} + 16 q^{41} - 28 q^{44} - 4 q^{46} + 44 q^{51} - 100 q^{54} + 4 q^{56} - 48 q^{61}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80333i 1.27515i 0.770389 + 0.637574i \(0.220062\pi\)
−0.770389 + 0.637574i \(0.779938\pi\)
\(3\) −0.397180 0.397180i −0.229312 0.229312i 0.583093 0.812405i \(-0.301842\pi\)
−0.812405 + 0.583093i \(0.801842\pi\)
\(4\) −1.25200 −0.626000
\(5\) 0 0
\(6\) 0.716248 0.716248i 0.292407 0.292407i
\(7\) 2.20051 2.20051i 0.831715 0.831715i −0.156036 0.987751i \(-0.549872\pi\)
0.987751 + 0.156036i \(0.0498717\pi\)
\(8\) 1.34889i 0.476905i
\(9\) 2.68450i 0.894832i
\(10\) 0 0
\(11\) 3.96825 3.96825i 1.19647 1.19647i 0.221256 0.975216i \(-0.428984\pi\)
0.975216 0.221256i \(-0.0710156\pi\)
\(12\) 0.497270 + 0.497270i 0.143549 + 0.143549i
\(13\) 1.24880 0.346355 0.173178 0.984891i \(-0.444597\pi\)
0.173178 + 0.984891i \(0.444597\pi\)
\(14\) 3.96825 + 3.96825i 1.06056 + 1.06056i
\(15\) 0 0
\(16\) −4.93650 −1.23412
\(17\) −0.397180 + 4.10393i −0.0963304 + 0.995349i
\(18\) 4.84103 1.14104
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) −1.74800 −0.381445
\(22\) 7.15606 + 7.15606i 1.52568 + 1.52568i
\(23\) −1.64598 + 1.64598i −0.343211 + 0.343211i −0.857573 0.514362i \(-0.828029\pi\)
0.514362 + 0.857573i \(0.328029\pi\)
\(24\) 0.535753 0.535753i 0.109360 0.109360i
\(25\) 0 0
\(26\) 2.25200i 0.441654i
\(27\) −2.25777 + 2.25777i −0.434508 + 0.434508i
\(28\) −2.75504 + 2.75504i −0.520654 + 0.520654i
\(29\) 4.68450 + 4.68450i 0.869889 + 0.869889i 0.992460 0.122571i \(-0.0391139\pi\)
−0.122571 + 0.992460i \(0.539114\pi\)
\(30\) 0 0
\(31\) 3.22025 + 3.22025i 0.578374 + 0.578374i 0.934455 0.356081i \(-0.115887\pi\)
−0.356081 + 0.934455i \(0.615887\pi\)
\(32\) 6.20435i 1.09678i
\(33\) −3.15222 −0.548731
\(34\) −7.40074 0.716248i −1.26922 0.122835i
\(35\) 0 0
\(36\) 3.36099i 0.560165i
\(37\) −1.34889 1.34889i −0.221756 0.221756i 0.587481 0.809238i \(-0.300120\pi\)
−0.809238 + 0.587481i \(0.800120\pi\)
\(38\) 7.21332 1.17016
\(39\) −0.495999 0.495999i −0.0794234 0.0794234i
\(40\) 0 0
\(41\) −4.18850 + 4.18850i −0.654133 + 0.654133i −0.953986 0.299852i \(-0.903063\pi\)
0.299852 + 0.953986i \(0.403063\pi\)
\(42\) 3.15222i 0.486398i
\(43\) 2.04316i 0.311579i −0.987790 0.155790i \(-0.950208\pi\)
0.987790 0.155790i \(-0.0497922\pi\)
\(44\) −4.96825 + 4.96825i −0.748992 + 0.748992i
\(45\) 0 0
\(46\) −2.96825 2.96825i −0.437644 0.437644i
\(47\) 4.85546 0.708242 0.354121 0.935200i \(-0.384780\pi\)
0.354121 + 0.935200i \(0.384780\pi\)
\(48\) 1.96068 + 1.96068i 0.283000 + 0.283000i
\(49\) 2.68450i 0.383499i
\(50\) 0 0
\(51\) 1.78775 1.47225i 0.250336 0.206156i
\(52\) −1.56350 −0.216818
\(53\) 9.11674i 1.25228i −0.779710 0.626140i \(-0.784634\pi\)
0.779710 0.626140i \(-0.215366\pi\)
\(54\) −4.07151 4.07151i −0.554062 0.554062i
\(55\) 0 0
\(56\) 2.96825 + 2.96825i 0.396649 + 0.396649i
\(57\) −1.58872 + 1.58872i −0.210431 + 0.210431i
\(58\) −8.44769 + 8.44769i −1.10924 + 1.10924i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0 0
\(61\) −4.00000 + 4.00000i −0.512148 + 0.512148i −0.915184 0.403036i \(-0.867955\pi\)
0.403036 + 0.915184i \(0.367955\pi\)
\(62\) −5.80717 + 5.80717i −0.737512 + 0.737512i
\(63\) −5.90726 5.90726i −0.744245 0.744245i
\(64\) 1.31550 0.164438
\(65\) 0 0
\(66\) 5.68450i 0.699713i
\(67\) −8.46212 −1.03381 −0.516906 0.856042i \(-0.672916\pi\)
−0.516906 + 0.856042i \(0.672916\pi\)
\(68\) 0.497270 5.13812i 0.0603029 0.623089i
\(69\) 1.30750 0.157405
\(70\) 0 0
\(71\) −6.22025 6.22025i −0.738208 0.738208i 0.234023 0.972231i \(-0.424811\pi\)
−0.972231 + 0.234023i \(0.924811\pi\)
\(72\) 3.62109 0.426750
\(73\) −1.10906 1.10906i −0.129806 0.129806i 0.639219 0.769025i \(-0.279258\pi\)
−0.769025 + 0.639219i \(0.779258\pi\)
\(74\) 2.43250 2.43250i 0.282772 0.282772i
\(75\) 0 0
\(76\) 5.00800i 0.574457i
\(77\) 17.4643i 1.99025i
\(78\) 0.894450 0.894450i 0.101277 0.101277i
\(79\) 3.47225 3.47225i 0.390658 0.390658i −0.484264 0.874922i \(-0.660912\pi\)
0.874922 + 0.484264i \(0.160912\pi\)
\(80\) 0 0
\(81\) −6.26000 −0.695556
\(82\) −7.55324 7.55324i −0.834116 0.834116i
\(83\) 3.94658i 0.433194i 0.976261 + 0.216597i \(0.0694957\pi\)
−0.976261 + 0.216597i \(0.930504\pi\)
\(84\) 2.18850 0.238785
\(85\) 0 0
\(86\) 3.68450 0.397309
\(87\) 3.72118i 0.398952i
\(88\) 5.35273 + 5.35273i 0.570603 + 0.570603i
\(89\) 10.6130 1.12497 0.562487 0.826806i \(-0.309845\pi\)
0.562487 + 0.826806i \(0.309845\pi\)
\(90\) 0 0
\(91\) 2.74800 2.74800i 0.288069 0.288069i
\(92\) 2.06077 2.06077i 0.214850 0.214850i
\(93\) 2.55804i 0.265256i
\(94\) 8.75600i 0.903113i
\(95\) 0 0
\(96\) −2.46425 + 2.46425i −0.251506 + 0.251506i
\(97\) −8.76239 8.76239i −0.889686 0.889686i 0.104807 0.994493i \(-0.466578\pi\)
−0.994493 + 0.104807i \(0.966578\pi\)
\(98\) 4.84103 0.489018
\(99\) −10.6527 10.6527i −1.07064 1.07064i
\(100\) 0 0
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) 2.65495 + 3.22391i 0.262879 + 0.319215i
\(103\) 1.84298 0.181594 0.0907972 0.995869i \(-0.471058\pi\)
0.0907972 + 0.995869i \(0.471058\pi\)
\(104\) 1.68450i 0.165178i
\(105\) 0 0
\(106\) 16.4405 1.59684
\(107\) 12.0115 + 12.0115i 1.16120 + 1.16120i 0.984214 + 0.176984i \(0.0566341\pi\)
0.176984 + 0.984214i \(0.443366\pi\)
\(108\) 2.82673 2.82673i 0.272002 0.272002i
\(109\) 0.315505 0.315505i 0.0302199 0.0302199i −0.691835 0.722055i \(-0.743198\pi\)
0.722055 + 0.691835i \(0.243198\pi\)
\(110\) 0 0
\(111\) 1.07151i 0.101703i
\(112\) −10.8628 + 10.8628i −1.02644 + 1.02644i
\(113\) −8.00768 + 8.00768i −0.753299 + 0.753299i −0.975094 0.221794i \(-0.928809\pi\)
0.221794 + 0.975094i \(0.428809\pi\)
\(114\) −2.86499 2.86499i −0.268331 0.268331i
\(115\) 0 0
\(116\) −5.86499 5.86499i −0.544551 0.544551i
\(117\) 3.35240i 0.309929i
\(118\) −10.8200 −0.996060
