Properties

Label 85.2.j.c.4.2
Level $85$
Weight $2$
Character 85.4
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,2,Mod(4,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 4.2
Root \(-0.803330i\) of defining polynomial
Character \(\chi\) \(=\) 85.4
Dual form 85.2.j.c.64.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80333 q^{2} +(-0.397180 - 0.397180i) q^{3} +1.25200 q^{4} +(1.45011 + 1.70211i) q^{5} +(0.716248 + 0.716248i) q^{6} +(2.20051 - 2.20051i) q^{7} +1.34889 q^{8} -2.68450i q^{9} +(-2.61503 - 3.06947i) q^{10} +(3.96825 + 3.96825i) q^{11} +(-0.497270 - 0.497270i) q^{12} +1.24880i q^{13} +(-3.96825 + 3.96825i) q^{14} +(0.100090 - 1.25200i) q^{15} -4.93650 q^{16} +(-4.10393 + 0.397180i) q^{17} +4.84103i q^{18} -4.00000i q^{19} +(1.81554 + 2.13104i) q^{20} -1.74800 q^{21} +(-7.15606 - 7.15606i) q^{22} +(1.64598 - 1.64598i) q^{23} +(-0.535753 - 0.535753i) q^{24} +(-0.794361 + 4.93650i) q^{25} -2.25200i q^{26} +(-2.25777 + 2.25777i) q^{27} +(2.75504 - 2.75504i) q^{28} +(-4.68450 + 4.68450i) q^{29} +(-0.180495 + 2.25777i) q^{30} +(3.22025 - 3.22025i) q^{31} +6.20435 q^{32} -3.15222i q^{33} +(7.40074 - 0.716248i) q^{34} +(6.93650 + 0.554530i) q^{35} -3.36099i q^{36} +(1.34889 + 1.34889i) q^{37} +7.21332i q^{38} +(0.495999 - 0.495999i) q^{39} +(1.95604 + 2.29596i) q^{40} +(-4.18850 - 4.18850i) q^{41} +3.15222 q^{42} -2.04316 q^{43} +(4.96825 + 4.96825i) q^{44} +(4.56931 - 3.89281i) q^{45} +(-2.96825 + 2.96825i) q^{46} -4.85546i q^{47} +(1.96068 + 1.96068i) q^{48} -2.68450i q^{49} +(1.43250 - 8.90213i) q^{50} +(1.78775 + 1.47225i) q^{51} +1.56350i q^{52} -9.11674 q^{53} +(4.07151 - 4.07151i) q^{54} +(-1.00000 + 12.5088i) q^{55} +(2.96825 - 2.96825i) q^{56} +(-1.58872 + 1.58872i) q^{57} +(8.44769 - 8.44769i) q^{58} +6.00000i q^{59} +(0.125312 - 1.56750i) q^{60} +(-4.00000 - 4.00000i) q^{61} +(-5.80717 + 5.80717i) q^{62} +(-5.90726 - 5.90726i) q^{63} -1.31550 q^{64} +(-2.12560 + 1.81090i) q^{65} +5.68450i q^{66} +8.46212i q^{67} +(-5.13812 + 0.497270i) q^{68} -1.30750 q^{69} +(-12.5088 - 1.00000i) q^{70} +(-6.22025 + 6.22025i) q^{71} -3.62109i q^{72} +(-1.10906 - 1.10906i) q^{73} +(-2.43250 - 2.43250i) q^{74} +(2.27618 - 1.64517i) q^{75} -5.00800i q^{76} +17.4643 q^{77} +(-0.894450 + 0.894450i) q^{78} +(-3.47225 - 3.47225i) q^{79} +(-7.15846 - 8.40246i) q^{80} -6.26000 q^{81} +(7.55324 + 7.55324i) q^{82} +3.94658 q^{83} -2.18850 q^{84} +(-6.62720 - 6.40939i) q^{85} +3.68450 q^{86} +3.72118 q^{87} +(5.35273 + 5.35273i) q^{88} -10.6130 q^{89} +(-8.23997 + 7.02003i) q^{90} +(2.74800 + 2.74800i) q^{91} +(2.06077 - 2.06077i) q^{92} -2.55804 q^{93} +8.75600i q^{94} +(6.80844 - 5.80044i) q^{95} +(-2.46425 - 2.46425i) q^{96} +(8.76239 + 8.76239i) q^{97} +4.84103i q^{98} +(10.6527 - 10.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 20 q^{6} - 4 q^{10} + 16 q^{11} - 16 q^{14} + 4 q^{16} - 32 q^{20} - 24 q^{21} - 32 q^{24} + 4 q^{29} + 52 q^{30} + 4 q^{31} + 20 q^{35} + 12 q^{39} + 24 q^{40} + 16 q^{41} + 28 q^{44}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80333 −1.27515 −0.637574 0.770389i \(-0.720062\pi\)
−0.637574 + 0.770389i \(0.720062\pi\)
\(3\) −0.397180 0.397180i −0.229312 0.229312i 0.583093 0.812405i \(-0.301842\pi\)
−0.812405 + 0.583093i \(0.801842\pi\)
\(4\) 1.25200 0.626000
\(5\) 1.45011 + 1.70211i 0.648509 + 0.761207i
\(6\) 0.716248 + 0.716248i 0.292407 + 0.292407i
\(7\) 2.20051 2.20051i 0.831715 0.831715i −0.156036 0.987751i \(-0.549872\pi\)
0.987751 + 0.156036i \(0.0498717\pi\)
\(8\) 1.34889 0.476905
\(9\) 2.68450i 0.894832i
\(10\) −2.61503 3.06947i −0.826944 0.970651i
\(11\) 3.96825 + 3.96825i 1.19647 + 1.19647i 0.975216 + 0.221256i \(0.0710156\pi\)
0.221256 + 0.975216i \(0.428984\pi\)
\(12\) −0.497270 0.497270i −0.143549 0.143549i
\(13\) 1.24880i 0.346355i 0.984891 + 0.173178i \(0.0554034\pi\)
−0.984891 + 0.173178i \(0.944597\pi\)
\(14\) −3.96825 + 3.96825i −1.06056 + 1.06056i
\(15\) 0.100090 1.25200i 0.0258430 0.323265i
\(16\) −4.93650 −1.23412
\(17\) −4.10393 + 0.397180i −0.995349 + 0.0963304i
\(18\) 4.84103i 1.14104i
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 1.81554 + 2.13104i 0.405967 + 0.476516i
\(21\) −1.74800 −0.381445
\(22\) −7.15606 7.15606i −1.52568 1.52568i
\(23\) 1.64598 1.64598i 0.343211 0.343211i −0.514362 0.857573i \(-0.671971\pi\)
0.857573 + 0.514362i \(0.171971\pi\)
\(24\) −0.535753 0.535753i −0.109360 0.109360i
\(25\) −0.794361 + 4.93650i −0.158872 + 0.987299i
\(26\) 2.25200i 0.441654i
\(27\) −2.25777 + 2.25777i −0.434508 + 0.434508i
\(28\) 2.75504 2.75504i 0.520654 0.520654i
\(29\) −4.68450 + 4.68450i −0.869889 + 0.869889i −0.992460 0.122571i \(-0.960886\pi\)
0.122571 + 0.992460i \(0.460886\pi\)
\(30\) −0.180495 + 2.25777i −0.0329537 + 0.412211i
\(31\) 3.22025 3.22025i 0.578374 0.578374i −0.356081 0.934455i \(-0.615887\pi\)
0.934455 + 0.356081i \(0.115887\pi\)
\(32\) 6.20435 1.09678
\(33\) 3.15222i 0.548731i
\(34\) 7.40074 0.716248i 1.26922 0.122835i
\(35\) 6.93650 + 0.554530i 1.17248 + 0.0937326i
\(36\) 3.36099i 0.560165i
\(37\) 1.34889 + 1.34889i 0.221756 + 0.221756i 0.809238 0.587481i \(-0.199880\pi\)
−0.587481 + 0.809238i \(0.699880\pi\)
\(38\) 7.21332i 1.17016i
\(39\) 0.495999 0.495999i 0.0794234 0.0794234i
\(40\) 1.95604 + 2.29596i 0.309277 + 0.363023i
\(41\) −4.18850 4.18850i −0.654133 0.654133i 0.299852 0.953986i \(-0.403063\pi\)
−0.953986 + 0.299852i \(0.903063\pi\)
\(42\) 3.15222 0.486398
\(43\) −2.04316 −0.311579 −0.155790 0.987790i \(-0.549792\pi\)
−0.155790 + 0.987790i \(0.549792\pi\)
\(44\) 4.96825 + 4.96825i 0.748992 + 0.748992i
\(45\) 4.56931 3.89281i 0.681152 0.580306i
\(46\) −2.96825 + 2.96825i −0.437644 + 0.437644i
\(47\) 4.85546i 0.708242i −0.935200 0.354121i \(-0.884780\pi\)
0.935200 0.354121i \(-0.115220\pi\)
\(48\) 1.96068 + 1.96068i 0.283000 + 0.283000i
\(49\) 2.68450i 0.383499i
\(50\) 1.43250 8.90213i 0.202585 1.25895i
\(51\) 1.78775 + 1.47225i 0.250336 + 0.206156i
\(52\) 1.56350i 0.216818i
\(53\) −9.11674 −1.25228 −0.626140 0.779710i \(-0.715366\pi\)
−0.626140 + 0.779710i \(0.715366\pi\)
\(54\) 4.07151 4.07151i 0.554062 0.554062i
\(55\) −1.00000 + 12.5088i −0.134840 + 1.68669i
\(56\) 2.96825 2.96825i 0.396649 0.396649i
\(57\) −1.58872 + 1.58872i −0.210431 + 0.210431i
\(58\) 8.44769 8.44769i 1.10924 1.10924i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) 0.125312 1.56750i 0.0161777 0.202364i
\(61\) −4.00000 4.00000i −0.512148 0.512148i 0.403036 0.915184i \(-0.367955\pi\)
−0.915184 + 0.403036i \(0.867955\pi\)
\(62\) −5.80717 + 5.80717i −0.737512 + 0.737512i
\(63\) −5.90726 5.90726i −0.744245 0.744245i
\(64\) −1.31550 −0.164438
\(65\) −2.12560 + 1.81090i −0.263648 + 0.224614i
\(66\) 5.68450i 0.699713i
\(67\) 8.46212i 1.03381i 0.856042 + 0.516906i \(0.172916\pi\)
−0.856042 + 0.516906i \(0.827084\pi\)
\(68\) −5.13812 + 0.497270i −0.623089 + 0.0603029i
\(69\) −1.30750 −0.157405
\(70\) −12.5088 1.00000i −1.49509 0.119523i
\(71\) −6.22025 + 6.22025i −0.738208 + 0.738208i −0.972231 0.234023i \(-0.924811\pi\)
0.234023 + 0.972231i \(0.424811\pi\)
