Properties

Label 85.2.j.c.4.5
Level $85$
Weight $2$
Character 85.4
Analytic conductor $0.679$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [85,2,Mod(4,85)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("85.4"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(85, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 85 = 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 85.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.678728417181\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 4.5
Root \(2.80333i\) of defining polynomial
Character \(\chi\) \(=\) 85.4
Dual form 85.2.j.c.64.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80333 q^{2} +(0.397180 + 0.397180i) q^{3} +1.25200 q^{4} +(-1.70211 - 1.45011i) q^{5} +(0.716248 + 0.716248i) q^{6} +(-2.20051 + 2.20051i) q^{7} -1.34889 q^{8} -2.68450i q^{9} +(-3.06947 - 2.61503i) q^{10} +(3.96825 + 3.96825i) q^{11} +(0.497270 + 0.497270i) q^{12} -1.24880i q^{13} +(-3.96825 + 3.96825i) q^{14} +(-0.100090 - 1.25200i) q^{15} -4.93650 q^{16} +(4.10393 - 0.397180i) q^{17} -4.84103i q^{18} -4.00000i q^{19} +(-2.13104 - 1.81554i) q^{20} -1.74800 q^{21} +(7.15606 + 7.15606i) q^{22} +(-1.64598 + 1.64598i) q^{23} +(-0.535753 - 0.535753i) q^{24} +(0.794361 + 4.93650i) q^{25} -2.25200i q^{26} +(2.25777 - 2.25777i) q^{27} +(-2.75504 + 2.75504i) q^{28} +(-4.68450 + 4.68450i) q^{29} +(-0.180495 - 2.25777i) q^{30} +(3.22025 - 3.22025i) q^{31} -6.20435 q^{32} +3.15222i q^{33} +(7.40074 - 0.716248i) q^{34} +(6.93650 - 0.554530i) q^{35} -3.36099i q^{36} +(-1.34889 - 1.34889i) q^{37} -7.21332i q^{38} +(0.495999 - 0.495999i) q^{39} +(2.29596 + 1.95604i) q^{40} +(-4.18850 - 4.18850i) q^{41} -3.15222 q^{42} +2.04316 q^{43} +(4.96825 + 4.96825i) q^{44} +(-3.89281 + 4.56931i) q^{45} +(-2.96825 + 2.96825i) q^{46} +4.85546i q^{47} +(-1.96068 - 1.96068i) q^{48} -2.68450i q^{49} +(1.43250 + 8.90213i) q^{50} +(1.78775 + 1.47225i) q^{51} -1.56350i q^{52} +9.11674 q^{53} +(4.07151 - 4.07151i) q^{54} +(-1.00000 - 12.5088i) q^{55} +(2.96825 - 2.96825i) q^{56} +(1.58872 - 1.58872i) q^{57} +(-8.44769 + 8.44769i) q^{58} +6.00000i q^{59} +(-0.125312 - 1.56750i) q^{60} +(-4.00000 - 4.00000i) q^{61} +(5.80717 - 5.80717i) q^{62} +(5.90726 + 5.90726i) q^{63} -1.31550 q^{64} +(-1.81090 + 2.12560i) q^{65} +5.68450i q^{66} -8.46212i q^{67} +(5.13812 - 0.497270i) q^{68} -1.30750 q^{69} +(12.5088 - 1.00000i) q^{70} +(-6.22025 + 6.22025i) q^{71} +3.62109i q^{72} +(1.10906 + 1.10906i) q^{73} +(-2.43250 - 2.43250i) q^{74} +(-1.64517 + 2.27618i) q^{75} -5.00800i q^{76} -17.4643 q^{77} +(0.894450 - 0.894450i) q^{78} +(-3.47225 - 3.47225i) q^{79} +(8.40246 + 7.15846i) q^{80} -6.26000 q^{81} +(-7.55324 - 7.55324i) q^{82} -3.94658 q^{83} -2.18850 q^{84} +(-7.56130 - 5.27511i) q^{85} +3.68450 q^{86} -3.72118 q^{87} +(-5.35273 - 5.35273i) q^{88} -10.6130 q^{89} +(-7.02003 + 8.23997i) q^{90} +(2.74800 + 2.74800i) q^{91} +(-2.06077 + 2.06077i) q^{92} +2.55804 q^{93} +8.75600i q^{94} +(-5.80044 + 6.80844i) q^{95} +(-2.46425 - 2.46425i) q^{96} +(-8.76239 - 8.76239i) q^{97} -4.84103i q^{98} +(10.6527 - 10.