\(119\) 8.15674 + 9.90474i 0.747728 + 0.907966i
\(120\) 0 0
\(121\) 20.4940i 1.86309i
\(122\) −7.21332 7.21332i −0.653063 0.653063i
\(123\) 3.32718 0.300001
\(124\) −4.03175 4.03175i −0.362062 0.362062i
\(125\) 0 0
\(126\) 10.6527 10.6527i 0.949022 0.949022i
\(127\) 5.85000i 0.519104i 0.965729 + 0.259552i \(0.0835748\pi\)
−0.965729 + 0.259552i \(0.916425\pi\)
\(128\) 10.0364i 0.887102i
\(129\) −0.811504 + 0.811504i −0.0714489 + 0.0714489i
\(130\) 0 0
\(131\) 13.8332 + 13.8332i 1.20862 + 1.20862i 0.971475 + 0.237140i \(0.0762101\pi\)
0.237140 + 0.971475i \(0.423790\pi\)
\(132\) 3.94658 0.343506
\(133\) −8.80204 8.80204i −0.763234 0.763234i
\(134\) 15.2600i 1.31826i
\(135\) 0 0
\(136\) −5.53575 0.535753i −0.474687 0.0459404i
\(137\) −13.8577 −1.18394 −0.591971 0.805959i \(-0.701650\pi\)
−0.591971 + 0.805959i \(0.701650\pi\)
\(138\) 2.35786i 0.200714i
\(139\) −7.21225 7.21225i −0.611735 0.611735i 0.331663 0.943398i \(-0.392390\pi\)
−0.943398 + 0.331663i \(0.892390\pi\)
\(140\) 0 0
\(141\) −1.92849 1.92849i −0.162409 0.162409i
\(142\) 11.2172 11.2172i 0.941323 0.941323i
\(143\) 4.95555 4.95555i 0.414404 0.414404i
\(144\) 13.2520i 1.10433i
\(145\) 0 0
\(146\) 2.00000 2.00000i 0.165521 0.165521i
\(147\) −1.06623 + 1.06623i −0.0879411 + 0.0879411i
\(148\) 1.68881 + 1.68881i 0.138819 + 0.138819i
\(149\) −15.9365 −1.30557 −0.652784 0.757544i \(-0.726399\pi\)
−0.652784 + 0.757544i \(0.726399\pi\)
\(150\) 0 0
\(151\) 3.36899i 0.274165i 0.990560 + 0.137082i \(0.0437725\pi\)
−0.990560 + 0.137082i \(0.956228\pi\)
\(152\) 5.39556 0.437638
\(153\) 11.0170 + 1.06623i 0.890670 + 0.0861995i
\(154\) 31.4940 2.53786
\(155\) 0 0
\(156\) 0.620991 + 0.620991i 0.0497191 + 0.0497191i
\(157\) 3.92136 0.312959 0.156479 0.987681i \(-0.449986\pi\)
0.156479 + 0.987681i \(0.449986\pi\)
\(158\) 6.26161 + 6.26161i 0.498147 + 0.498147i
\(159\) −3.62099 + 3.62099i −0.287163 + 0.287163i
\(160\) 0 0
\(161\) 7.24400i 0.570907i
\(162\) 11.2889i 0.886936i
\(163\) −10.4084 + 10.4084i −0.815247 + 0.815247i −0.985415 0.170168i \(-0.945569\pi\)
0.170168 + 0.985415i \(0.445569\pi\)
\(164\) 5.24400 5.24400i 0.409488 0.409488i
\(165\) 0 0
\(166\) −7.11699 −0.552386
\(167\) −0.297091 0.297091i −0.0229896 0.0229896i 0.695519 0.718508i \(-0.255175\pi\)
−0.718508 + 0.695519i \(0.755175\pi\)
\(168\) 2.35786i 0.181913i
\(169\) −11.4405 −0.880038
\(170\) 0 0
\(171\) −10.7380 −0.821154
\(172\) 2.55804i 0.195049i
\(173\) −11.7397 11.7397i −0.892549 0.892549i 0.102213 0.994763i \(-0.467408\pi\)
−0.994763 + 0.102213i \(0.967408\pi\)
\(174\) 6.71052 0.508723
\(175\) 0 0
\(176\) −19.5892 + 19.5892i −1.47659 + 1.47659i
\(177\) 2.38308 2.38308i 0.179123 0.179123i
\(178\) 19.1387i 1.43451i
\(179\) 19.7935i 1.47943i 0.672918 + 0.739717i \(0.265041\pi\)
−0.672918 + 0.739717i \(0.734959\pi\)
\(180\) 0 0
\(181\) −6.62099 + 6.62099i −0.492134 + 0.492134i −0.908978 0.416844i \(-0.863136\pi\)
0.416844 + 0.908978i \(0.363136\pi\)
\(182\) 4.95555 + 4.95555i 0.367330 + 0.367330i
\(183\) 3.17744 0.234883
\(184\) −2.22025 2.22025i −0.163679 0.163679i
\(185\) 0 0
\(186\) 4.61299 0.338241
\(187\) 14.7093 + 17.8615i 1.07565 + 1.30616i
\(188\) −6.07904 −0.443360
\(189\) 9.93650i 0.722774i
\(190\) 0 0
\(191\) −13.9365 −1.00841 −0.504205 0.863584i \(-0.668214\pi\)
−0.504205 + 0.863584i \(0.668214\pi\)
\(192\) −0.522493 0.522493i −0.0377077 0.0377077i
\(193\) −2.95204 + 2.95204i −0.212493 + 0.212493i −0.805325 0.592833i \(-0.798009\pi\)
0.592833 + 0.805325i \(0.298009\pi\)
\(194\) 15.8015 15.8015i 1.13448 1.13448i
\(195\) 0 0
\(196\) 3.36099i 0.240071i
\(197\) −12.5088 + 12.5088i −0.891215 + 0.891215i −0.994637 0.103423i \(-0.967021\pi\)
0.103423 + 0.994637i \(0.467021\pi\)
\(198\) 19.2104 19.2104i 1.36522 1.36522i
\(199\) 3.96025 + 3.96025i 0.280734 + 0.280734i 0.833402 0.552667i \(-0.186390\pi\)
−0.552667 + 0.833402i \(0.686390\pi\)
\(200\) 0 0
\(201\) 3.36099 + 3.36099i 0.237066 + 0.237066i
\(202\) 17.3498i 1.22073i
\(203\) 20.6166 1.44700
\(204\) −2.23827 + 1.84326i −0.156710 + 0.129054i
\(205\) 0 0
\(206\) 3.32351i 0.231560i
\(207\) 4.41863 + 4.41863i 0.307116 + 0.307116i
\(208\) −6.16470 −0.427445
\(209\) −15.8730 15.8730i −1.09796 1.09796i
\(210\) 0 0
\(211\) 0.652743 0.652743i 0.0449367 0.0449367i −0.684281 0.729218i \(-0.739884\pi\)
0.729218 + 0.684281i \(0.239884\pi\)
\(212\) 11.4142i 0.783928i
\(213\) 4.94112i 0.338560i
\(214\) −21.6607 + 21.6607i −1.48070 + 1.48070i
\(215\) 0 0
\(216\) −3.04548 3.04548i −0.207219 0.207219i
\(217\) 14.1724 0.962084
\(218\) 0.568959 + 0.568959i 0.0385348 + 0.0385348i
\(219\) 0.880993i 0.0595320i
\(220\) 0 0
\(221\) −0.495999 + 5.12499i −0.0333645 + 0.344744i
\(222\) −1.93228 −0.129686
\(223\) 1.24880i 0.0836259i 0.999125 + 0.0418129i \(0.0133134\pi\)
−0.999125 + 0.0418129i \(0.986687\pi\)
\(224\) −13.6527 13.6527i −0.912212 0.912212i
\(225\) 0 0
\(226\) −14.4405 14.4405i −0.960568 0.960568i
\(227\) 8.19025 8.19025i 0.543606 0.543606i −0.380978 0.924584i \(-0.624413\pi\)
0.924584 + 0.380978i \(0.124413\pi\)
\(228\) 1.98908 1.98908i 0.131730 0.131730i
\(229\) 11.7480i 0.776330i 0.921590 + 0.388165i \(0.126891\pi\)
−0.921590 + 0.388165i \(0.873109\pi\)
\(230\) 0 0
\(231\) −6.93650 + 6.93650i −0.456388 + 0.456388i
\(232\) −6.31887 + 6.31887i −0.414854 + 0.414854i
\(233\) 7.99325 + 7.99325i 0.523655 + 0.523655i 0.918673 0.395018i \(-0.129262\pi\)
−0.395018 + 0.918673i \(0.629262\pi\)
\(234\) 6.04548 0.395206
\(235\) 0 0
\(236\) 7.51200i 0.488990i
\(237\) −2.75822 −0.179166
\(238\) −17.8615 + 14.7093i −1.15779 + 0.953463i
\(239\) 5.13501 0.332156 0.166078 0.986113i \(-0.446890\pi\)
0.166078 + 0.986113i \(0.446890\pi\)
\(240\) 0 0
\(241\) 6.00000 + 6.00000i 0.386494 + 0.386494i 0.873435 0.486941i \(-0.161887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(242\) 36.9574 2.37571