\(72\) 3.62109i 0.426750i
\(73\) −1.10906 1.10906i −0.129806 0.129806i 0.639219 0.769025i \(-0.279258\pi\)
−0.769025 + 0.639219i \(0.779258\pi\)
\(74\) −2.43250 2.43250i −0.282772 0.282772i
\(75\) 2.27618 1.64517i 0.262831 0.189968i
\(76\) 5.00800i 0.574457i
\(77\) 17.4643 1.99025
\(78\) −0.894450 + 0.894450i −0.101277 + 0.101277i
\(79\) −3.47225 3.47225i −0.390658 0.390658i 0.484264 0.874922i \(-0.339088\pi\)
−0.874922 + 0.484264i \(0.839088\pi\)
\(80\) −7.15846 8.40246i −0.800340 0.939424i
\(81\) −6.26000 −0.695556
\(82\) 7.55324 + 7.55324i 0.834116 + 0.834116i
\(83\) 3.94658 0.433194 0.216597 0.976261i \(-0.430504\pi\)
0.216597 + 0.976261i \(0.430504\pi\)
\(84\) −2.18850 −0.238785
\(85\) −6.62720 6.40939i −0.718820 0.695196i
\(86\) 3.68450 0.397309
\(87\) 3.72118 0.398952
\(88\) 5.35273 + 5.35273i 0.570603 + 0.570603i
\(89\) −10.6130 −1.12497 −0.562487 0.826806i \(-0.690155\pi\)
−0.562487 + 0.826806i \(0.690155\pi\)
\(90\) −8.23997 + 7.02003i −0.868569 + 0.739976i
\(91\) 2.74800 + 2.74800i 0.288069 + 0.288069i
\(92\) 2.06077 2.06077i 0.214850 0.214850i
\(93\) −2.55804 −0.265256
\(94\) 8.75600i 0.903113i
\(95\) 6.80844 5.80044i 0.698531 0.595113i
\(96\) −2.46425 2.46425i −0.251506 0.251506i
\(97\) 8.76239 + 8.76239i 0.889686 + 0.889686i 0.994493 0.104807i \(-0.0334224\pi\)
−0.104807 + 0.994493i \(0.533422\pi\)
\(98\) 4.84103i 0.489018i
\(99\) 10.6527 10.6527i 1.07064 1.07064i
\(100\) −0.994540 + 6.18049i −0.0994540 + 0.618049i
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) −3.22391 2.65495i −0.319215 0.262879i
\(103\) 1.84298i 0.181594i 0.995869 + 0.0907972i \(0.0289415\pi\)
−0.995869 + 0.0907972i \(0.971058\pi\)
\(104\) 1.68450i 0.165178i
\(105\) −2.53479 2.97529i −0.247370 0.290358i
\(106\) 16.4405 1.59684
\(107\) −12.0115 12.0115i −1.16120 1.16120i −0.984214 0.176984i \(-0.943366\pi\)
−0.176984 0.984214i \(-0.556634\pi\)
\(108\) −2.82673 + 2.82673i −0.272002 + 0.272002i
\(109\) −0.315505 0.315505i −0.0302199 0.0302199i 0.691835 0.722055i \(-0.256802\pi\)
−0.722055 + 0.691835i \(0.756802\pi\)
\(110\) 1.80333 22.5575i 0.171941 2.15077i
\(111\) 1.07151i 0.101703i
\(112\) −10.8628 + 10.8628i −1.02644 + 1.02644i
\(113\) 8.00768 8.00768i 0.753299 0.753299i −0.221794 0.975094i \(-0.571191\pi\)
0.975094 + 0.221794i \(0.0711913\pi\)
\(114\) 2.86499 2.86499i 0.268331 0.268331i
\(115\) 5.18850 + 0.414788i 0.483830 + 0.0386792i
\(116\) −5.86499 + 5.86499i −0.544551 + 0.544551i
\(117\) 3.35240 0.309929
\(118\) 10.8200i 0.996060i
\(119\) −8.15674 + 9.90474i −0.747728 + 0.907966i
\(120\) 0.135010 1.68881i 0.0123247 0.154167i
\(121\) 20.4940i 1.86309i
\(122\) 7.21332 + 7.21332i 0.653063 + 0.653063i
\(123\) 3.32718i 0.300001i
\(124\) 4.03175 4.03175i 0.362062 0.362062i
\(125\) −9.55437 + 5.80637i −0.854569 + 0.519338i
\(126\) 10.6527 + 10.6527i 0.949022 + 0.949022i
\(127\) −5.85000 −0.519104 −0.259552 0.965729i \(-0.583575\pi\)
−0.259552 + 0.965729i \(0.583575\pi\)
\(128\) −10.0364 −0.887102
\(129\) 0.811504 + 0.811504i 0.0714489 + 0.0714489i
\(130\) 3.83315 3.26565i 0.336190 0.286416i
\(131\) 13.8332 13.8332i 1.20862 1.20862i 0.237140 0.971475i \(-0.423790\pi\)
0.971475 0.237140i \(-0.0762101\pi\)
\(132\) 3.94658i 0.343506i
\(133\) −8.80204 8.80204i −0.763234 0.763234i
\(134\) 15.2600i 1.31826i
\(135\) −7.11699 0.568959i −0.612533 0.0489682i
\(136\) −5.53575 + 0.535753i −0.474687 + 0.0459404i
\(137\) 13.8577i 1.18394i 0.805959 + 0.591971i \(0.201650\pi\)
−0.805959 + 0.591971i \(0.798350\pi\)
\(138\) 2.35786 0.200714
\(139\) 7.21225 7.21225i 0.611735 0.611735i −0.331663 0.943398i \(-0.607610\pi\)
0.943398 + 0.331663i \(0.107610\pi\)
\(140\) 8.68450 + 0.694271i 0.733974 + 0.0586766i
\(141\) −1.92849 + 1.92849i −0.162409 + 0.162409i
\(142\) 11.2172 11.2172i 0.941323 0.941323i
\(143\) −4.95555 + 4.95555i −0.414404 + 0.414404i
\(144\) 13.2520i 1.10433i
\(145\) −14.7666 1.18049i −1.22630 0.0980347i
\(146\) 2.00000 + 2.00000i 0.165521 + 0.165521i
\(147\) −1.06623 + 1.06623i −0.0879411 + 0.0879411i
\(148\) 1.68881 + 1.68881i 0.138819 + 0.138819i
\(149\) 15.9365 1.30557 0.652784 0.757544i \(-0.273601\pi\)
0.652784 + 0.757544i \(0.273601\pi\)
\(150\) −4.10471 + 2.96679i −0.335148 + 0.242238i
\(151\) 3.36899i 0.274165i −0.990560 0.137082i \(-0.956228\pi\)
0.990560 0.137082i \(-0.0437725\pi\)
\(152\) 5.39556i 0.437638i
\(153\) 1.06623 + 11.0170i 0.0861995 + 0.890670i
\(154\) −31.4940 −2.53786
\(155\) 10.1509 + 0.811504i 0.815343 + 0.0651816i
\(156\) 0.620991 0.620991i 0.0497191 0.0497191i
\(157\) 3.92136i 0.312959i −0.987681 0.156479i \(-0.949986\pi\)
0.987681 0.156479i \(-0.0500144\pi\)
\(158\) 6.26161 + 6.26161i 0.498147 + 0.498147i
\(159\) 3.62099 + 3.62099i 0.287163 + 0.287163i
\(160\) 8.99699 + 10.5605i 0.711275 + 0.834880i
\(161\) 7.24400i 0.570907i
\(162\) 11.2889 0.886936
\(163\) 10.4084 10.4084i 0.815247 0.815247i −0.170168 0.985415i \(-0.554431\pi\)
0.985415 + 0.170168i \(0.0544312\pi\)
\(164\) −5.24400 5.24400i −0.409488 0.409488i
\(165\) 5.36543 4.57107i 0.417698 0.355857i
\(166\) −7.11699 −0.552386
\(167\) 0.297091 + 0.297091i 0.0229896 + 0.0229896i 0.718508 0.695519i \(-0.244825\pi\)
−0.695519 + 0.718508i \(0.744825\pi\)
\(168\) −2.35786 −0.181913
\(169\) 11.4405 0.880038
\(170\) 11.9510 + 11.5582i 0.916602 + 0.886477i
\(171\) −10.7380 −0.821154
\(172\) −2.55804 −0.195049
\(173\) −11.7397 11.7397i −0.892549 0.892549i 0.102213 0.994763i \(-0.467408\pi\)
−0.994763 + 0.102213i \(0.967408\pi\)
\(174\) −6.71052 −0.508723
\(175\) 9.11481 + 12.6108i 0.689015 + 0.953288i
\(176\) −19.5892 19.5892i −1.47659 1.47659i
\(177\) 2.38308 2.38308i 0.179123 0.179123i
\(178\) 19.1387 1.43451
\(179\) 19.7935i 1.47943i 0.672918 + 0.739717i \(0.265041\pi\)
−0.672918 + 0.739717i \(0.734959\pi\)
\(180\) 5.72078 4.87380i 0.426401 0.363272i
\(181\) −6.62099 6.62099i −0.492134 0.492134i 0.416844 0.908978i \(-0.363136\pi\)
−0.908978 + 0.416844i \(0.863136\pi\)
\(182\) −4.95555 4.95555i −0.367330 0.367330i
\(183\) 3.17744i 0.234883i
\(184\) 2.22025 2.22025i 0.163679 0.163679i
\(185\) −0.339921 + 4.25200i −0.0249915 + 0.312613i
\(186\) 4.61299 0.338241
\(187\) −17.8615 14.7093i −1.30616 1.07565i
\(188\) 6.07904i 0.443360i
\(189\) 9.93650i 0.722774i
\(190\) −12.2779 + 10.4601i −0.890730 + 0.758856i
\(191\) −13.9365 −1.00841 −0.504205 0.863584i \(-0.668214\pi\)
−0.504205 + 0.863584i \(0.668214\pi\)
\(192\) 0.522493 + 0.522493i 0.0377077 + 0.0377077i
\(193\) 2.95204 2.95204i 0.212493 0.212493i −0.592833 0.805325i \(-0.701991\pi\)
0.805325 + 0.592833i \(0.201991\pi\)
\(194\) −15.8015 15.8015i −1.13448 1.13448i
\(195\) 1.56350 + 0.124992i 0.111964 + 0.00895086i
\(196\) 3.36099i 0.240071i
\(197\) −12.5088 + 12.5088i −0.891215 + 0.891215i −0.994637 0.103423i \(-0.967021\pi\)
0.103423 + 0.994637i \(0.467021\pi\)
\(198\) −19.2104 + 19.2104i −1.36522 + 1.36522i
\(199\) −3.96025 + 3.96025i −0.280734 + 0.280734i −0.833402 0.552667i \(-0.813610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(200\) −1.07151 + 6.65879i −0.0757669 + 0.470848i
