Properties

Label 425.2.e
Level $425$
Weight $2$
Character orbit 425.e
Rep. character $\chi_{425}(251,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $52$
Newform subspaces $6$
Sturm bound $90$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(90\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 100 64 36
Cusp forms 76 52 24
Eisenstein series 24 12 12

Trace form

\( 52 q + 4 q^{3} - 44 q^{4} - 4 q^{6} - 8 q^{11} + 8 q^{12} + 28 q^{14} + 12 q^{16} - 12 q^{17} - 28 q^{18} - 20 q^{22} - 12 q^{23} + 32 q^{24} + 4 q^{27} - 4 q^{28} - 16 q^{29} - 12 q^{31} + 16 q^{33} + 44 q^{34}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.e.a 425.e 17.c $2$ $3.394$ \(\Q(\sqrt{-1}) \) None 85.2.j.a \(0\) \(-2\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{2}+(-i-1)q^{3}+q^{4}+(-i+1)q^{6}+\cdots\)
425.2.e.b 425.e 17.c $2$ $3.394$ \(\Q(\sqrt{-1}) \) None 85.2.j.a \(0\) \(2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{2}+(i+1)q^{3}+q^{4}+(-i+1)q^{6}+\cdots\)
425.2.e.c 425.e 17.c $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 425.2.e.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-1+\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
425.2.e.d 425.e 17.c $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 85.2.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}+(\beta _{1}+\beta _{4}-\beta _{7})q^{3}+(-1+\cdots)q^{4}+\cdots\)
425.2.e.e 425.e 17.c $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 425.2.e.c \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{4}q^{3}+(-1+\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)
425.2.e.f 425.e 17.c $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 85.2.e.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{9}q^{2}-\beta _{3}q^{3}+(-1-\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)