\(243\) 9.25966 + 9.25966i 0.594008 + 0.594008i
\(244\) 5.00800 5.00800i 0.320604 0.320604i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 4.99520i 0.317837i
\(248\) −4.34376 + 4.34376i −0.275829 + 0.275829i
\(249\) 1.56750 1.56750i 0.0993366 0.0993366i
\(250\) 0 0
\(251\) 19.8095 1.25036 0.625182 0.780479i \(-0.285025\pi\)
0.625182 + 0.780479i \(0.285025\pi\)
\(252\) 7.39589 + 7.39589i 0.465897 + 0.465897i
\(253\) 13.0633i 0.821284i
\(254\) −10.5495 −0.661934
\(255\) 0 0
\(256\) 20.7300 1.29562
\(257\) 24.3982i 1.52192i −0.648801 0.760958i \(-0.724729\pi\)
0.648801 0.760958i \(-0.275271\pi\)
\(258\) −1.46341 1.46341i −0.0911079 0.0911079i
\(259\) −5.93650 −0.368876
\(260\) 0 0
\(261\) 12.5755 12.5755i 0.778404 0.778404i
\(262\) −24.9459 + 24.9459i −1.54116 + 1.54116i
\(263\) 18.0585i 1.11354i −0.830668 0.556768i \(-0.812041\pi\)
0.830668 0.556768i \(-0.187959\pi\)
\(264\) 4.25200i 0.261693i
\(265\) 0 0
\(266\) 15.8730 15.8730i 0.973236 0.973236i
\(267\) −4.21527 4.21527i −0.257970 0.257970i
\(268\) 10.5946 0.647167
\(269\) 12.6290 + 12.6290i 0.770003 + 0.770003i 0.978107 0.208104i \(-0.0667291\pi\)
−0.208104 + 0.978107i \(0.566729\pi\)
\(270\) 0 0
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) 1.96068 20.2590i 0.118884 1.22838i
\(273\) −2.18290 −0.132115
\(274\) 24.9900i 1.50970i
\(275\) 0 0
\(276\) −1.63699 −0.0985355
\(277\) −10.0256 10.0256i −0.602381 0.602381i 0.338563 0.940944i \(-0.390059\pi\)
−0.940944 + 0.338563i \(0.890059\pi\)
\(278\) 13.0061 13.0061i 0.780052 0.780052i
\(279\) 8.64474 8.64474i 0.517547 0.517547i
\(280\) 0 0
\(281\) 7.80949i 0.465875i −0.972492 0.232937i \(-0.925166\pi\)
0.972492 0.232937i \(-0.0748338\pi\)
\(282\) 3.47771 3.47771i 0.207095 0.207095i
\(283\) −14.7842 + 14.7842i −0.878828 + 0.878828i −0.993413 0.114586i \(-0.963446\pi\)
0.114586 + 0.993413i \(0.463446\pi\)
\(284\) 7.78775 + 7.78775i 0.462118 + 0.462118i
\(285\) 0 0
\(286\) 8.93650 + 8.93650i 0.528426 + 0.528426i
\(287\) 18.4337i 1.08810i
\(288\) −16.6556 −0.981438
\(289\) −16.6845 3.26000i −0.981441 0.191765i
\(290\) 0 0
\(291\) 6.96050i 0.408032i
\(292\) 1.38854 + 1.38854i 0.0812583 + 0.0812583i
\(293\) 4.79502 0.280128 0.140064 0.990142i \(-0.455269\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(294\) −1.92276 1.92276i −0.112138 0.112138i
\(295\) 0 0
\(296\) 1.81951 1.81951i 0.105757 0.105757i
\(297\) 17.9188i 1.03975i
\(298\) 28.7388i 1.66479i
\(299\) −2.05550 + 2.05550i −0.118873 + 0.118873i
\(300\) 0 0
\(301\) −4.49600 4.49600i −0.259145 0.259145i
\(302\) −6.07540 −0.349600
\(303\) −3.82127 3.82127i −0.219526 0.219526i
\(304\) 19.7460i 1.13251i
\(305\) 0 0
\(306\) −1.92276 + 19.8673i −0.109917 + 1.13574i
\(307\) 24.9924 1.42639 0.713195 0.700966i \(-0.247247\pi\)
0.713195 + 0.700966i \(0.247247\pi\)
\(308\) 21.8654i 1.24589i
\(309\) −0.731997 0.731997i −0.0416418 0.0416418i
\(310\) 0 0
\(311\) −2.85126 2.85126i −0.161680 0.161680i 0.621631 0.783311i \(-0.286471\pi\)
−0.783311 + 0.621631i \(0.786471\pi\)
\(312\) 0.669049 0.669049i 0.0378774 0.0378774i
\(313\) 16.0154 16.0154i 0.905242 0.905242i −0.0906416 0.995884i \(-0.528892\pi\)
0.995884 + 0.0906416i \(0.0288918\pi\)
\(314\) 7.07151i 0.399068i
\(315\) 0 0
\(316\) −4.34726 + 4.34726i −0.244552 + 0.244552i
\(317\) −5.85000 + 5.85000i −0.328569 + 0.328569i −0.852042 0.523473i \(-0.824636\pi\)
0.523473 + 0.852042i \(0.324636\pi\)
\(318\) −6.52984 6.52984i −0.366175 0.366175i
\(319\) 37.1785 2.08160
\(320\) 0 0
\(321\) 9.54148i 0.532554i
\(322\) −13.0633 −0.727991
\(323\) 16.4157 + 1.58872i 0.913395 + 0.0883988i
\(324\) 7.83752 0.435418
\(325\) 0 0
\(326\) −18.7697 18.7697i −1.03956 1.03956i
\(327\) −0.250624 −0.0138596
\(328\) −5.64982 5.64982i −0.311959 0.311959i
\(329\) 10.6845 10.6845i 0.589055 0.589055i
\(330\) 0 0
\(331\) 5.51200i 0.302967i −0.988460 0.151484i \(-0.951595\pi\)
0.988460 0.151484i \(-0.0484050\pi\)
\(332\) 4.94112i 0.271179i
\(333\) −3.62109 + 3.62109i −0.198435 + 0.198435i
\(334\) 0.535753 0.535753i 0.0293151 0.0293151i
\(335\) 0 0
\(336\) 8.62899 0.470750
\(337\) −6.74445 6.74445i −0.367394 0.367394i 0.499132 0.866526i \(-0.333652\pi\)
−0.866526 + 0.499132i \(0.833652\pi\)
\(338\) 20.6310i 1.12218i
\(339\) 6.36099 0.345482
\(340\) 0 0
\(341\) 25.5575 1.38402
\(342\) 19.3641i 1.04709i
\(343\) 9.49631 + 9.49631i 0.512753 + 0.512753i
\(344\) 2.75600 0.148594
\(345\) 0 0
\(346\) 21.1705 21.1705i 1.13813 1.13813i
\(347\) −8.16503 + 8.16503i −0.438322 + 0.438322i −0.891447 0.453125i \(-0.850309\pi\)
0.453125 + 0.891447i \(0.350309\pi\)
\(348\) 4.65892i 0.249744i
\(349\) 11.4325i 0.611967i −0.952037 0.305984i \(-0.901015\pi\)
0.952037 0.305984i \(-0.0989853\pi\)
\(350\) 0 0
\(351\) −2.81951 + 2.81951i −0.150494 + 0.150494i
\(352\) −24.6204 24.6204i −1.31227 1.31227i
\(353\) −31.8017 −1.69263 −0.846317 0.532680i \(-0.821185\pi\)
−0.846317 + 0.532680i \(0.821185\pi\)
\(354\) 4.29749 + 4.29749i 0.228409 + 0.228409i
\(355\) 0 0
\(356\) −13.2875 −0.704234
\(357\) 0.694271 7.17367i 0.0367447 0.379671i
\(358\) −35.6942 −1.88650
\(359\) 25.1785i 1.32887i −0.747346 0.664435i \(-0.768672\pi\)
0.747346 0.664435i \(-0.231328\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −11.9398 11.9398i −0.627544 0.627544i
\(363\) −8.13981 + 8.13981i −0.427229 + 0.427229i
\(364\) −3.44050 + 3.44050i −0.180331 + 0.180331i
\(365\) 0 0
\(366\) 5.72998i 0.299511i
\(367\) 4.30411 4.30411i 0.224673 0.224673i −0.585790 0.810463i \(-0.699216\pi\)
0.810463 + 0.585790i \(0.199216\pi\)
\(368\) 8.12538 8.12538i 0.423565 0.423565i
\(369\) 11.2440 + 11.2440i 0.585339 + 0.585339i
\(370\) 0 0
\(371\) −20.0615 20.0615i −1.04154 1.04154i
\(372\) 3.20267i 0.166050i
\(373\) 30.0732 1.55713 0.778566 0.627562i \(-0.215947\pi\)