\(201\) 3.36099 3.36099i 0.237066 0.237066i
\(202\) −17.3498 −1.22073
\(203\) 20.6166i 1.44700i
\(204\) 2.23827 + 1.84326i 0.156710 + 0.129054i
\(205\) 1.05550 13.2031i 0.0737195 0.922142i
\(206\) 3.32351i 0.231560i
\(207\) −4.41863 4.41863i −0.307116 0.307116i
\(208\) 6.16470i 0.427445i
\(209\) 15.8730 15.8730i 1.09796 1.09796i
\(210\) 4.57107 + 5.36543i 0.315434 + 0.370250i
\(211\) 0.652743 + 0.652743i 0.0449367 + 0.0449367i 0.729218 0.684281i \(-0.239884\pi\)
−0.684281 + 0.729218i \(0.739884\pi\)
\(212\) −11.4142 −0.783928
\(213\) 4.94112 0.338560
\(214\) 21.6607 + 21.6607i 1.48070 + 1.48070i
\(215\) −2.96281 3.47769i −0.202062 0.237176i
\(216\) −3.04548 + 3.04548i −0.207219 + 0.207219i
\(217\) 14.1724i 0.962084i
\(218\) 0.568959 + 0.568959i 0.0385348 + 0.0385348i
\(219\) 0.880993i 0.0595320i
\(220\) −1.25200 + 15.6610i −0.0844098 + 1.05587i
\(221\) −0.495999 5.12499i −0.0333645 0.344744i
\(222\) 1.93228i 0.129686i
\(223\) 1.24880 0.0836259 0.0418129 0.999125i \(-0.486687\pi\)
0.0418129 + 0.999125i \(0.486687\pi\)
\(224\) 13.6527 13.6527i 0.912212 0.912212i
\(225\) 13.2520 + 2.13246i 0.883467 + 0.142164i
\(226\) −14.4405 + 14.4405i −0.960568 + 0.960568i
\(227\) 8.19025 8.19025i 0.543606 0.543606i −0.380978 0.924584i \(-0.624413\pi\)
0.924584 + 0.380978i \(0.124413\pi\)
\(228\) −1.98908 + 1.98908i −0.131730 + 0.131730i
\(229\) 11.7480i 0.776330i 0.921590 + 0.388165i \(0.126891\pi\)
−0.921590 + 0.388165i \(0.873109\pi\)
\(230\) −9.35657 0.748000i −0.616954 0.0493216i
\(231\) −6.93650 6.93650i −0.456388 0.456388i
\(232\) −6.31887 + 6.31887i −0.414854 + 0.414854i
\(233\) 7.99325 + 7.99325i 0.523655 + 0.523655i 0.918673 0.395018i \(-0.129262\pi\)
−0.395018 + 0.918673i \(0.629262\pi\)
\(234\) −6.04548 −0.395206
\(235\) 8.26453 7.04095i 0.539119 0.459301i
\(236\) 7.51200i 0.488990i
\(237\) 2.75822i 0.179166i
\(238\) 14.7093 17.8615i 0.953463 1.15779i
\(239\) −5.13501 −0.332156 −0.166078 0.986113i \(-0.553110\pi\)
−0.166078 + 0.986113i \(0.553110\pi\)
\(240\) −0.494092 + 6.18049i −0.0318935 + 0.398949i
\(241\) 6.00000 6.00000i 0.386494 0.386494i −0.486941 0.873435i \(-0.661887\pi\)
0.873435 + 0.486941i \(0.161887\pi\)
\(242\) 36.9574i 2.37571i
\(243\) 9.25966 + 9.25966i 0.594008 + 0.594008i
\(244\) −5.00800 5.00800i −0.320604 0.320604i
\(245\) 4.56931 3.89281i 0.291922 0.248703i
\(246\) 6.00000i 0.382546i
\(247\) 4.99520 0.317837
\(248\) 4.34376 4.34376i 0.275829 0.275829i
\(249\) −1.56750 1.56750i −0.0993366 0.0993366i
\(250\) 17.2297 10.4708i 1.08970 0.662232i
\(251\) 19.8095 1.25036 0.625182 0.780479i \(-0.285025\pi\)
0.625182 + 0.780479i \(0.285025\pi\)
\(252\) −7.39589 7.39589i −0.465897 0.465897i
\(253\) 13.0633 0.821284
\(254\) 10.5495 0.661934
\(255\) 0.0865092 + 5.17788i 0.00541741 + 0.324251i
\(256\) 20.7300 1.29562
\(257\) 24.3982 1.52192 0.760958 0.648801i \(-0.224729\pi\)
0.760958 + 0.648801i \(0.224729\pi\)
\(258\) −1.46341 1.46341i −0.0911079 0.0911079i
\(259\) 5.93650 0.368876
\(260\) −2.66125 + 2.26725i −0.165044 + 0.140609i
\(261\) 12.5755 + 12.5755i 0.778404 + 0.778404i
\(262\) −24.9459 + 24.9459i −1.54116 + 1.54116i
\(263\) −18.0585 −1.11354 −0.556768 0.830668i \(-0.687959\pi\)
−0.556768 + 0.830668i \(0.687959\pi\)
\(264\) 4.25200i 0.261693i
\(265\) −13.2203 15.5177i −0.812115 0.953245i
\(266\) 15.8730 + 15.8730i 0.973236 + 0.973236i
\(267\) 4.21527 + 4.21527i 0.257970 + 0.257970i
\(268\) 10.5946i 0.647167i
\(269\) −12.6290 + 12.6290i −0.770003 + 0.770003i −0.978107 0.208104i \(-0.933271\pi\)
0.208104 + 0.978107i \(0.433271\pi\)
\(270\) 12.8343 + 1.02602i 0.781070 + 0.0624417i
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) 20.2590 1.96068i 1.22838 0.118884i
\(273\) 2.18290i 0.132115i
\(274\) 24.9900i 1.50970i
\(275\) −22.7415 + 16.4370i −1.37136 + 0.991190i
\(276\) −1.63699 −0.0985355
\(277\) 10.0256 + 10.0256i 0.602381 + 0.602381i 0.940944 0.338563i \(-0.109941\pi\)
−0.338563 + 0.940944i \(0.609941\pi\)
\(278\) −13.0061 + 13.0061i −0.780052 + 0.780052i
\(279\) −8.64474 8.64474i −0.517547 0.517547i
\(280\) 9.35657 + 0.748000i 0.559162 + 0.0447015i
\(281\) 7.80949i 0.465875i 0.972492 + 0.232937i \(0.0748338\pi\)
−0.972492 + 0.232937i \(0.925166\pi\)
\(282\) 3.47771 3.47771i 0.207095 0.207095i
\(283\) 14.7842 14.7842i 0.878828 0.878828i −0.114586 0.993413i \(-0.536554\pi\)
0.993413 + 0.114586i \(0.0365540\pi\)
\(284\) −7.78775 + 7.78775i −0.462118 + 0.462118i
\(285\) −5.00800 0.400358i −0.296648 0.0237152i
\(286\) 8.93650 8.93650i 0.528426 0.528426i
\(287\) −18.4337 −1.08810
\(288\) 16.6556i 0.981438i
\(289\) 16.6845 3.26000i 0.981441 0.191765i
\(290\) 26.6290 + 2.12882i 1.56371 + 0.125009i
\(291\) 6.96050i 0.408032i
\(292\) −1.38854 1.38854i −0.0812583 0.0812583i
\(293\) 4.79502i 0.280128i 0.990142 + 0.140064i \(0.0447309\pi\)
−0.990142 + 0.140064i \(0.955269\pi\)
\(294\) 1.92276 1.92276i 0.112138 0.112138i
\(295\) −10.2127 + 8.70066i −0.594604 + 0.506572i
\(296\) 1.81951 + 1.81951i 0.105757 + 0.105757i
\(297\) −17.9188 −1.03975
\(298\) −28.7388 −1.66479
\(299\) 2.05550 + 2.05550i 0.118873 + 0.118873i
\(300\) 2.84978 2.05976i 0.164532 0.118920i
\(301\) −4.49600 + 4.49600i −0.259145 + 0.259145i
\(302\) 6.07540i 0.349600i
\(303\) −3.82127 3.82127i −0.219526 0.219526i
\(304\) 19.7460i 1.13251i
\(305\) 1.00800 12.6089i 0.0577180 0.721983i
\(306\) −1.92276 19.8673i −0.109917 1.13574i
\(307\) 24.9924i 1.42639i −0.700966 0.713195i \(-0.747247\pi\)
0.700966 0.713195i \(-0.252753\pi\)
\(308\) 21.8654 1.24589
\(309\) 0.731997 0.731997i 0.0416418 0.0416418i
\(310\) −18.3055 1.46341i −1.03968 0.0831161i
\(311\) −2.85126 + 2.85126i −0.161680 + 0.161680i −0.783311 0.621631i \(-0.786471\pi\)
0.621631 + 0.783311i \(0.286471\pi\)
\(312\) 0.669049 0.669049i 0.0378774 0.0378774i
\(313\) −16.0154 + 16.0154i −0.905242 + 0.905242i −0.995884 0.0906416i \(-0.971108\pi\)
0.0906416 + 0.995884i \(0.471108\pi\)
\(314\) 7.07151i 0.399068i
\(315\) 1.48863 18.6210i 0.0838749 1.04917i
\(316\) −4.34726 4.34726i −0.244552 0.244552i
\(317\) −5.85000 + 5.85000i −0.328569 + 0.328569i −0.852042 0.523473i \(-0.824636\pi\)
0.523473 + 0.852042i \(0.324636\pi\)
\(318\) −6.52984 6.52984i −0.366175 0.366175i
\(319\) −37.1785 −2.08160
\(320\) −1.90763 2.23913i −0.106640 0.125171i
\(321\) 9.54148i 0.532554i
\(322\) 13.0633i 0.727991i
\(323\) 1.58872 + 16.4157i 0.0883988 + 0.913395i
\(324\) −7.83752 −0.435418
\(325\) −6.16470 0.991998i −0.341956 0.0550262i
\(326\) −18.7697 + 18.7697i −1.03956 + 1.03956i
\(327\) 0.250624i 0.0138596i
\(328\) −5.64982 5.64982i −0.311959 0.311959i
\(329\) −10.6845 10.6845i −0.589055 0.589055i
\(330\) −9.67564 + 8.24314i −0.532626 + 0.453770i
\(331\) 5.51200i 0.302967i 0.988460 + 0.151484i \(0.0484050\pi\)
−0.988460 + 0.151484i \(0.951595\pi\)
\(332\) 4.94112 0.271179
\(333\) 3.62109 3.62109i 0.198435 0.198435i
\(334\) −0.535753 0.535753i −0.0293151 0.0293151i
\(335\) −14.4035 + 12.2710i −0.786946 + 0.670437i
\(336\) 8.62899 0.470750
\(337\) 6.74445 + 6.74445i 0.367394 + 0.367394i 0.866526 0.499132i \(-0.166348\pi\)
