Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 64 | 36 |
Cusp forms | 76 | 52 | 24 |
Eisenstein series | 24 | 12 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)