0.778566 + 0.627562i \(0.215947\pi\)
\(374\) −32.2102 + 26.5257i −1.66555 + 1.37161i
\(375\) 0 0
\(376\) 6.54949i 0.337764i
\(377\) 5.85000 + 5.85000i 0.301290 + 0.301290i
\(378\) −17.9188 −0.921643
\(379\) −0.716248 0.716248i −0.0367912 0.0367912i 0.688472 0.725263i \(-0.258282\pi\)
−0.725263 + 0.688472i \(0.758282\pi\)
\(380\) 0 0
\(381\) 2.32351 2.32351i 0.119037 0.119037i
\(382\) 25.1321i 1.28587i
\(383\) 25.8660i 1.32169i 0.750521 + 0.660846i \(0.229802\pi\)
−0.750521 + 0.660846i \(0.770198\pi\)
\(384\) −3.98627 + 3.98627i −0.203423 + 0.203423i
\(385\) 0 0
\(386\) −5.32351 5.32351i −0.270959 0.270959i
\(387\) −5.48486 −0.278811
\(388\) 10.9705 + 10.9705i 0.556944 + 0.556944i
\(389\) 33.0695i 1.67669i −0.545140 0.838345i \(-0.683524\pi\)
0.545140 0.838345i \(-0.316476\pi\)
\(390\) 0 0
\(391\) −6.10124 7.40874i −0.308553 0.374676i
\(392\) 3.62109 0.182893
\(393\) 10.9886i 0.554301i
\(394\) −22.5575 22.5575i −1.13643 1.13643i
\(395\) 0 0
\(396\) 13.3372 + 13.3372i 0.670221 + 0.670221i
\(397\) −5.76434 + 5.76434i −0.289304 + 0.289304i −0.836805 0.547501i \(-0.815579\pi\)
0.547501 + 0.836805i \(0.315579\pi\)
\(398\) −7.14163 + 7.14163i −0.357978 + 0.357978i
\(399\) 6.99200i 0.350038i
\(400\) 0 0
\(401\) 0.116990 0.116990i 0.00584222 0.00584222i −0.704180 0.710022i \(-0.748685\pi\)
0.710022 + 0.704180i \(0.248685\pi\)
\(402\) −6.06097 + 6.06097i −0.302294 + 0.302294i
\(403\) 4.02145 + 4.02145i 0.200323 + 0.200323i
\(404\) −12.0455 −0.599285
\(405\) 0 0
\(406\) 37.1785i 1.84514i
\(407\) −10.7055 −0.530650
\(408\) 1.98590 + 2.41148i 0.0983168 + 0.119386i
\(409\) 13.3690 0.661054 0.330527 0.943797i \(-0.392774\pi\)
0.330527 + 0.943797i \(0.392774\pi\)
\(410\) 0 0
\(411\) 5.50400 + 5.50400i 0.271492 + 0.271492i
\(412\) −2.30741 −0.113678
\(413\) 13.2031 + 13.2031i 0.649680 + 0.649680i
\(414\) −7.96825 + 7.96825i −0.391618 + 0.391618i
\(415\) 0 0
\(416\) 7.74800i 0.379877i
\(417\) 5.72913i 0.280557i
\(418\) 28.6242 28.6242i 1.40006 1.40006i
\(419\) −16.6687 + 16.6687i −0.814322 + 0.814322i −0.985278 0.170957i \(-0.945314\pi\)
0.170957 + 0.985278i \(0.445314\pi\)
\(420\) 0 0
\(421\) 5.82751 0.284015 0.142008 0.989866i \(-0.454644\pi\)
0.142008 + 0.989866i \(0.454644\pi\)
\(422\) 1.17711 + 1.17711i 0.0573009 + 0.0573009i
\(423\) 13.0345i 0.633757i
\(424\) 12.2975 0.597219
\(425\) 0 0
\(426\) −8.91047 −0.431714
\(427\) 17.6041i 0.851921i
\(428\) −15.0384 15.0384i −0.726910 0.726910i
\(429\) −3.93650 −0.190056
\(430\) 0 0
\(431\) 4.90474 4.90474i 0.236253 0.236253i −0.579043 0.815297i \(-0.696574\pi\)
0.815297 + 0.579043i \(0.196574\pi\)
\(432\) 11.1455 11.1455i 0.536237 0.536237i
\(433\) 15.4464i 0.742307i −0.928572 0.371153i \(-0.878962\pi\)
0.928572 0.371153i \(-0.121038\pi\)
\(434\) 25.5575i 1.22680i
\(435\) 0 0
\(436\) −0.395012 + 0.395012i −0.0189176 + 0.0189176i
\(437\) 6.58392 + 6.58392i 0.314952 + 0.314952i
\(438\) −1.58872 −0.0759121
\(439\) −1.03975 1.03975i −0.0496247 0.0496247i 0.681859 0.731484i \(-0.261172\pi\)
−0.731484 + 0.681859i \(0.761172\pi\)
\(440\) 0 0
\(441\) −7.20652 −0.343167
\(442\) −9.24205 0.894450i −0.439600 0.0425447i
\(443\) 12.7838 0.607379 0.303689 0.952771i \(-0.401782\pi\)
0.303689 + 0.952771i \(0.401782\pi\)
\(444\) 1.34153i 0.0636660i
\(445\) 0 0
\(446\) −2.25200 −0.106635
\(447\) 6.32966 + 6.32966i 0.299383 + 0.299383i
\(448\) 2.89478 2.89478i 0.136766 0.136766i
\(449\) −6.88099 + 6.88099i −0.324734 + 0.324734i −0.850580 0.525846i \(-0.823749\pi\)
0.525846 + 0.850580i \(0.323749\pi\)
\(450\) 0 0
\(451\) 33.2420i 1.56530i
\(452\) 10.0256 10.0256i 0.471566 0.471566i
\(453\) 1.33810 1.33810i 0.0628693 0.0628693i
\(454\) 14.7697 + 14.7697i 0.693178 + 0.693178i
\(455\) 0 0
\(456\) −2.14301 2.14301i −0.100356 0.100356i
\(457\) 36.2279i 1.69467i −0.531058 0.847336i \(-0.678205\pi\)
0.531058 0.847336i \(-0.321795\pi\)
\(458\) −21.1855 −0.989935
\(459\) −8.36899 10.1625i −0.390631 0.474344i
\(460\) 0 0
\(461\) 40.0595i 1.86576i 0.360193 + 0.932878i \(0.382711\pi\)
−0.360193 + 0.932878i \(0.617289\pi\)
\(462\) −12.5088 12.5088i −0.581962 0.581962i
\(463\) −15.3607 −0.713874 −0.356937 0.934128i \(-0.616179\pi\)
−0.356937 + 0.934128i \(0.616179\pi\)
\(464\) −23.1250 23.1250i −1.07355 1.07355i
\(465\) 0 0
\(466\) −14.4145 + 14.4145i −0.667738 + 0.667738i
\(467\) 19.4471i 0.899903i −0.893053 0.449952i \(-0.851441\pi\)
0.893053 0.449952i \(-0.148559\pi\)
\(468\) 4.19721i 0.194016i
\(469\) −18.6210 + 18.6210i −0.859837 + 0.859837i
\(470\) 0 0
\(471\) −1.55749 1.55749i −0.0717652 0.0717652i
\(472\) −8.09334 −0.372526
\(473\) −8.10777 8.10777i −0.372796 0.372796i
\(474\) 4.97398i 0.228462i
\(475\) 0 0
\(476\) −10.2122 12.4007i −0.468078 0.568387i
\(477\) −24.4739 −1.12058
\(478\) 9.26012i 0.423548i
\(479\) −10.2918 10.2918i −0.470242 0.470242i 0.431751 0.901993i \(-0.357896\pi\)
−0.901993 + 0.431751i \(0.857896\pi\)
\(480\) 0 0
\(481\) −1.68450 1.68450i −0.0768064 0.0768064i
\(482\) −10.8200 + 10.8200i −0.492837 + 0.492837i
\(483\) 2.87717 2.87717i 0.130916 0.130916i
\(484\) 25.6585i 1.16629i
\(485\) 0 0
\(486\) −16.6982 + 16.6982i −0.757447 + 0.757447i
\(487\) 20.9993 20.9993i 0.951570 0.951570i −0.0473104 0.998880i \(-0.515065\pi\)
0.998880 + 0.0473104i \(0.0150650\pi\)
\(488\) −5.39556 5.39556i −0.244246 0.244246i
\(489\) 8.26800 0.373892
\(490\) 0 0
\(491\) 21.0715i 0.950944i −0.879731 0.475472i \(-0.842277\pi\)
0.879731 0.475472i \(-0.157723\pi\)
\(492\) −4.16563 −0.187801
\(493\) −21.0854 + 17.3643i −0.949640 + 0.782047i
\(494\) 9.00800 0.405289
\(495\) 0 0
\(496\) −15.8967 15.8967i −0.713785 0.713785i
\(497\) −27.3754 −1.22796
\(498\) 2.82673 + 2.82673i 0.126669 + 0.126669i
\(499\) 6.65274 6.65274i 0.297818 0.297818i −0.542341 0.840159i \(-0.682462\pi\)