−0.499132 + 0.866526i \(0.666348\pi\)
\(338\) −20.6310 −1.12218
\(339\) −6.36099 −0.345482
\(340\) −8.29725 8.02456i −0.449982 0.435193i
\(341\) 25.5575 1.38402
\(342\) 19.3641 1.04709
\(343\) 9.49631 + 9.49631i 0.512753 + 0.512753i
\(344\) −2.75600 −0.148594
\(345\) −1.89602 2.22551i −0.102078 0.119818i
\(346\) 21.1705 + 21.1705i 1.13813 + 1.13813i
\(347\) −8.16503 + 8.16503i −0.438322 + 0.438322i −0.891447 0.453125i \(-0.850309\pi\)
0.453125 + 0.891447i \(0.350309\pi\)
\(348\) 4.65892 0.249744
\(349\) 11.4325i 0.611967i −0.952037 0.305984i \(-0.901015\pi\)
0.952037 0.305984i \(-0.0989853\pi\)
\(350\) −16.4370 22.7415i −0.878596 1.21558i
\(351\) −2.81951 2.81951i −0.150494 0.150494i
\(352\) 24.6204 + 24.6204i 1.31227 + 1.31227i
\(353\) 31.8017i 1.69263i −0.532680 0.846317i \(-0.678815\pi\)
0.532680 0.846317i \(-0.321185\pi\)
\(354\) −4.29749 + 4.29749i −0.228409 + 0.228409i
\(355\) −19.6076 1.56750i −1.04066 0.0831945i
\(356\) −13.2875 −0.704234
\(357\) 7.17367 0.694271i 0.379671 0.0367447i
\(358\) 35.6942i 1.88650i
\(359\) 25.1785i 1.32887i −0.747346 0.664435i \(-0.768672\pi\)
0.747346 0.664435i \(-0.231328\pi\)
\(360\) 6.16350 5.25098i 0.324845 0.276751i
\(361\) 3.00000 0.157895
\(362\) 11.9398 + 11.9398i 0.627544 + 0.627544i
\(363\) 8.13981 8.13981i 0.427229 0.427229i
\(364\) 3.44050 + 3.44050i 0.180331 + 0.180331i
\(365\) 0.279483 3.49600i 0.0146288 0.182989i
\(366\) 5.72998i 0.299511i
\(367\) 4.30411 4.30411i 0.224673 0.224673i −0.585790 0.810463i \(-0.699216\pi\)
0.810463 + 0.585790i \(0.199216\pi\)
\(368\) −8.12538 + 8.12538i −0.423565 + 0.423565i
\(369\) −11.2440 + 11.2440i −0.585339 + 0.585339i
\(370\) 0.612990 7.66776i 0.0318678 0.398628i
\(371\) −20.0615 + 20.0615i −1.04154 + 1.04154i
\(372\) −3.20267 −0.166050
\(373\) 30.0732i 1.55713i 0.627562 + 0.778566i \(0.284053\pi\)
−0.627562 + 0.778566i \(0.715947\pi\)
\(374\) 32.2102 + 26.5257i 1.66555 + 1.37161i
\(375\) 6.10099 + 1.48863i 0.315054 + 0.0768726i
\(376\) 6.54949i 0.337764i
\(377\) −5.85000 5.85000i −0.301290 0.301290i
\(378\) 17.9188i 0.921643i
\(379\) 0.716248 0.716248i 0.0367912 0.0367912i −0.688472 0.725263i \(-0.741718\pi\)
0.725263 + 0.688472i \(0.241718\pi\)
\(380\) 8.52417 7.26215i 0.437281 0.372541i
\(381\) 2.32351 + 2.32351i 0.119037 + 0.119037i
\(382\) 25.1321 1.28587
\(383\) 25.8660 1.32169 0.660846 0.750521i \(-0.270198\pi\)
0.660846 + 0.750521i \(0.270198\pi\)
\(384\) 3.98627 + 3.98627i 0.203423 + 0.203423i
\(385\) 25.3252 + 29.7262i 1.29069 + 1.51499i
\(386\) −5.32351 + 5.32351i −0.270959 + 0.270959i
\(387\) 5.48486i 0.278811i
\(388\) 10.9705 + 10.9705i 0.556944 + 0.556944i
\(389\) 33.0695i 1.67669i −0.545140 0.838345i \(-0.683524\pi\)
0.545140 0.838345i \(-0.316476\pi\)
\(390\) −2.81951 0.225402i −0.142771 0.0114137i
\(391\) −6.10124 + 7.40874i −0.308553 + 0.374676i
\(392\) 3.62109i 0.182893i
\(393\) −10.9886 −0.554301
\(394\) 22.5575 22.5575i 1.13643 1.13643i
\(395\) 0.875008 10.9453i 0.0440264 0.550718i
\(396\) 13.3372 13.3372i 0.670221 0.670221i
\(397\) −5.76434 + 5.76434i −0.289304 + 0.289304i −0.836805 0.547501i \(-0.815579\pi\)
0.547501 + 0.836805i \(0.315579\pi\)
\(398\) 7.14163 7.14163i 0.357978 0.357978i
\(399\) 6.99200i 0.350038i
\(400\) 3.92136 24.3690i 0.196068 1.21845i
\(401\) 0.116990 + 0.116990i 0.00584222 + 0.00584222i 0.710022 0.704180i \(-0.248685\pi\)
−0.704180 + 0.710022i \(0.748685\pi\)
\(402\) −6.06097 + 6.06097i −0.302294 + 0.302294i
\(403\) 4.02145 + 4.02145i 0.200323 + 0.200323i
\(404\) 12.0455 0.599285
\(405\) −9.07769 10.6552i −0.451074 0.529462i
\(406\) 37.1785i 1.84514i
\(407\) 10.7055i 0.530650i
\(408\) 2.41148 + 1.98590i 0.119386 + 0.0983168i
\(409\) −13.3690 −0.661054 −0.330527 0.943797i \(-0.607226\pi\)
−0.330527 + 0.943797i \(0.607226\pi\)
\(410\) −1.90342 + 23.8095i −0.0940032 + 1.17587i
\(411\) 5.50400 5.50400i 0.271492 0.271492i
\(412\) 2.30741i 0.113678i
\(413\) 13.2031 + 13.2031i 0.649680 + 0.649680i
\(414\) 7.96825 + 7.96825i 0.391618 + 0.391618i
\(415\) 5.72298 + 6.71752i 0.280930 + 0.329750i
\(416\) 7.74800i 0.379877i
\(417\) −5.72913 −0.280557
\(418\) −28.6242 + 28.6242i −1.40006 + 1.40006i
\(419\) 16.6687 + 16.6687i 0.814322 + 0.814322i 0.985278 0.170957i \(-0.0546859\pi\)
−0.170957 + 0.985278i \(0.554686\pi\)
\(420\) −3.17356 3.72506i −0.154854 0.181764i
\(421\) 5.82751 0.284015 0.142008 0.989866i \(-0.454644\pi\)
0.142008 + 0.989866i \(0.454644\pi\)
\(422\) −1.17711 1.17711i −0.0573009 0.0573009i
\(423\) −13.0345 −0.633757
\(424\) −12.2975 −0.597219
\(425\) 1.29932 20.5745i 0.0630264 0.998012i
\(426\) −8.91047 −0.431714
\(427\) −17.6041 −0.851921
\(428\) −15.0384 15.0384i −0.726910 0.726910i
\(429\) 3.93650 0.190056
\(430\) 5.34292 + 6.27142i 0.257659 + 0.302435i
\(431\) 4.90474 + 4.90474i 0.236253 + 0.236253i 0.815297 0.579043i \(-0.196574\pi\)
−0.579043 + 0.815297i \(0.696574\pi\)
\(432\) 11.1455 11.1455i 0.536237 0.536237i
\(433\) −15.4464 −0.742307 −0.371153 0.928572i \(-0.621038\pi\)
−0.371153 + 0.928572i \(0.621038\pi\)
\(434\) 25.5575i 1.22680i
\(435\) 5.39612 + 6.33386i 0.258724 + 0.303685i
\(436\) −0.395012 0.395012i −0.0189176 0.0189176i
\(437\) −6.58392 6.58392i −0.314952 0.314952i
\(438\) 1.58872i 0.0759121i
\(439\) 1.03975 1.03975i 0.0496247 0.0496247i −0.681859 0.731484i \(-0.738828\pi\)
0.731484 + 0.681859i \(0.238828\pi\)
\(440\) −1.34889 + 16.8730i −0.0643058 + 0.804388i
\(441\) −7.20652 −0.343167
\(442\) 0.894450 + 9.24205i 0.0425447 + 0.439600i
\(443\) 12.7838i 0.607379i 0.952771 + 0.303689i \(0.0982185\pi\)
−0.952771 + 0.303689i \(0.901782\pi\)
\(444\) 1.34153i 0.0636660i
\(445\) −15.3900 18.0645i −0.729556 0.856339i
\(446\) −2.25200 −0.106635
\(447\) −6.32966 6.32966i −0.299383 0.299383i
\(448\) −2.89478 + 2.89478i −0.136766 + 0.136766i
\(449\) 6.88099 + 6.88099i 0.324734 + 0.324734i 0.850580 0.525846i \(-0.176251\pi\)
−0.525846 + 0.850580i \(0.676251\pi\)
\(450\) −23.8977 3.84553i −1.12655 0.181280i
\(451\) 33.2420i 1.56530i
\(452\) 10.0256 10.0256i 0.471566 0.471566i
\(453\) −1.33810 + 1.33810i −0.0628693 + 0.0628693i
\(454\) −14.7697 + 14.7697i −0.693178 + 0.693178i
\(455\) −0.692497 + 8.66230i −0.0324648 + 0.406095i
\(456\) −2.14301 + 2.14301i −0.100356 + 0.100356i
\(457\) 36.2279 1.69467 0.847336 0.531058i \(-0.178205\pi\)
0.847336 + 0.531058i \(0.178205\pi\)
\(458\) 21.1855i 0.989935i
\(459\) 8.36899 10.1625i 0.390631 0.474344i
\(460\) 6.49600 + 0.519315i 0.302878 + 0.0242132i
\(461\) 40.0595i 1.86576i −0.360193 0.932878i \(-0.617289\pi\)
0.360193 0.932878i \(-0.382711\pi\)
\(462\) 12.5088 + 12.5088i 0.581962 + 0.581962i
\(463\) 15.3607i 0.713874i −0.934128 0.356937i \(-0.883821\pi\)
0.934128 0.356937i \(-0.116179\pi\)
\(464\) 23.1250 23.1250i 1.07355 1.07355i
\(465\) −3.70944 4.35407i −0.172021 0.201915i
\(466\) −14.4145 14.4145i −0.667738 0.667738i
\(467\) 19.4471 0.899903 0.449952 0.893053i \(-0.351441\pi\)
0.449952 + 0.893053i \(0.351441\pi\)
\(468\) 4.19721 0.194016
\(469\) 18.6210 + 18.6210i 0.859837 + 0.859837i
\(470\) −14.9037 + 12.6972i −0.687456 + 0.585677i