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 20 q^{6} - 4 q^{10} + 16 q^{11} - 16 q^{14} + 4 q^{16} - 32 q^{20} - 24 q^{21} - 32 q^{24} + 4 q^{29} + 52 q^{30} + 4 q^{31} + 20 q^{35} + 12 q^{39} + 24 q^{40} + 16 q^{41} + 28 q^{44}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/85\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80333 1.27515 0.637574 0.770389i \(-0.279938\pi\)
0.637574 + 0.770389i \(0.279938\pi\)
\(3\) 0.397180 + 0.397180i 0.229312 + 0.229312i 0.812405 0.583093i \(-0.198158\pi\)
−0.583093 + 0.812405i \(0.698158\pi\)
\(4\) 1.25200 0.626000
\(5\) −1.70211 1.45011i −0.761207 0.648509i
\(6\) 0.716248 + 0.716248i 0.292407 + 0.292407i
\(7\) −2.20051 + 2.20051i −0.831715 + 0.831715i −0.987751 0.156036i \(-0.950128\pi\)
0.156036 + 0.987751i \(0.450128\pi\)
\(8\) −1.34889 −0.476905
\(9\) 2.68450i 0.894832i
\(10\) −3.06947 2.61503i −0.970651 0.826944i
\(11\) 3.96825 + 3.96825i 1.19647 + 1.19647i 0.975216 + 0.221256i \(0.0710156\pi\)
0.221256 + 0.975216i \(0.428984\pi\)
\(12\) 0.497270 + 0.497270i 0.143549 + 0.143549i
\(13\) 1.24880i 0.346355i −0.984891 0.173178i \(-0.944597\pi\)
0.984891 0.173178i \(-0.0554034\pi\)
\(14\) −3.96825 + 3.96825i −1.06056 + 1.06056i
\(15\) −0.100090 1.25200i −0.0258430 0.323265i
\(16\) −4.93650 −1.23412
\(17\) 4.10393 0.397180i 0.995349 0.0963304i
\(18\) 4.84103i 1.14104i
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) −2.13104 1.81554i −0.476516 0.405967i
\(21\) −1.74800 −0.381445
\(22\) 7.15606 + 7.15606i 1.52568 + 1.52568i
\(23\) −1.64598 + 1.64598i −0.343211 + 0.343211i −0.857573 0.514362i \(-0.828029\pi\)
0.514362 + 0.857573i \(0.328029\pi\)
\(24\) −0.535753 0.535753i −0.109360 0.109360i
\(25\) 0.794361 + 4.93650i 0.158872 + 0.987299i
\(26\) 2.25200i 0.441654i
\(27\) 2.25777 2.25777i 0.434508 0.434508i
\(28\) −2.75504 + 2.75504i −0.520654 + 0.520654i
\(29\) −4.68450 + 4.68450i −0.869889 + 0.869889i −0.992460 0.122571i \(-0.960886\pi\)
0.122571 + 0.992460i \(0.460886\pi\)
\(30\) −0.180495 2.25777i −0.0329537 0.412211i
\(31\) 3.22025 3.22025i 0.578374 0.578374i −0.356081 0.934455i \(-0.615887\pi\)
0.934455 + 0.356081i \(0.115887\pi\)
\(32\) −6.20435 −1.09678
\(33\) 3.15222i 0.548731i
\(34\) 7.40074 0.716248i 1.26922 0.122835i
\(35\) 6.93650 0.554530i 1.17248 0.0937326i
\(36\) 3.36099i 0.560165i
\(37\) −1.34889 1.34889i −0.221756 0.221756i 0.587481 0.809238i \(-0.300120\pi\)