0.840159 + 0.542341i \(0.182462\pi\)
\(500\) 0 0
\(501\) 0.235997i 0.0105436i
\(502\) 35.7231i 1.59440i
\(503\) −20.7739 + 20.7739i −0.926263 + 0.926263i −0.997462 0.0711991i \(-0.977317\pi\)
0.0711991 + 0.997462i \(0.477317\pi\)
\(504\) 7.96825 7.96825i 0.354934 0.354934i
\(505\) 0 0
\(506\) −23.5575 −1.04726
\(507\) 4.54394 + 4.54394i 0.201804 + 0.201804i
\(508\) 7.32420i 0.324959i
\(509\) 14.3930 0.637958 0.318979 0.947762i \(-0.396660\pi\)
0.318979 + 0.947762i \(0.396660\pi\)
\(510\) 0 0
\(511\) −4.88099 −0.215922
\(512\) 17.3102i 0.765009i
\(513\) 9.03108 + 9.03108i 0.398732 + 0.398732i
\(514\) 43.9980 1.94067
\(515\) 0 0
\(516\) 1.01600 1.01600i 0.0447270 0.0447270i
\(517\) 19.2677 19.2677i 0.847391 0.847391i
\(518\) 10.7055i 0.470371i
\(519\) 9.32552i 0.409345i
\(520\) 0 0
\(521\) −19.5655 + 19.5655i −0.857180 + 0.857180i −0.991005 0.133825i \(-0.957274\pi\)
0.133825 + 0.991005i \(0.457274\pi\)
\(522\) 22.6778 + 22.6778i 0.992580 + 0.992580i
\(523\) 37.4867 1.63918 0.819590 0.572950i \(-0.194201\pi\)
0.819590 + 0.572950i \(0.194201\pi\)
\(524\) −17.3192 17.3192i −0.756594 0.756594i
\(525\) 0 0
\(526\) 32.5655 1.41992
\(527\) −14.4947 + 11.9367i −0.631399 + 0.519969i
\(528\) 15.5609 0.677202
\(529\) 17.5815i 0.764413i
\(530\) 0 0
\(531\) 16.1070 0.698983
\(532\) 11.0202 + 11.0202i 0.477785 + 0.477785i
\(533\) −5.23060 + 5.23060i −0.226562 + 0.226562i
\(534\) 7.60153 7.60153i 0.328950 0.328950i
\(535\) 0 0
\(536\) 11.4145i 0.493030i
\(537\) 7.86158 7.86158i 0.339252 0.339252i
\(538\) −22.7742 + 22.7742i −0.981867 + 0.981867i
\(539\) −10.6527 10.6527i −0.458846 0.458846i
\(540\) 0 0
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 28.5954i 1.22828i
\(543\) 5.25946 0.225705
\(544\) 25.4622 + 2.46425i 1.09168 + 0.105654i
\(545\) 0 0
\(546\) 3.93650i 0.168466i
\(547\) 20.3591 + 20.3591i 0.870493 + 0.870493i 0.992526 0.122033i \(-0.0389413\pi\)
−0.122033 + 0.992526i \(0.538941\pi\)
\(548\) 17.3498 0.741148
\(549\) 10.7380 + 10.7380i 0.458286 + 0.458286i
\(550\) 0 0
\(551\) 18.7380 18.7380i 0.798265 0.798265i
\(552\) 1.76368i 0.0750671i
\(553\) 15.2814i 0.649833i
\(554\) 18.0795 18.0795i 0.768125 0.768125i
\(555\) 0 0
\(556\) 9.02974 + 9.02974i 0.382946 + 0.382946i
\(557\) −4.93477 −0.209093 −0.104546 0.994520i \(-0.533339\pi\)
−0.104546 + 0.994520i \(0.533339\pi\)
\(558\) 15.5893 + 15.5893i 0.659949 + 0.659949i
\(559\) 2.55150i 0.107917i
\(560\) 0 0
\(561\) 1.25200 12.9365i 0.0528595 0.546179i
\(562\) 14.0831 0.594059
\(563\) 3.97544i 0.167545i −0.996485 0.0837724i \(-0.973303\pi\)
0.996485 0.0837724i \(-0.0266969\pi\)
\(564\) 2.41448 + 2.41448i 0.101668 + 0.101668i
\(565\) 0 0
\(566\) −26.6607 26.6607i −1.12063 1.12063i
\(567\) −13.7752 + 13.7752i −0.578504 + 0.578504i
\(568\) 8.39043 8.39043i 0.352055 0.352055i
\(569\) 5.49600i 0.230404i −0.993342 0.115202i \(-0.963248\pi\)
0.993342 0.115202i \(-0.0367516\pi\)
\(570\) 0 0
\(571\) 12.3372 12.3372i 0.516297 0.516297i −0.400152 0.916449i \(-0.631043\pi\)
0.916449 + 0.400152i \(0.131043\pi\)
\(572\) −6.20435 + 6.20435i −0.259417 + 0.259417i
\(573\) 5.53530 + 5.53530i 0.231241 + 0.231241i
\(574\) −33.2420 −1.38749
\(575\) 0 0
\(576\) 3.53147i 0.147144i
\(577\) 32.3418 1.34641 0.673203 0.739458i \(-0.264918\pi\)
0.673203 + 0.739458i \(0.264918\pi\)
\(578\) 5.87886 30.0877i 0.244528 1.25148i
\(579\) 2.34499 0.0974543
\(580\) 0 0
\(581\) 8.68450 + 8.68450i 0.360294 + 0.360294i
\(582\) −12.5521 −0.520301
\(583\) −36.1775 36.1775i −1.49832 1.49832i
\(584\) 1.49600 1.49600i 0.0619049 0.0619049i
\(585\) 0 0
\(586\) 8.64701i 0.357205i
\(587\) 28.6847i 1.18394i 0.805959 + 0.591972i \(0.201650\pi\)
−0.805959 + 0.591972i \(0.798350\pi\)
\(588\) 1.33492 1.33492i 0.0550511 0.0550511i
\(589\) 12.8810 12.8810i 0.530752 0.530752i
\(590\) 0 0
\(591\) 9.93650 0.408733
\(592\) 6.65879 + 6.65879i 0.273675 + 0.273675i
\(593\) 9.74614i 0.400226i 0.979773 + 0.200113i \(0.0641309\pi\)
−0.979773 + 0.200113i \(0.935869\pi\)
\(594\) −32.3135 −1.32584
\(595\) 0 0
\(596\) 19.9525 0.817286
\(597\) 3.14586i 0.128752i
\(598\) −3.70675 3.70675i −0.151580 0.151580i
\(599\) −8.07951 −0.330120 −0.165060 0.986284i \(-0.552782\pi\)
−0.165060 + 0.986284i \(0.552782\pi\)
\(600\) 0 0
\(601\) −12.8810 + 12.8810i −0.525427 + 0.525427i −0.919205 0.393779i \(-0.871168\pi\)
0.393779 + 0.919205i \(0.371168\pi\)
\(602\) 8.10777 8.10777i 0.330448 0.330448i
\(603\) 22.7165i 0.925089i
\(604\) 4.21798i 0.171627i
\(605\) 0 0
\(606\) 6.89101 6.89101i 0.279928 0.279928i
\(607\) 8.37964 + 8.37964i 0.340119 + 0.340119i 0.856412 0.516293i \(-0.172688\pi\)
−0.516293 + 0.856412i \(0.672688\pi\)
\(608\) −24.8174 −1.00648
\(609\) −8.18850 8.18850i −0.331815 0.331815i
\(610\) 0 0
\(611\) 6.06350 0.245303
\(612\) −13.7933 1.33492i −0.557560 0.0539609i
\(613\) 23.1494 0.934995 0.467497 0.883994i \(-0.345156\pi\)
0.467497 + 0.883994i \(0.345156\pi\)
\(614\) 45.0695i 1.81886i
\(615\) 0 0
\(616\) 23.5575 0.949158
\(617\) −7.41350 7.41350i −0.298456 0.298456i 0.541953 0.840409i \(-0.317685\pi\)
−0.840409 + 0.541953i \(0.817685\pi\)
\(618\) 1.32003 1.32003i 0.0530995 0.0530995i
\(619\) 16.4702 16.4702i 0.661995 0.661995i −0.293855 0.955850i \(-0.594938\pi\)
0.955850 + 0.293855i \(0.0949384\pi\)
\(620\) 0 0
\(621\) 7.43250i 0.298256i
\(622\) 5.14176 5.14176i 0.206166 0.206166i
\(623\) 23.3540 23.3540i 0.935658 0.935658i
\(624\) 2.44850 + 2.44850i 0.0980184 + 0.0980184i
\(625\) 0 0
\(626\) 28.8810 + 28.8810i 1.15432 + 1.15432i
\(627\) 12.6089i 0.503550i
\(628\) −4.90954 −0.195912
\(629\) 6.07151 5.00000i 0.242087 0.199363i
\(630\) 0 0
\(631\) 41.1310i 1.63740i −0.574223 0.818699i \(-0.694696\pi\)
0.574223 0.818699i \(-0.305304\pi\)
\(632\) 4.68368 + 4.68368i 0.186307 + 0.186307i
\(633\) −0.518514 −0.0206091