\(471\) −1.55749 + 1.55749i −0.0717652 + 0.0717652i
\(472\) 8.09334i 0.372526i
\(473\) −8.10777 8.10777i −0.372796 0.372796i
\(474\) 4.97398i 0.228462i
\(475\) 19.7460 + 3.17744i 0.906008 + 0.145791i
\(476\) −10.2122 + 12.4007i −0.468078 + 0.568387i
\(477\) 24.4739i 1.12058i
\(478\) 9.26012 0.423548
\(479\) 10.2918 10.2918i 0.470242 0.470242i −0.431751 0.901993i \(-0.642104\pi\)
0.901993 + 0.431751i \(0.142104\pi\)
\(480\) 0.620991 7.76785i 0.0283442 0.354552i
\(481\) −1.68450 + 1.68450i −0.0768064 + 0.0768064i
\(482\) −10.8200 + 10.8200i −0.492837 + 0.492837i
\(483\) −2.87717 + 2.87717i −0.130916 + 0.130916i
\(484\) 25.6585i 1.16629i
\(485\) −2.20813 + 27.6210i −0.100266 + 1.25420i
\(486\) −16.6982 16.6982i −0.757447 0.757447i
\(487\) 20.9993 20.9993i 0.951570 0.951570i −0.0473104 0.998880i \(-0.515065\pi\)
0.998880 + 0.0473104i \(0.0150650\pi\)
\(488\) −5.39556 5.39556i −0.244246 0.244246i
\(489\) −8.26800 −0.373892
\(490\) −8.23997 + 7.02003i −0.372244 + 0.317133i
\(491\) 21.0715i 0.950944i 0.879731 + 0.475472i \(0.157723\pi\)
−0.879731 + 0.475472i \(0.842277\pi\)
\(492\) 4.16563i 0.187801i
\(493\) 17.3643 21.0854i 0.782047 0.949640i
\(494\) −9.00800 −0.405289
\(495\) 33.5798 + 2.68450i 1.50930 + 0.120659i
\(496\) −15.8967 + 15.8967i −0.713785 + 0.713785i
\(497\) 27.3754i 1.22796i
\(498\) 2.82673 + 2.82673i 0.126669 + 0.126669i
\(499\) −6.65274 6.65274i −0.297818 0.297818i 0.542341 0.840159i \(-0.317538\pi\)
−0.840159 + 0.542341i \(0.817538\pi\)
\(500\) −11.9621 + 7.26958i −0.534960 + 0.325106i
\(501\) 0.235997i 0.0105436i
\(502\) −35.7231 −1.59440
\(503\) 20.7739 20.7739i 0.926263 0.926263i −0.0711991 0.997462i \(-0.522683\pi\)
0.997462 + 0.0711991i \(0.0226826\pi\)
\(504\) −7.96825 7.96825i −0.354934 0.354934i
\(505\) 13.9515 + 16.3760i 0.620833 + 0.728722i
\(506\) −23.5575 −1.04726
\(507\) −4.54394 4.54394i −0.201804 0.201804i
\(508\) −7.32420 −0.324959
\(509\) −14.3930 −0.637958 −0.318979 0.947762i \(-0.603340\pi\)
−0.318979 + 0.947762i \(0.603340\pi\)
\(510\) −0.156005 9.33742i −0.00690800 0.413468i
\(511\) −4.88099 −0.215922
\(512\) −17.3102 −0.765009
\(513\) 9.03108 + 9.03108i 0.398732 + 0.398732i
\(514\) −43.9980 −1.94067
\(515\) −3.13696 + 2.67253i −0.138231 + 0.117766i
\(516\) 1.01600 + 1.01600i 0.0447270 + 0.0447270i
\(517\) 19.2677 19.2677i 0.847391 0.847391i
\(518\) −10.7055 −0.470371
\(519\) 9.32552i 0.409345i
\(520\) −2.86720 + 2.44270i −0.125735 + 0.107120i
\(521\) −19.5655 19.5655i −0.857180 0.857180i 0.133825 0.991005i \(-0.457274\pi\)
−0.991005 + 0.133825i \(0.957274\pi\)
\(522\) −22.6778 22.6778i −0.992580 0.992580i
\(523\) 37.4867i 1.63918i 0.572950 + 0.819590i \(0.305799\pi\)
−0.572950 + 0.819590i \(0.694201\pi\)
\(524\) 17.3192 17.3192i 0.756594 0.756594i
\(525\) 1.38854 8.62899i 0.0606010 0.376600i
\(526\) 32.5655 1.41992
\(527\) −11.9367 + 14.4947i −0.519969 + 0.631399i
\(528\) 15.5609i 0.677202i
\(529\) 17.5815i 0.764413i
\(530\) 23.8405 + 27.9835i 1.03557 + 1.21553i
\(531\) 16.1070 0.698983
\(532\) −11.0202 11.0202i −0.477785 0.477785i
\(533\) 5.23060 5.23060i 0.226562 0.226562i
\(534\) −7.60153 7.60153i −0.328950 0.328950i
\(535\) 3.02691 37.8630i 0.130865 1.63696i
\(536\) 11.4145i 0.493030i
\(537\) 7.86158 7.86158i 0.339252 0.339252i
\(538\) 22.7742 22.7742i 0.981867 0.981867i
\(539\) 10.6527 10.6527i 0.458846 0.458846i
\(540\) −8.91047 0.712337i −0.383446 0.0306541i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) 28.5954 1.22828
\(543\) 5.25946i 0.225705i
\(544\) −25.4622 + 2.46425i −1.09168 + 0.105654i
\(545\) 0.0795073 0.994540i 0.00340572 0.0426014i
\(546\) 3.93650i 0.168466i
\(547\) −20.3591 20.3591i −0.870493 0.870493i 0.122033 0.992526i \(-0.461059\pi\)
−0.992526 + 0.122033i \(0.961059\pi\)
\(548\) 17.3498i 0.741148i
\(549\) −10.7380 + 10.7380i −0.458286 + 0.458286i
\(550\) 41.0104 29.6414i 1.74869 1.26391i
\(551\) 18.7380 + 18.7380i 0.798265 + 0.798265i
\(552\) −1.76368 −0.0750671
\(553\) −15.2814 −0.649833
\(554\) −18.0795 18.0795i −0.768125 0.768125i
\(555\) 1.82382 1.55380i 0.0774169 0.0659552i
\(556\) 9.02974 9.02974i 0.382946 0.382946i
\(557\) 4.93477i 0.209093i 0.994520 + 0.104546i \(0.0333391\pi\)
−0.994520 + 0.104546i \(0.966661\pi\)
\(558\) 15.5893 + 15.5893i 0.659949 + 0.659949i
\(559\) 2.55150i 0.107917i
\(560\) −34.2420 2.73743i −1.44699 0.115678i
\(561\) 1.25200 + 12.9365i 0.0528595 + 0.546179i
\(562\) 14.0831i 0.594059i
\(563\) −3.97544 −0.167545 −0.0837724 0.996485i \(-0.526697\pi\)
−0.0837724 + 0.996485i \(0.526697\pi\)
\(564\) −2.41448 + 2.41448i −0.101668 + 0.101668i
\(565\) 25.2420 + 2.01794i 1.06194 + 0.0848953i
\(566\) −26.6607 + 26.6607i −1.12063 + 1.12063i
\(567\) −13.7752 + 13.7752i −0.578504 + 0.578504i
\(568\) −8.39043 + 8.39043i −0.352055 + 0.352055i
\(569\) 5.49600i 0.230404i −0.993342 0.115202i \(-0.963248\pi\)
0.993342 0.115202i \(-0.0367516\pi\)
\(570\) 9.03108 + 0.721979i 0.378270 + 0.0302404i
\(571\) 12.3372 + 12.3372i 0.516297 + 0.516297i 0.916449 0.400152i \(-0.131043\pi\)
−0.400152 + 0.916449i \(0.631043\pi\)
\(572\) −6.20435 + 6.20435i −0.259417 + 0.259417i
\(573\) 5.53530 + 5.53530i 0.231241 + 0.231241i
\(574\) 33.2420 1.38749
\(575\) 6.81788 + 9.43288i 0.284325 + 0.393378i
\(576\) 3.53147i 0.147144i
\(577\) 32.3418i 1.34641i −0.739458 0.673203i \(-0.764918\pi\)
0.739458 0.673203i \(-0.235082\pi\)
\(578\) −30.0877 + 5.87886i −1.25148 + 0.244528i
\(579\) −2.34499 −0.0974543
\(580\) −18.4877 1.47798i −0.767662 0.0613698i
\(581\) 8.68450 8.68450i 0.360294 0.360294i
\(582\) 12.5521i 0.520301i
\(583\) −36.1775 36.1775i −1.49832 1.49832i
\(584\) −1.49600 1.49600i −0.0619049 0.0619049i
\(585\) 4.86135 + 5.70616i 0.200992 + 0.235920i
\(586\) 8.64701i 0.357205i
\(587\) −28.6847 −1.18394 −0.591972 0.805959i \(-0.701650\pi\)
−0.591972 + 0.805959i \(0.701650\pi\)
\(588\) −1.33492 + 1.33492i −0.0550511 + 0.0550511i
\(589\) −12.8810 12.8810i −0.530752 0.530752i
\(590\) 18.4168 15.6902i 0.758208 0.645954i
\(591\) 9.93650 0.408733
\(592\) −6.65879 6.65879i −0.273675 0.273675i
\(593\) 9.74614 0.400226 0.200113 0.979773i \(-0.435869\pi\)
0.200113 + 0.979773i \(0.435869\pi\)
\(594\) 32.3135 1.32584
\(595\) −28.6871 + 0.479289i −1.17606 + 0.0196490i
\(596\) 19.9525 0.817286
\(597\) 3.14586 0.128752
\(598\) −3.70675 3.70675i −0.151580 0.151580i
\(599\) 8.07951 0.330120 0.165060 0.986284i \(-0.447218\pi\)
0.165060 + 0.986284i \(0.447218\pi\)
\(600\) 3.07032 2.21916i 0.125345 0.0905969i
\(601\) −12.8810 12.8810i −0.525427 0.525427i 0.393779 0.919205i \(-0.371168\pi\)
−0.919205 + 0.393779i \(0.871168\pi\)
\(602\) 8.10777 8.10777i 0.330448 0.330448i
\(603\) 22.7165 0.925089
\(604\) 4.21798i 0.171627i
\(605\) −34.8830 + 29.7185i −1.41820 + 1.20823i
\(606\) 6.89101 + 6.89101i 0.279928 + 0.279928i
\(607\) −8.37964 8.37964i −0.340119 0.340119i 0.516293 0.856412i \(-0.327312\pi\)
−0.856412 + 0.516293i \(0.827312\pi\)
\(608\) 24.8174i 1.00648i
\(609\) 8.18850 8.18850i 0.331815 0.331815i
\(610\) −1.81776 + 22.7380i −0.0735989 + 0.920634i
\(611\) 6.06350 0.245303
\(612\) 1.33492 + 13.7933i 0.0539609 + 0.557560i
\(613\) 23.1494i 0.934995i 0.883994 + 0.467497i \(0.154844\pi\)
−0.883994 + 0.467497i \(0.845156\pi\)
\(614\) 45.0695i 1.81886i
\(615\) −5.66322 + 4.82477i −0.228363 + 0.194554i
\(616\) 23.5575 0.949158
\(617\) 7.41350 + 7.41350i 0.298456 + 0.298456i 0.840409 0.541953i \(-0.182315\pi\)
−0.541953 + 0.840409i \(0.682315\pi\)
\(618\) −1.32003 + 1.32003i −0.0530995 + 0.0530995i
\(619\) −16.4702 16.4702i −0.661995 0.661995i 0.293855 0.955850i \(-0.405062\pi\)
−0.955850 + 0.293855i \(0.905062\pi\)
\(620\) 12.7090 + 1.01600i 0.510405 + 0.0408037i
\(621\) 7.43250i 0.298256i
\(622\) 5.14176 5.14176i 0.206166 0.206166i
\(623\) −23.3540 + 23.3540i −0.935658 + 0.935658i
\(624\) −2.44850 + 2.44850i −0.0980184 + 0.0980184i
\(625\) −23.7380 7.84272i −0.949519 0.313709i
\(626\) 28.8810 28.8810i 1.15432 1.15432i
\(627\) −12.6089 −0.503550
\(628\) 4.90954i 0.195912i
\(629\) −6.07151 5.00000i −0.242087 0.199363i
\(630\) −2.68450 + 33.5798i −0.106953 + 1.33785i
\(631\) 41.1310i 1.63740i 0.574223 + 0.818699i \(0.305304\pi\)
−0.574223 + 0.818699i \(0.694696\pi\)
\(632\) −4.68368 4.68368i −0.186307 0.186307i
\(633\) 0.518514i 0.0206091i
\(634\) 10.5495 10.5495i 0.418974 0.418974i
\(635\) −8.48315 9.95735i −0.336643 0.395145i
\(636\) 4.53348 + 4.53348i 0.179764 + 0.179764i
\(637\) 3.35240 0.132827
\(638\) 67.0451 2.65434
\(639\) 16.6982 + 16.6982i 0.660572 + 0.660572i
\(640\) −14.5539 17.0831i −0.575294 0.675268i
\(641\) 33.4325 33.4325i 1.32050 1.32050i 0.407137 0.913367i \(-0.366527\pi\)
0.913367 0.407137i \(-0.133473\pi\)
\(642\) 17.2064i 0.679084i
\(643\) 4.99838 + 4.99838i 0.197117 + 0.197117i 0.798763 0.601646i \(-0.205488\pi\)
−0.601646 + 0.798763i \(0.705488\pi\)
\(644\) 9.06949i 0.357388i
\(645\) −0.204499 + 2.55804i −0.00805215 + 0.100723i
\(646\) −2.86499 29.6030i −0.112722 1.16471i
\(647\) 26.9462i 1.05937i −0.848196 0.529683i \(-0.822311\pi\)
0.848196 0.529683i \(-0.177689\pi\)
\(648\) −8.44406 −0.331714
\(649\) −23.8095 + 23.8095i −0.934604 + 0.934604i
\(650\) 11.1170 + 1.78890i 0.436044 + 0.0701665i
\(651\) −5.62899 + 5.62899i −0.220618 + 0.220618i
\(652\) 13.0313 13.0313i 0.510345 0.510345i
\(653\) 19.9764 19.9764i 0.781736 0.781736i −0.198388 0.980124i \(-0.563570\pi\)
0.980124 + 0.198388i \(0.0635705\pi\)
\(654\) 0.451959i 0.0176730i
\(655\) 43.6054 + 3.48598i 1.70380 + 0.136209i
\(656\) 20.6765 + 20.6765i 0.807281 + 0.807281i
\(657\) −2.97726 + 2.97726i −0.116154 + 0.116154i
\(658\) 19.2677 + 19.2677i 0.751132 + 0.751132i
\(659\) 14.1230 0.550153 0.275077 0.961422i \(-0.411297\pi\)
0.275077 + 0.961422i \(0.411297\pi\)
\(660\) 6.71752 5.72298i 0.261479 0.222767i
\(661\) 49.0355i 1.90726i 0.300984 + 0.953629i \(0.402685\pi\)
−0.300984 + 0.953629i \(0.597315\pi\)
\(662\) 9.93996i 0.386328i
\(663\) −1.83855 + 2.23255i −0.0714032 + 0.0867050i
\(664\) 5.32351 0.206592
\(665\) 2.21812 27.7460i 0.0860149 1.07594i
\(666\) −6.53002 + 6.53002i −0.253033 + 0.253033i
\(667\) 15.4212i 0.597111i
\(668\) 0.371958 + 0.371958i 0.0143915 + 0.0143915i
\(669\) −0.495999 0.495999i −0.0191764 0.0191764i
\(670\) 25.9742 22.1287i 1.00347 0.854906i
\(671\) 31.7460i 1.22554i
\(672\) −10.8452 −0.418363
\(673\) −22.2405 + 22.2405i −0.857308 + 0.857308i −0.991020 0.133712i \(-0.957310\pi\)
0.133712 + 0.991020i \(0.457310\pi\)
\(674\) −12.1625 12.1625i −0.468481 0.468481i
\(675\) −9.35199 12.9390i −0.359958 0.498021i
\(676\) 14.3235 0.550904
\(677\) −21.4109 21.4109i −0.822889 0.822889i 0.163633 0.986521i \(-0.447679\pi\)
−0.986521 + 0.163633i \(0.947679\pi\)
\(678\) 11.4710 0.440540
\(679\) 38.5635 1.47993
\(680\) −8.93936 8.64556i −0.342809 0.331542i
\(681\) −6.50602 −0.249311
\(682\) −46.0886 −1.76482
\(683\) 32.6533 + 32.6533i 1.24944 + 1.24944i 0.955966 + 0.293479i \(0.0948129\pi\)
0.293479 + 0.955966i \(0.405187\pi\)
\(684\) −13.4440 −0.514043
\(685\) −23.5873 + 20.0952i −0.901225 + 0.767797i
\(686\) −17.1250 17.1250i −0.653835 0.653835i
\(687\) 4.66608 4.66608i 0.178022 0.178022i
\(688\) 10.0861 0.384527
\(689\) 11.3850i 0.433734i
\(690\) 3.41916 + 4.01334i 0.130165 + 0.152785i
\(691\) −7.52775 7.52775i −0.286369 0.286369i 0.549273 0.835643i \(-0.314905\pi\)
−0.835643 + 0.549273i \(0.814905\pi\)
\(692\) −14.6981 14.6981i −0.558736 0.558736i
\(693\) 46.8830i 1.78094i
\(694\) 14.7242 14.7242i 0.558925 0.558925i
\(695\) 22.7346 + 1.81749i 0.862372 + 0.0689413i
\(696\) 5.01946 0.190262
\(697\) 18.8529 + 15.5257i 0.714104 + 0.588078i
\(698\) 20.6166i 0.780349i
\(699\) 6.34953i 0.240161i
\(700\) 11.4117 + 15.7887i 0.431324 + 0.596758i
\(701\) −39.4145 −1.48866 −0.744332 0.667810i \(-0.767232\pi\)
−0.744332 + 0.667810i \(0.767232\pi\)
\(702\) 5.08450 + 5.08450i 0.191902 + 0.191902i
\(703\) 5.39556 5.39556i 0.203497 0.203497i
\(704\) −5.22025 5.22025i −0.196746 0.196746i
\(705\) −6.07904 0.485981i −0.228950 0.0183031i
\(706\) 57.3490i 2.15836i
\(707\) 21.1711 21.1711i 0.796221 0.796221i
\(708\) 2.98362 2.98362i 0.112131 0.112131i
\(709\) 10.7460 10.7460i 0.403574 0.403574i −0.475917 0.879490i \(-0.657884\pi\)
0.879490 + 0.475917i \(0.157884\pi\)
\(710\) 35.3590 + 2.82673i 1.32700 + 0.106085i
\(711\) −9.32124 + 9.32124i −0.349574 + 0.349574i
\(712\) −14.3158 −0.536506
\(713\) 10.6009i 0.397008i
\(714\) −12.9365 + 1.25200i −0.484136 + 0.0468549i
\(715\) −15.6210 1.24880i −0.584192 0.0467025i
\(716\) 24.7815i 0.926126i
\(717\) 2.03953 + 2.03953i 0.0761675 + 0.0761675i
\(718\) 45.4051i 1.69450i
\(719\) −4.84924 + 4.84924i −0.180846 + 0.180846i −0.791724 0.610878i \(-0.790816\pi\)
0.610878 + 0.791724i \(0.290816\pi\)
\(720\) −22.5564 + 19.2169i −0.840626 + 0.716170i
\(721\) 4.05550 + 4.05550i 0.151035 + 0.151035i
\(722\) −5.40999 −0.201339
\(723\) −4.76617 −0.177256
\(724\) −8.28948 8.28948i −0.308076 0.308076i
\(725\) −19.4038 26.8462i −0.720639 0.997042i
\(726\) −14.6788 + 14.6788i −0.544780 + 0.544780i
\(727\) 38.5606i 1.43013i 0.699057 + 0.715066i \(0.253603\pi\)
−0.699057 + 0.715066i \(0.746397\pi\)
\(728\) 3.70675 + 3.70675i 0.137381 + 0.137381i
\(729\) 11.4245i 0.423129i
\(730\) −0.504001 + 6.30444i −0.0186539 + 0.233338i
\(731\) 8.38499 0.811504i 0.310130 0.0300146i
\(732\) 3.97816i 0.147037i
\(733\) −42.7425 −1.57873 −0.789366 0.613923i \(-0.789591\pi\)
−0.789366 + 0.613923i \(0.789591\pi\)
\(734\) −7.76173 + 7.76173i −0.286491 + 0.286491i
\(735\) −3.36099 0.268690i −0.123972 0.00991078i
\(736\) 10.2122 10.2122i 0.376428 0.376428i
\(737\) −33.5798 + 33.5798i −1.23693 + 1.23693i
\(738\) 20.2766 20.2766i 0.746394 0.746394i
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) −0.425581 + 5.32351i −0.0156447 + 0.195696i
\(741\) −1.98400 1.98400i −0.0728839 0.0728839i
\(742\) 36.1775 36.1775i 1.32812 1.32812i
\(743\) −36.9750 36.9750i −1.35648 1.35648i −0.878214 0.478269i \(-0.841265\pi\)
−0.478269 0.878214i \(-0.658735\pi\)
\(744\) −3.45051 −0.126502
\(745\) 23.1097 + 27.1257i 0.846673 + 0.993808i
\(746\) 54.2320i 1.98557i
\(747\) 10.5946i 0.387635i
\(748\) −22.3626 18.4161i −0.817659 0.673358i
\(749\) −52.8630 −1.93157