\(634\) −10.5495 10.5495i −0.418974 0.418974i
\(635\) 0 0
\(636\) 4.53348 4.53348i 0.179764 0.179764i
\(637\) 3.35240i 0.132827i
\(638\) 67.0451i 2.65434i
\(639\) −16.6982 + 16.6982i −0.660572 + 0.660572i
\(640\) 0 0
\(641\) 33.4325 + 33.4325i 1.32050 + 1.32050i 0.913367 + 0.407137i \(0.133473\pi\)
0.407137 + 0.913367i \(0.366527\pi\)
\(642\) 17.2064 0.679084
\(643\) 4.99838 + 4.99838i 0.197117 + 0.197117i 0.798763 0.601646i \(-0.205488\pi\)
−0.601646 + 0.798763i \(0.705488\pi\)
\(644\) 9.06949i 0.357388i
\(645\) 0 0
\(646\) −2.86499 + 29.6030i −0.112722 + 1.16471i
\(647\) 26.9462 1.05937 0.529683 0.848196i \(-0.322311\pi\)
0.529683 + 0.848196i \(0.322311\pi\)
\(648\) 8.44406i 0.331714i
\(649\) 23.8095 + 23.8095i 0.934604 + 0.934604i
\(650\) 0 0
\(651\) −5.62899 5.62899i −0.220618 0.220618i
\(652\) 13.0313 13.0313i 0.510345 0.510345i
\(653\) −19.9764 + 19.9764i −0.781736 + 0.781736i −0.980124 0.198388i \(-0.936430\pi\)
0.198388 + 0.980124i \(0.436430\pi\)
\(654\) 0.451959i 0.0176730i
\(655\) 0 0
\(656\) 20.6765 20.6765i 0.807281 0.807281i
\(657\) −2.97726 + 2.97726i −0.116154 + 0.116154i
\(658\) 19.2677 + 19.2677i 0.751132 + 0.751132i
\(659\) −14.1230 −0.550153 −0.275077 0.961422i \(-0.588703\pi\)
−0.275077 + 0.961422i \(0.588703\pi\)
\(660\) 0 0
\(661\) 49.0355i 1.90726i −0.300984 0.953629i \(-0.597315\pi\)
0.300984 0.953629i \(-0.402685\pi\)
\(662\) 9.93996 0.386328
\(663\) 2.23255 1.83855i 0.0867050 0.0714032i
\(664\) −5.32351 −0.206592
\(665\) 0 0
\(666\) −6.53002 6.53002i −0.253033 0.253033i
\(667\) −15.4212 −0.597111
\(668\) 0.371958 + 0.371958i 0.0143915 + 0.0143915i
\(669\) 0.495999 0.495999i 0.0191764 0.0191764i
\(670\) 0 0
\(671\) 31.7460i 1.22554i
\(672\) 10.8452i 0.418363i
\(673\) 22.2405 22.2405i 0.857308 0.857308i −0.133712 0.991020i \(-0.542690\pi\)
0.991020 + 0.133712i \(0.0426897\pi\)
\(674\) 12.1625 12.1625i 0.468481 0.468481i
\(675\) 0 0
\(676\) 14.3235 0.550904
\(677\) 21.4109 + 21.4109i 0.822889 + 0.822889i 0.986521 0.163633i \(-0.0523212\pi\)
−0.163633 + 0.986521i \(0.552321\pi\)
\(678\) 11.4710i 0.440540i
\(679\) −38.5635 −1.47993
\(680\) 0 0
\(681\) −6.50602 −0.249311
\(682\) 46.0886i 1.76482i
\(683\) 32.6533 + 32.6533i 1.24944 + 1.24944i 0.955966 + 0.293479i \(0.0948129\pi\)
0.293479 + 0.955966i \(0.405187\pi\)
\(684\) 13.4440 0.514043
\(685\) 0 0
\(686\) −17.1250 + 17.1250i −0.653835 + 0.653835i
\(687\) 4.66608 4.66608i 0.178022 0.178022i
\(688\) 10.0861i 0.384527i
\(689\) 11.3850i 0.433734i
\(690\) 0 0
\(691\) −7.52775 + 7.52775i −0.286369 + 0.286369i −0.835643 0.549273i \(-0.814905\pi\)
0.549273 + 0.835643i \(0.314905\pi\)
\(692\) 14.6981 + 14.6981i 0.558736 + 0.558736i
\(693\) −46.8830 −1.78094
\(694\) −14.7242 14.7242i −0.558925 0.558925i
\(695\) 0 0
\(696\) 5.01946 0.190262
\(697\) −15.5257 18.8529i −0.588078 0.714104i
\(698\) 20.6166 0.780349
\(699\) 6.34953i 0.240161i
\(700\) 0 0
\(701\) −39.4145 −1.48866 −0.744332 0.667810i \(-0.767232\pi\)
−0.744332 + 0.667810i \(0.767232\pi\)
\(702\) −5.08450 5.08450i −0.191902 0.191902i
\(703\) −5.39556 + 5.39556i −0.203497 + 0.203497i
\(704\) 5.22025 5.22025i 0.196746 0.196746i
\(705\) 0 0
\(706\) 57.3490i 2.15836i
\(707\) 21.1711 21.1711i 0.796221 0.796221i
\(708\) −2.98362 + 2.98362i −0.112131 + 0.112131i
\(709\) −10.7460 10.7460i −0.403574 0.403574i 0.475917 0.879490i \(-0.342116\pi\)
−0.879490 + 0.475917i \(0.842116\pi\)
\(710\) 0 0
\(711\) −9.32124 9.32124i −0.349574 0.349574i
\(712\) 14.3158i 0.536506i
\(713\) −10.6009 −0.397008
\(714\) 12.9365 + 1.25200i 0.484136 + 0.0468549i
\(715\) 0 0
\(716\) 24.7815i 0.926126i
\(717\) −2.03953 2.03953i −0.0761675 0.0761675i
\(718\) 45.4051 1.69450
\(719\) 4.84924 + 4.84924i 0.180846 + 0.180846i 0.791724 0.610878i \(-0.209184\pi\)
−0.610878 + 0.791724i \(0.709184\pi\)
\(720\) 0 0
\(721\) 4.05550 4.05550i 0.151035 0.151035i
\(722\) 5.40999i 0.201339i
\(723\) 4.76617i 0.177256i
\(724\) 8.28948 8.28948i 0.308076 0.308076i
\(725\) 0 0
\(726\) −14.6788 14.6788i −0.544780 0.544780i
\(727\) −38.5606 −1.43013 −0.715066 0.699057i \(-0.753603\pi\)
−0.715066 + 0.699057i \(0.753603\pi\)
\(728\) 3.70675 + 3.70675i 0.137381 + 0.137381i
\(729\) 11.4245i 0.423129i
\(730\) 0 0
\(731\) 8.38499 + 0.811504i 0.310130 + 0.0300146i
\(732\) −3.97816 −0.147037
\(733\) 42.7425i 1.57873i −0.613923 0.789366i \(-0.710409\pi\)
0.613923 0.789366i \(-0.289591\pi\)
\(734\) 7.76173 + 7.76173i 0.286491 + 0.286491i
\(735\) 0 0
\(736\) 10.2122 + 10.2122i 0.376428 + 0.376428i
\(737\) −33.5798 + 33.5798i −1.23693 + 1.23693i
\(738\) −20.2766 + 20.2766i −0.746394 + 0.746394i
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) 0 0
\(741\) −1.98400 + 1.98400i −0.0728839 + 0.0728839i
\(742\) 36.1775 36.1775i 1.32812 1.32812i
\(743\) −36.9750 36.9750i −1.35648 1.35648i −0.878214 0.478269i \(-0.841265\pi\)
−0.478269 0.878214i \(-0.658735\pi\)
\(744\) 3.45051 0.126502
\(745\) 0 0
\(746\) 54.2320i 1.98557i
\(747\) 10.5946 0.387635
\(748\) −18.4161 22.3626i −0.673358 0.817659i
\(749\) 52.8630 1.93157
\(750\) 0 0
\(751\) 27.9027 + 27.9027i 1.01818 + 1.01818i 0.999832 + 0.0183534i \(0.00584240\pi\)
0.0183534 + 0.999832i \(0.494158\pi\)
\(752\) −23.9690 −0.874058
\(753\) −7.86794 7.86794i −0.286724 0.286724i
\(754\) −10.5495 + 10.5495i −0.384190 + 0.384190i
\(755\) 0 0
\(756\) 12.4405i 0.452456i
\(757\) 8.61186i 0.313003i 0.987678 + 0.156502i \(0.0500216\pi\)
−0.987678 + 0.156502i \(0.949978\pi\)
\(758\) 1.29163 1.29163i 0.0469141 0.0469141i
\(759\) 5.18850 5.18850i 0.188330 0.188330i
\(760\) 0 0
\(761\) −41.2400 −1.49495 −0.747474 0.664291i \(-0.768733\pi\)
−0.747474 + 0.664291i \(0.768733\pi\)
\(762\) 4.19005 + 4.19005i 0.151789 + 0.151789i
\(763\) 1.38854i 0.0502686i
\(764\) 17.4485 0.631265
\(765\) 0 0
\(766\) −46.6450 −1.68535