\(750\) −11.0021 2.68450i −0.401740 0.0980239i
\(751\) 27.9027 27.9027i 1.01818 1.01818i 0.0183534 0.999832i \(-0.494158\pi\)
0.999832 0.0183534i \(-0.00584240\pi\)
\(752\) 23.9690i 0.874058i
\(753\) −7.86794 7.86794i −0.286724 0.286724i
\(754\) 10.5495 + 10.5495i 0.384190 + 0.384190i
\(755\) 5.73439 4.88541i 0.208696 0.177798i
\(756\) 12.4405i 0.452456i
\(757\) −8.61186 −0.313003 −0.156502 0.987678i \(-0.550022\pi\)
−0.156502 + 0.987678i \(0.550022\pi\)
\(758\) −1.29163 + 1.29163i −0.0469141 + 0.0469141i
\(759\) −5.18850 5.18850i −0.188330 0.188330i
\(760\) 9.18384 7.82416i 0.333133 0.283812i
\(761\) −41.2400 −1.49495 −0.747474 0.664291i \(-0.768733\pi\)
−0.747474 + 0.664291i \(0.768733\pi\)
\(762\) −4.19005 4.19005i −0.151789 0.151789i
\(763\) −1.38854 −0.0502686
\(764\) −17.4485 −0.631265
\(765\) −17.2060 + 17.7907i −0.622083 + 0.643223i
\(766\) −46.6450 −1.68535
\(767\) −7.49280 −0.270549
\(768\) −8.23354 8.23354i −0.297102 0.297102i
\(769\) 17.3510 0.625692 0.312846 0.949804i \(-0.398718\pi\)
0.312846 + 0.949804i \(0.398718\pi\)
\(770\) −45.6697 53.6062i −1.64582 1.93183i
\(771\) −9.69048 9.69048i −0.348994 0.348994i
\(772\) 3.69596 3.69596i 0.133020 0.133020i
\(773\) −20.0124 −0.719796 −0.359898 0.932992i \(-0.617188\pi\)
−0.359898 + 0.932992i \(0.617188\pi\)
\(774\) 9.89101i 0.355525i
\(775\) 13.3387 + 18.4548i 0.479140 + 0.662915i
\(776\) 11.8195 + 11.8195i 0.424296 + 0.424296i
\(777\) −2.35786 2.35786i −0.0845878 0.0845878i
\(778\) 59.6352i 2.13803i
\(779\) −16.7540 + 16.7540i −0.600274 + 0.600274i
\(780\) 1.95750 + 0.156490i 0.0700898 + 0.00560324i
\(781\) −49.3670 −1.76649
\(782\) 11.0026 13.3604i 0.393451 0.477767i
\(783\) 21.1530i 0.755948i
\(784\) 13.2520i 0.473286i
\(785\) 6.67459 5.68640i 0.238226 0.202956i
\(786\) 19.8160 0.706815
\(787\) 23.9802 + 23.9802i 0.854802 + 0.854802i 0.990720 0.135918i \(-0.0433983\pi\)
−0.135918 + 0.990720i \(0.543398\pi\)
\(788\) −15.6610 + 15.6610i −0.557901 + 0.557901i
\(789\) 7.17249 + 7.17249i 0.255348 + 0.255348i
\(790\) −1.57793 + 19.7380i −0.0561402 + 0.702246i
\(791\) 35.2420i 1.25306i
\(792\) 14.3694 14.3694i 0.510594 0.510594i
\(793\) 4.99520 4.99520i 0.177385 0.177385i
\(794\) 10.3950 10.3950i 0.368905 0.368905i
\(795\) −0.912491 + 11.4142i −0.0323627 + 0.404819i
\(796\) −4.95823 + 4.95823i −0.175740 + 0.175740i
\(797\) −0.730287 −0.0258681 −0.0129340 0.999916i \(-0.504117\pi\)
−0.0129340 + 0.999916i \(0.504117\pi\)
\(798\) 12.6089i 0.446350i
\(799\) 1.92849 + 19.9265i 0.0682252 + 0.704948i
\(800\) −4.92849 + 30.6278i −0.174249 + 1.08285i
\(801\) 28.4905i 1.00666i
\(802\) −0.210972 0.210972i −0.00744970 0.00744970i
\(803\) 8.80204i 0.310617i
\(804\) 4.20796 4.20796i 0.148403 0.148403i
\(805\) 12.3301 10.5046i 0.434578 0.370238i
\(806\) −7.25200 7.25200i −0.255441 0.255441i
\(807\) 10.0320 0.353142
\(808\) 12.9777 0.456553
\(809\) 14.4485 + 14.4485i 0.507982 + 0.507982i 0.913907 0.405924i \(-0.133050\pi\)
−0.405924 + 0.913907i \(0.633050\pi\)
\(810\) 16.3701 + 19.2149i 0.575186 + 0.675142i
\(811\) −1.77975 + 1.77975i −0.0624955 + 0.0624955i −0.737664 0.675168i \(-0.764071\pi\)
0.675168 + 0.737664i \(0.264071\pi\)
\(812\) 25.8119i 0.905822i
\(813\) 6.29809 + 6.29809i 0.220883 + 0.220883i
\(814\) 19.3055i 0.676657i
\(815\) 32.8095 + 2.62291i 1.14927 + 0.0918767i
\(816\) −8.82524 7.26775i −0.308945 0.254422i
\(817\) 8.17265i 0.285925i
\(818\) 24.1087 0.842941
\(819\) 7.37699 7.37699i 0.257773 0.257773i
\(820\) 1.32149 16.5302i 0.0461484 0.577261i
\(821\) 10.8175 10.8175i 0.377533 0.377533i −0.492678 0.870211i \(-0.663982\pi\)
0.870211 + 0.492678i \(0.163982\pi\)
\(822\) −9.92553 + 9.92553i −0.346193 + 0.346193i
\(823\) −10.1433 + 10.1433i −0.353574 + 0.353574i −0.861437 0.507864i \(-0.830435\pi\)
0.507864 + 0.861437i \(0.330435\pi\)
\(824\) 2.48598i 0.0866033i
\(825\) 15.5609 + 2.50400i 0.541762 + 0.0871781i
\(826\) −23.8095 23.8095i −0.828438 0.828438i
\(827\) 28.5066 28.5066i 0.991270 0.991270i −0.00869233 0.999962i \(-0.502767\pi\)
0.999962 + 0.00869233i \(0.00276689\pi\)
\(828\) −5.53213 5.53213i −0.192255 0.192255i
\(829\) 37.1150 1.28906 0.644528 0.764581i \(-0.277054\pi\)
0.644528 + 0.764581i \(0.277054\pi\)
\(830\) −10.3204 12.1139i −0.358227 0.420480i
\(831\) 7.96396i 0.276267i
\(832\) 1.64280i 0.0569540i
\(833\) 1.06623 + 11.0170i 0.0369426 + 0.381716i
\(834\) 10.3315 0.357751
\(835\) −0.0748670 + 0.936496i −0.00259088 + 0.0324088i
\(836\) 19.8730 19.8730i 0.687322 0.687322i
\(837\) 14.5412i 0.502616i
\(838\) −30.0593 30.0593i −1.03838 1.03838i
\(839\) −5.02173 5.02173i −0.173370 0.173370i 0.615089 0.788458i \(-0.289120\pi\)
−0.788458 + 0.615089i \(0.789120\pi\)
\(840\) −3.41916 4.01334i −0.117972 0.138473i
\(841\) 14.8890i 0.513414i
\(842\) −10.5089 −0.362161
\(843\) 3.10178 3.10178i 0.106831 0.106831i
\(844\) 0.817235 + 0.817235i 0.0281304 + 0.0281304i
\(845\) 16.5900 + 19.4730i 0.570713 + 0.669891i
\(846\) 23.5054 0.808134
\(847\) 45.0972 + 45.0972i 1.54956 + 1.54956i
\(848\) 45.0048 1.54547
\(849\) −11.7440 −0.403052
\(850\) −2.34311 + 37.1027i −0.0803679 + 1.27261i
\(851\) 4.44050 0.152218
\(852\) 6.18629 0.211939
\(853\) 27.1104 + 27.1104i 0.928242 + 0.928242i 0.997592 0.0693502i \(-0.0220926\pi\)
−0.0693502 + 0.997592i \(0.522093\pi\)
\(854\) 31.7460 1.08633
\(855\) −15.5713 18.2772i −0.532526 0.625068i
\(856\) −16.2022 16.2022i −0.553781 0.553781i
\(857\) 1.22358 1.22358i 0.0417966 0.0417966i −0.685900 0.727696i \(-0.740591\pi\)
0.727696 + 0.685900i \(0.240591\pi\)
\(858\) −7.09880 −0.242349
\(859\) 30.9245i 1.05513i 0.849515 + 0.527565i \(0.176895\pi\)
−0.849515 + 0.527565i \(0.823105\pi\)
\(860\) −3.70944 4.35407i −0.126491 0.148472i
\(861\) 7.32149 + 7.32149i 0.249516 + 0.249516i
\(862\) −8.84487 8.84487i −0.301258 0.301258i
\(863\) 40.2134i 1.36888i −0.729070 0.684439i \(-0.760047\pi\)
0.729070 0.684439i \(-0.239953\pi\)
\(864\) −14.0080 + 14.0080i −0.476562 + 0.476562i
\(865\) 2.95840 37.0060i 0.100589 1.25824i
\(866\) 27.8550 0.946550
\(867\) −7.92156 5.33195i −0.269030 0.181082i
\(868\) 17.7438i 0.602265i
\(869\) 27.5575i 0.934824i
\(870\) −9.73099 11.4220i −0.329911 0.387243i
\(871\) −10.5675 −0.358066
\(872\) −0.425581 0.425581i −0.0144120 0.0144120i
\(873\) 23.5226 23.5226i 0.796119 0.796119i
\(874\) 11.8730 + 11.8730i 0.401610 + 0.401610i
\(875\) −8.24751 + 33.8015i −0.278817 + 1.14270i
\(876\) 1.10300i 0.0372670i
\(877\) 0.715057 0.715057i 0.0241458 0.0241458i −0.694931 0.719077i \(-0.744565\pi\)
0.719077 + 0.694931i \(0.244565\pi\)
\(878\) −1.87502 + 1.87502i −0.0632788 + 0.0632788i
\(879\) 1.90449 1.90449i 0.0642368 0.0642368i
\(880\) 4.93650 61.7496i 0.166409 2.08158i
\(881\) 13.8095 13.8095i 0.465253 0.465253i −0.435119 0.900373i \(-0.643294\pi\)
0.900373 + 0.435119i \(0.143294\pi\)
\(882\) 12.9957 0.437589
\(883\) 12.6125i 0.424445i 0.977221 + 0.212223i \(0.0680702\pi\)
−0.977221 + 0.212223i \(0.931930\pi\)
\(884\) −0.620991 6.41649i −0.0208862 0.215810i
\(885\) 7.51200 + 0.600538i 0.252513 + 0.0201869i
\(886\) 23.0535i 0.774497i