\(767\) 7.49280i 0.270549i
\(768\) −8.23354 8.23354i −0.297102 0.297102i
\(769\) −17.3510 −0.625692 −0.312846 0.949804i \(-0.601282\pi\)
−0.312846 + 0.949804i \(0.601282\pi\)
\(770\) 0 0
\(771\) −9.69048 + 9.69048i −0.348994 + 0.348994i
\(772\) 3.69596 3.69596i 0.133020 0.133020i
\(773\) 20.0124i 0.719796i −0.932992 0.359898i \(-0.882812\pi\)
0.932992 0.359898i \(-0.117188\pi\)
\(774\) 9.89101i 0.355525i
\(775\) 0 0
\(776\) 11.8195 11.8195i 0.424296 0.424296i
\(777\) 2.35786 + 2.35786i 0.0845878 + 0.0845878i
\(778\) 59.6352 2.13803
\(779\) 16.7540 + 16.7540i 0.600274 + 0.600274i
\(780\) 0 0
\(781\) −49.3670 −1.76649
\(782\) 13.3604 11.0026i 0.477767 0.393451i
\(783\) −21.1530 −0.755948
\(784\) 13.2520i 0.473286i
\(785\) 0 0
\(786\) 19.8160 0.706815
\(787\) −23.9802 23.9802i −0.854802 0.854802i 0.135918 0.990720i \(-0.456602\pi\)
−0.990720 + 0.135918i \(0.956602\pi\)
\(788\) 15.6610 15.6610i 0.557901 0.557901i
\(789\) −7.17249 + 7.17249i −0.255348 + 0.255348i
\(790\) 0 0
\(791\) 35.2420i 1.25306i
\(792\) 14.3694 14.3694i 0.510594 0.510594i
\(793\) −4.99520 + 4.99520i −0.177385 + 0.177385i
\(794\) −10.3950 10.3950i −0.368905 0.368905i
\(795\) 0 0
\(796\) −4.95823 4.95823i −0.175740 0.175740i
\(797\) 0.730287i 0.0258681i 0.999916 + 0.0129340i \(0.00411715\pi\)
−0.999916 + 0.0129340i \(0.995883\pi\)
\(798\) −12.6089 −0.446350
\(799\) −1.92849 + 19.9265i −0.0682252 + 0.704948i
\(800\) 0 0
\(801\) 28.4905i 1.00666i
\(802\) 0.210972 + 0.210972i 0.00744970 + 0.00744970i
\(803\) −8.80204 −0.310617
\(804\) −4.20796 4.20796i −0.148403 0.148403i
\(805\) 0 0
\(806\) −7.25200 + 7.25200i −0.255441 + 0.255441i
\(807\) 10.0320i 0.353142i
\(808\) 12.9777i 0.456553i
\(809\) −14.4485 + 14.4485i −0.507982 + 0.507982i −0.913907 0.405924i \(-0.866950\pi\)
0.405924 + 0.913907i \(0.366950\pi\)
\(810\) 0 0
\(811\) −1.77975 1.77975i −0.0624955 0.0624955i 0.675168 0.737664i \(-0.264071\pi\)
−0.737664 + 0.675168i \(0.764071\pi\)
\(812\) −25.8119 −0.905822
\(813\) 6.29809 + 6.29809i 0.220883 + 0.220883i
\(814\) 19.3055i 0.676657i
\(815\) 0 0
\(816\) −8.82524 + 7.26775i −0.308945 + 0.254422i
\(817\) −8.17265 −0.285925
\(818\) 24.1087i 0.842941i
\(819\) −7.37699 7.37699i −0.257773 0.257773i
\(820\) 0 0
\(821\) 10.8175 + 10.8175i 0.377533 + 0.377533i 0.870211 0.492678i \(-0.163982\pi\)
−0.492678 + 0.870211i \(0.663982\pi\)
\(822\) −9.92553 + 9.92553i −0.346193 + 0.346193i
\(823\) 10.1433 10.1433i 0.353574 0.353574i −0.507864 0.861437i \(-0.669565\pi\)
0.861437 + 0.507864i \(0.169565\pi\)
\(824\) 2.48598i 0.0866033i
\(825\) 0 0
\(826\) −23.8095 + 23.8095i −0.828438 + 0.828438i
\(827\) 28.5066 28.5066i 0.991270 0.991270i −0.00869233 0.999962i \(-0.502767\pi\)
0.999962 + 0.00869233i \(0.00276689\pi\)
\(828\) −5.53213 5.53213i −0.192255 0.192255i
\(829\) −37.1150 −1.28906 −0.644528 0.764581i \(-0.722946\pi\)
−0.644528 + 0.764581i \(0.722946\pi\)
\(830\) 0 0
\(831\) 7.96396i 0.276267i
\(832\) 1.64280 0.0569540
\(833\) 11.0170 + 1.06623i 0.381716 + 0.0369426i
\(834\) −10.3315 −0.357751
\(835\) 0 0
\(836\) 19.8730 + 19.8730i 0.687322 + 0.687322i
\(837\) −14.5412 −0.502616
\(838\) −30.0593 30.0593i −1.03838 1.03838i
\(839\) 5.02173 5.02173i 0.173370 0.173370i −0.615089 0.788458i \(-0.710880\pi\)
0.788458 + 0.615089i \(0.210880\pi\)
\(840\) 0 0
\(841\) 14.8890i 0.513414i
\(842\) 10.5089i 0.362161i
\(843\) −3.10178 + 3.10178i −0.106831 + 0.106831i
\(844\) −0.817235 + 0.817235i −0.0281304 + 0.0281304i
\(845\) 0 0
\(846\) 23.5054 0.808134
\(847\) −45.0972 45.0972i −1.54956 1.54956i
\(848\) 45.0048i 1.54547i
\(849\) 11.7440 0.403052
\(850\) 0 0
\(851\) 4.44050 0.152218
\(852\) 6.18629i 0.211939i
\(853\) 27.1104 + 27.1104i 0.928242 + 0.928242i 0.997592 0.0693502i \(-0.0220926\pi\)
−0.0693502 + 0.997592i \(0.522093\pi\)
\(854\) −31.7460 −1.08633
\(855\) 0 0
\(856\) −16.2022 + 16.2022i −0.553781 + 0.553781i
\(857\) 1.22358 1.22358i 0.0417966 0.0417966i −0.685900 0.727696i \(-0.740591\pi\)
0.727696 + 0.685900i \(0.240591\pi\)
\(858\) 7.09880i 0.242349i
\(859\) 30.9245i 1.05513i 0.849515 + 0.527565i \(0.176895\pi\)
−0.849515 + 0.527565i \(0.823105\pi\)
\(860\) 0 0
\(861\) 7.32149 7.32149i 0.249516 0.249516i
\(862\) 8.84487 + 8.84487i 0.301258 + 0.301258i
\(863\) −40.2134 −1.36888 −0.684439 0.729070i \(-0.739953\pi\)
−0.684439 + 0.729070i \(0.739953\pi\)
\(864\) 14.0080 + 14.0080i 0.476562 + 0.476562i
\(865\) 0 0
\(866\) 27.8550 0.946550
\(867\) 5.33195 + 7.92156i 0.181082 + 0.269030i
\(868\) −17.7438 −0.602265
\(869\) 27.5575i 0.934824i
\(870\) 0 0
\(871\) −10.5675 −0.358066
\(872\) 0.425581 + 0.425581i 0.0144120 + 0.0144120i
\(873\) −23.5226 + 23.5226i −0.796119 + 0.796119i
\(874\) −11.8730 + 11.8730i −0.401610 + 0.401610i
\(875\) 0 0
\(876\) 1.10300i 0.0372670i
\(877\) 0.715057 0.715057i 0.0241458 0.0241458i −0.694931 0.719077i \(-0.744565\pi\)
0.719077 + 0.694931i \(0.244565\pi\)
\(878\) 1.87502 1.87502i 0.0632788 0.0632788i
\(879\) −1.90449 1.90449i −0.0642368 0.0642368i
\(880\) 0 0
\(881\) 13.8095 + 13.8095i 0.465253 + 0.465253i 0.900373 0.435119i \(-0.143294\pi\)
−0.435119 + 0.900373i \(0.643294\pi\)
\(882\) 12.9957i 0.437589i
\(883\) 12.6125 0.424445 0.212223 0.977221i \(-0.431930\pi\)
0.212223 + 0.977221i \(0.431930\pi\)
\(884\) 0.620991 6.41649i 0.0208862 0.215810i
\(885\) 0 0
\(886\) 23.0535i 0.774497i
\(887\) −26.2443 26.2443i −0.881199 0.881199i 0.112458 0.993657i \(-0.464128\pi\)
−0.993657 + 0.112458i \(0.964128\pi\)
\(888\) −1.44534 −0.0485026
\(889\) 12.8730 + 12.8730i 0.431746 + 0.431746i
\(890\) 0 0
\(891\) −24.8412 + 24.8412i −0.832213 + 0.832213i
\(892\) 1.56350i 0.0523498i
\(893\) 19.4218i 0.649927i
\(894\) −11.4145 + 11.4145i −0.381757 + 0.381757i
\(895\) 0 0
\(896\) −22.0852 22.0852i −0.737816 0.737816i
\(897\) 1.63281 0.0545180