\(887\) 26.2443 + 26.2443i 0.881199 + 0.881199i 0.993657 0.112458i \(-0.0358723\pi\)
−0.112458 + 0.993657i \(0.535872\pi\)
\(888\) 1.44534i 0.0485026i
\(889\) −12.8730 + 12.8730i −0.431746 + 0.431746i
\(890\) 27.7533 + 32.5762i 0.930291 + 1.09196i
\(891\) −24.8412 24.8412i −0.832213 0.832213i
\(892\) 1.56350 0.0523498
\(893\) −19.4218 −0.649927
\(894\) 11.4145 + 11.4145i 0.381757 + 0.381757i
\(895\) −33.6907 + 28.7027i −1.12616 + 0.959427i
\(896\) −22.0852 + 22.0852i −0.737816 + 0.737816i
\(897\) 1.63281i 0.0545180i
\(898\) −12.4087 12.4087i −0.414084 0.414084i
\(899\) 30.1705i 1.00624i
\(900\) 16.5915 + 2.66984i 0.553050 + 0.0889946i
\(901\) 37.4145 3.62099i 1.24646 0.120633i
\(902\) 59.9463i 1.99599i
\(903\) 3.57145 0.118850
\(904\) 10.8015 10.8015i 0.359252 0.359252i
\(905\) 1.66849 20.8708i 0.0554626 0.693770i
\(906\) 2.41303 2.41303i 0.0801676 0.0801676i
\(907\) 24.3554 24.3554i 0.808706 0.808706i −0.175732 0.984438i \(-0.556229\pi\)
0.984438 + 0.175732i \(0.0562292\pi\)
\(908\) 10.2542 10.2542i 0.340298 0.340298i
\(909\) 25.8275i 0.856644i
\(910\) 1.24880 15.6210i 0.0413973 0.517831i
\(911\) −7.21023 7.21023i −0.238886 0.238886i 0.577503 0.816389i \(-0.304027\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(912\) 7.84272 7.84272i 0.259698 0.259698i
\(913\) 15.6610 + 15.6610i 0.518304 + 0.518304i
\(914\) −65.3309 −2.16096
\(915\) −5.40836 + 4.60764i −0.178795 + 0.152324i
\(916\) 14.7085i 0.485983i
\(917\) 60.8804i 2.01045i
\(918\) −15.0921 + 18.3263i −0.498112 + 0.604858i
\(919\) 50.5315 1.66688 0.833440 0.552611i \(-0.186368\pi\)
0.833440 + 0.552611i \(0.186368\pi\)
\(920\) 6.99871 + 0.559503i 0.230741 + 0.0184463i
\(921\) −9.92648 + 9.92648i −0.327089 + 0.327089i
\(922\) 72.2405i 2.37911i
\(923\) −7.76785 7.76785i −0.255682 0.255682i
\(924\) −8.68450 8.68450i −0.285699 0.285699i
\(925\) −7.73030 + 5.58729i −0.254171 + 0.183709i
\(926\) 27.7005i 0.910295i
\(927\) 4.94748 0.162496
\(928\) −29.0643 + 29.0643i −0.954081 + 0.954081i
\(929\) 20.0615 + 20.0615i 0.658196 + 0.658196i 0.954953 0.296757i \(-0.0959051\pi\)
−0.296757 + 0.954953i \(0.595905\pi\)
\(930\) 6.68934 + 7.85182i 0.219352 + 0.257471i
\(931\) −10.7380 −0.351923
\(932\) 10.0076 + 10.0076i 0.327808 + 0.327808i
\(933\) 2.26493 0.0741504
\(934\) −35.0695 −1.14751
\(935\) −0.864317 51.7324i −0.0282662 1.69183i
\(936\) 4.52202 0.147807
\(937\) −47.5024 −1.55183 −0.775917 0.630835i \(-0.782713\pi\)
−0.775917 + 0.630835i \(0.782713\pi\)
\(938\) −33.5798 33.5798i −1.09642 1.09642i
\(939\) 12.7220 0.415166
\(940\) 10.3472 8.81528i 0.337488 0.287523i
\(941\) 32.5555 + 32.5555i 1.06128 + 1.06128i 0.997996 + 0.0632823i \(0.0201569\pi\)
0.0632823 + 0.997996i \(0.479843\pi\)
\(942\) 2.80866 2.80866i 0.0915112 0.0915112i
\(943\) −13.7884 −0.449011
\(944\) 29.6190i 0.964016i
\(945\) −16.9130 + 14.4090i −0.550180 + 0.468725i
\(946\) 14.6210 + 14.6210i 0.475369 + 0.475369i
\(947\) −21.0282 21.0282i −0.683324 0.683324i 0.277424 0.960748i \(-0.410519\pi\)
−0.960748 + 0.277424i \(0.910519\pi\)
\(948\) 3.45329i 0.112158i
\(949\) 1.38499 1.38499i 0.0449588 0.0449588i
\(950\) −35.6085 5.72998i −1.15529 0.185905i
\(951\) 4.64701 0.150690
\(952\) −11.0026 + 13.3604i −0.356595 + 0.433014i
\(953\) 9.02109i 0.292222i 0.989268 + 0.146111i \(0.0466756\pi\)
−0.989268 + 0.146111i \(0.953324\pi\)
\(954\) 44.1344i 1.42891i
\(955\) −20.2095 23.7215i −0.653963 0.767608i
\(956\) −6.42903 −0.207930
\(957\) 14.7666 + 14.7666i 0.477335 + 0.477335i
\(958\) −18.5594 + 18.5594i −0.599628 + 0.599628i
\(959\) 30.4940 + 30.4940i 0.984702 + 0.984702i
\(960\) −0.131668 + 1.64701i −0.00424958 + 0.0531571i
\(961\) 10.2600i 0.330968i
\(962\) 3.03770 3.03770i 0.0979394 0.0979394i
\(963\) −32.2449 + 32.2449i −1.03908 + 1.03908i
\(964\) 7.51200 7.51200i 0.241945 0.241945i
\(965\) 9.30549 + 0.743916i 0.299554 + 0.0239475i
\(966\) 5.18850 5.18850i 0.166937 0.166937i
\(967\) −11.7541 −0.377986 −0.188993 0.981978i \(-0.560522\pi\)
−0.188993 + 0.981978i \(0.560522\pi\)
\(968\) 27.6441i 0.888516i
\(969\) 5.88899 7.15101i 0.189182 0.229724i
\(970\) 3.98198 49.8098i 0.127854 1.59930i
\(971\) 19.9525i 0.640306i 0.947366 + 0.320153i \(0.103734\pi\)
−0.947366 + 0.320153i \(0.896266\pi\)
\(972\) 11.5931 + 11.5931i 0.371849 + 0.371849i
\(973\) 31.7413i 1.01758i
\(974\) −37.8687 + 37.8687i −1.21339 + 1.21339i
\(975\) 2.05450 + 2.84250i 0.0657965 + 0.0910329i
\(976\) 19.7460 + 19.7460i 0.632054 + 0.632054i
\(977\) 27.2005 0.870221 0.435110 0.900377i \(-0.356709\pi\)
0.435110 + 0.900377i \(0.356709\pi\)
\(978\) 14.9099 0.476767
\(979\) −42.1150 42.1150i −1.34600 1.34600i
\(980\) 5.72078 4.87380i 0.182743 0.155688i
\(981\) −0.846971 + 0.846971i −0.0270417 + 0.0270417i
\(982\) 37.9989i 1.21259i
\(983\) −5.03803 5.03803i −0.160688 0.160688i 0.622183 0.782872i \(-0.286246\pi\)
−0.782872 + 0.622183i \(0.786246\pi\)
\(984\) 4.48800i 0.143072i
\(985\) −39.4305 3.15222i −1.25636 0.100438i
\(986\) −31.3135 + 38.0240i −0.997225 + 1.21093i
\(987\) 8.48734i 0.270155i
\(988\) 6.25400 0.198966
\(989\) −3.36301 + 3.36301i −0.106937 + 0.106937i
\(990\) −60.5555 4.84103i −1.92458 0.153858i
\(991\) 40.2817 40.2817i 1.27959 1.27959i 0.338695 0.940896i \(-0.390014\pi\)
0.940896 0.338695i \(-0.109986\pi\)
\(992\) 19.9796 19.9796i 0.634351 0.634351i
\(993\) 2.18926 2.18926i 0.0694740 0.0694740i
\(994\) 49.3670i 1.56583i
\(995\) −12.4836 0.997984i −0.395756 0.0316382i
\(996\) −1.96252 1.96252i −0.0621847 0.0621847i
\(997\) −3.56701 + 3.56701i −0.112968 + 0.112968i −0.761331 0.648363i \(-0.775454\pi\)
0.648363 + 0.761331i \(0.275454\pi\)
\(998\) 11.9971 + 11.9971i 0.379761 + 0.379761i
\(999\) −6.09097 −0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.j.c.4.2 12
3.2 odd 2 765.2.t.e.514.5 12
5.2 odd 4 425.2.e.d.276.2 12
5.3 odd 4 425.2.e.d.276.5 12
5.4 even 2 inner 85.2.j.c.4.5 yes 12
15.14 odd 2 765.2.t.e.514.2 12
17.8 even 8 1445.2.b.f.579.10 12
17.9 even 8 1445.2.b.f.579.9 12
17.13 even 4 inner 85.2.j.c.64.5 yes 12
51.47 odd 4 765.2.t.e.64.2 12
85.8 odd 8 7225.2.a.bp.1.9 12
85.9 even 8 1445.2.b.f.579.4 12
85.13 odd 4 425.2.e.d.251.2 12
85.42 odd 8 7225.2.a.bp.1.4 12
85.43 odd 8 7225.2.a.bp.1.10 12
85.47 odd 4 425.2.e.d.251.5 12
85.59 even 8 1445.2.b.f.579.3 12
85.64 even 4 inner 85.2.j.c.64.2 yes 12
85.77 odd 8 7225.2.a.bp.1.3 12
255.149 odd 4 765.2.t.e.64.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 1.1 even 1 trivial
85.2.j.c.4.5 yes 12 5.4 even 2 inner
85.2.j.c.64.2 yes 12 85.64 even 4 inner
85.2.j.c.64.5 yes 12 17.13 even 4 inner
425.2.e.d.251.2 12 85.13 odd 4
425.2.e.d.251.5 12 85.47 odd 4
425.2.e.d.276.2 12 5.2 odd 4
425.2.e.d.276.5 12 5.3 odd 4
765.2.t.e.64.2 12 51.47 odd 4
765.2.t.e.64.5 12 255.149 odd 4
765.2.t.e.514.2 12 15.14 odd 2
765.2.t.e.514.5 12 3.2 odd 2
1445.2.b.f.579.3 12 85.59 even 8
1445.2.b.f.579.4 12 85.9 even 8
1445.2.b.f.579.9 12 17.9 even 8
1445.2.b.f.579.10 12 17.8 even 8
7225.2.a.bp.1.3 12 85.77 odd 8
7225.2.a.bp.1.4 12 85.42 odd 8
7225.2.a.bp.1.9 12 85.8 odd 8
7225.2.a.bp.1.10 12 85.43 odd 8