\(898\) −12.4087 12.4087i −0.414084 0.414084i
\(899\) 30.1705i 1.00624i
\(900\) 0 0
\(901\) 37.4145 + 3.62099i 1.24646 + 0.120633i
\(902\) −59.9463 −1.99599
\(903\) 3.57145i 0.118850i
\(904\) −10.8015 10.8015i −0.359252 0.359252i
\(905\) 0 0
\(906\) 2.41303 + 2.41303i 0.0801676 + 0.0801676i
\(907\) 24.3554 24.3554i 0.808706 0.808706i −0.175732 0.984438i \(-0.556229\pi\)
0.984438 + 0.175732i \(0.0562292\pi\)
\(908\) −10.2542 + 10.2542i −0.340298 + 0.340298i
\(909\) 25.8275i 0.856644i
\(910\) 0 0
\(911\) −7.21023 + 7.21023i −0.238886 + 0.238886i −0.816389 0.577503i \(-0.804027\pi\)
0.577503 + 0.816389i \(0.304027\pi\)
\(912\) 7.84272 7.84272i 0.259698 0.259698i
\(913\) 15.6610 + 15.6610i 0.518304 + 0.518304i
\(914\) 65.3309 2.16096
\(915\) 0 0
\(916\) 14.7085i 0.485983i
\(917\) 60.8804 2.01045
\(918\) 18.3263 15.0921i 0.604858 0.498112i
\(919\) −50.5315 −1.66688 −0.833440 0.552611i \(-0.813632\pi\)
−0.833440 + 0.552611i \(0.813632\pi\)
\(920\) 0 0
\(921\) −9.92648 9.92648i −0.327089 0.327089i
\(922\) −72.2405 −2.37911
\(923\) −7.76785 7.76785i −0.255682 0.255682i
\(924\) 8.68450 8.68450i 0.285699 0.285699i
\(925\) 0 0
\(926\) 27.7005i 0.910295i
\(927\) 4.94748i 0.162496i
\(928\) 29.0643 29.0643i 0.954081 0.954081i
\(929\) −20.0615 + 20.0615i −0.658196 + 0.658196i −0.954953 0.296757i \(-0.904095\pi\)
0.296757 + 0.954953i \(0.404095\pi\)
\(930\) 0 0
\(931\) −10.7380 −0.351923
\(932\) −10.0076 10.0076i −0.327808 0.327808i
\(933\) 2.26493i 0.0741504i
\(934\) 35.0695 1.14751
\(935\) 0 0
\(936\) 4.52202 0.147807
\(937\) 47.5024i 1.55183i 0.630835 + 0.775917i \(0.282713\pi\)
−0.630835 + 0.775917i \(0.717287\pi\)
\(938\) −33.5798 33.5798i −1.09642 1.09642i
\(939\) −12.7220 −0.415166
\(940\) 0 0
\(941\) 32.5555 32.5555i 1.06128 1.06128i 0.0632823 0.997996i \(-0.479843\pi\)
0.997996 0.0632823i \(-0.0201569\pi\)
\(942\) 2.80866 2.80866i 0.0915112 0.0915112i
\(943\) 13.7884i 0.449011i
\(944\) 29.6190i 0.964016i
\(945\) 0 0
\(946\) 14.6210 14.6210i 0.475369 0.475369i
\(947\) 21.0282 + 21.0282i 0.683324 + 0.683324i 0.960748 0.277424i \(-0.0894806\pi\)
−0.277424 + 0.960748i \(0.589481\pi\)
\(948\) 3.45329 0.112158
\(949\) −1.38499 1.38499i −0.0449588 0.0449588i
\(950\) 0 0
\(951\) 4.64701 0.150690
\(952\) −13.3604 + 11.0026i −0.433014 + 0.356595i
\(953\) 9.02109 0.292222 0.146111 0.989268i \(-0.453324\pi\)
0.146111 + 0.989268i \(0.453324\pi\)
\(954\) 44.1344i 1.42891i
\(955\) 0 0
\(956\) −6.42903 −0.207930
\(957\) −14.7666 14.7666i −0.477335 0.477335i
\(958\) 18.5594 18.5594i 0.599628 0.599628i
\(959\) −30.4940 + 30.4940i −0.984702 + 0.984702i
\(960\) 0 0
\(961\) 10.2600i 0.330968i
\(962\) 3.03770 3.03770i 0.0979394 0.0979394i
\(963\) 32.2449 32.2449i 1.03908 1.03908i
\(964\) −7.51200 7.51200i −0.241945 0.241945i
\(965\) 0 0
\(966\) 5.18850 + 5.18850i 0.166937 + 0.166937i
\(967\) 11.7541i 0.377986i 0.981978 + 0.188993i \(0.0605223\pi\)
−0.981978 + 0.188993i \(0.939478\pi\)
\(968\) 27.6441 0.888516
\(969\) −5.88899 7.15101i −0.189182 0.229724i
\(970\) 0 0
\(971\) 19.9525i 0.640306i −0.947366 0.320153i \(-0.896266\pi\)
0.947366 0.320153i \(-0.103734\pi\)
\(972\) −11.5931 11.5931i −0.371849 0.371849i
\(973\) −31.7413 −1.01758
\(974\) 37.8687 + 37.8687i 1.21339 + 1.21339i
\(975\) 0 0
\(976\) 19.7460 19.7460i 0.632054 0.632054i
\(977\) 27.2005i 0.870221i −0.900377 0.435110i \(-0.856709\pi\)
0.900377 0.435110i \(-0.143291\pi\)
\(978\) 14.9099i 0.476767i
\(979\) 42.1150 42.1150i 1.34600 1.34600i
\(980\) 0 0
\(981\) −0.846971 0.846971i −0.0270417 0.0270417i
\(982\) 37.9989 1.21259
\(983\) −5.03803 5.03803i −0.160688 0.160688i 0.622183 0.782872i \(-0.286246\pi\)
−0.782872 + 0.622183i \(0.786246\pi\)
\(984\) 4.48800i 0.143072i
\(985\) 0 0
\(986\) −31.3135 38.0240i −0.997225 1.21093i
\(987\) −8.48734 −0.270155
\(988\) 6.25400i 0.198966i
\(989\) 3.36301 + 3.36301i 0.106937 + 0.106937i
\(990\) 0 0
\(991\) 40.2817 + 40.2817i 1.27959 + 1.27959i 0.940896 + 0.338695i \(0.109986\pi\)
0.338695 + 0.940896i \(0.390014\pi\)
\(992\) 19.9796 19.9796i 0.634351 0.634351i
\(993\) −2.18926 + 2.18926i −0.0694740 + 0.0694740i
\(994\) 49.3670i 1.56583i
\(995\) 0 0
\(996\) −1.96252 + 1.96252i −0.0621847 + 0.0621847i
\(997\) −3.56701 + 3.56701i −0.112968 + 0.112968i −0.761331 0.648363i \(-0.775454\pi\)
0.648363 + 0.761331i \(0.275454\pi\)
\(998\) 11.9971 + 11.9971i 0.379761 + 0.379761i
\(999\) 6.09097 0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.d.251.5 12
5.2 odd 4 85.2.j.c.64.2 yes 12
5.3 odd 4 85.2.j.c.64.5 yes 12
5.4 even 2 inner 425.2.e.d.251.2 12
15.2 even 4 765.2.t.e.64.5 12
15.8 even 4 765.2.t.e.64.2 12
17.2 even 8 7225.2.a.bp.1.3 12
17.4 even 4 inner 425.2.e.d.276.2 12
17.15 even 8 7225.2.a.bp.1.4 12
85.2 odd 8 1445.2.b.f.579.4 12
85.4 even 4 inner 425.2.e.d.276.5 12
85.19 even 8 7225.2.a.bp.1.10 12
85.32 odd 8 1445.2.b.f.579.3 12
85.38 odd 4 85.2.j.c.4.2 12
85.49 even 8 7225.2.a.bp.1.9 12
85.53 odd 8 1445.2.b.f.579.9 12
85.72 odd 4 85.2.j.c.4.5 yes 12
85.83 odd 8 1445.2.b.f.579.10 12
255.38 even 4 765.2.t.e.514.5 12
255.242 even 4 765.2.t.e.514.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 85.38 odd 4
85.2.j.c.4.5 yes 12 85.72 odd 4
85.2.j.c.64.2 yes 12 5.2 odd 4
85.2.j.c.64.5 yes 12 5.3 odd 4
425.2.e.d.251.2 12 5.4 even 2 inner
425.2.e.d.251.5 12 1.1 even 1 trivial
425.2.e.d.276.2 12 17.4 even 4 inner
425.2.e.d.276.5 12 85.4 even 4 inner
765.2.t.e.64.2 12 15.8 even 4
765.2.t.e.64.5 12 15.2 even 4
765.2.t.e.514.2 12 255.242 even 4
765.2.t.e.514.5 12 255.38 even 4
1445.2.b.f.579.3 12 85.32 odd 8
1445.2.b.f.579.4 12 85.2 odd 8
1445.2.b.f.579.9 12 85.53 odd 8
1445.2.b.f.579.10 12 85.83 odd 8
7225.2.a.bp.1.3 12 17.2 even 8
7225.2.a.bp.1.4 12 17.15 even 8
7225.2.a.bp.1.9 12 85.49 even 8
7225.2.a.bp.1.10 12 85.19 even 8