−0.809238 + 0.587481i \(0.800120\pi\)
\(38\) 7.21332i 1.17016i
\(39\) 0.495999 0.495999i 0.0794234 0.0794234i
\(40\) 2.29596 + 1.95604i 0.363023 + 0.309277i
\(41\) −4.18850 4.18850i −0.654133 0.654133i 0.299852 0.953986i \(-0.403063\pi\)
−0.953986 + 0.299852i \(0.903063\pi\)
\(42\) −3.15222 −0.486398
\(43\) 2.04316 0.311579 0.155790 0.987790i \(-0.450208\pi\)
0.155790 + 0.987790i \(0.450208\pi\)
\(44\) 4.96825 + 4.96825i 0.748992 + 0.748992i
\(45\) −3.89281 + 4.56931i −0.580306 + 0.681152i
\(46\) −2.96825 + 2.96825i −0.437644 + 0.437644i
\(47\) 4.85546i 0.708242i 0.935200 + 0.354121i \(0.115220\pi\)
−0.935200 + 0.354121i \(0.884780\pi\)
\(48\) −1.96068 1.96068i −0.283000 0.283000i
\(49\) 2.68450i 0.383499i
\(50\) 1.43250 + 8.90213i 0.202585 + 1.25895i
\(51\) 1.78775 + 1.47225i 0.250336 + 0.206156i
\(52\) 1.56350i 0.216818i
\(53\) 9.11674 1.25228 0.626140 0.779710i \(-0.284634\pi\)
0.626140 + 0.779710i \(0.284634\pi\)
\(54\) 4.07151 4.07151i 0.554062 0.554062i
\(55\) −1.00000 12.5088i −0.134840 1.68669i
\(56\) 2.96825 2.96825i 0.396649 0.396649i
\(57\) 1.58872 1.58872i 0.210431 0.210431i
\(58\) −8.44769 + 8.44769i −1.10924 + 1.10924i
\(59\) 6.00000i 0.781133i 0.920575 + 0.390567i \(0.127721\pi\)
−0.920575 + 0.390567i \(0.872279\pi\)
\(60\) −0.125312 1.56750i −0.0161777 0.202364i
\(61\) −4.00000 4.00000i −0.512148 0.512148i 0.403036 0.915184i \(-0.367955\pi\)
−0.915184 + 0.403036i \(0.867955\pi\)
\(62\) 5.80717 5.80717i 0.737512 0.737512i
\(63\) 5.90726 + 5.90726i 0.744245 + 0.744245i
\(64\) −1.31550 −0.164438
\(65\) −1.81090 + 2.12560i −0.224614 + 0.263648i
\(66\) 5.68450i 0.699713i
\(67\) 8.46212i 1.03381i −0.856042 0.516906i \(-0.827084\pi\)
0.856042 0.516906i \(-0.172916\pi\)
\(68\) 5.13812 0.497270i 0.623089 0.0603029i
\(69\) −1.30750 −0.157405
\(70\) 12.5088 1.00000i 1.49509 0.119523i
\(71\) −6.22025 + 6.22025i −0.738208 + 0.738208i −0.972231 0.234023i \(-0.924811\pi\)
0.234023 + 0.972231i \(0.424811\pi\)
\(72\) 3.62109i 0.426750i
\(73\) 1.10906 + 1.10906i 0.129806 + 0.129806i 0.769025 0.639219i \(-0.220742\pi\)
−0.639219 + 0.769025i \(0.720742\pi\)
\(74\) −2.43250 2.43250i −0.282772 0.282772i
\(75\) −1.64517 + 2.27618i −0.189968 + 0.262831i
\(76\) 5.00800i 0.574457i
\(77\) −17.4643 −1.99025
\(78\) 0.894450 0.894450i 0.101277 0.101277i
\(79\) −3.47225 3.47225i −0.390658 0.390658i 0.484264 0.874922i \(-0.339088\pi\)
−0.874922 + 0.484264i \(0.839088\pi\)
\(80\) 8.40246 + 7.15846i 0.939424 + 0.800340i
\(81\) −6.26000 −0.695556
\(82\) −7.55324 7.55324i −0.834116 0.834116i
\(83\) −3.94658 −0.433194 −0.216597 0.976261i \(-0.569496\pi\)
−0.216597 + 0.976261i \(0.569496\pi\)
\(84\) −2.18850 −0.238785
\(85\) −7.56130 5.27511i −0.820138 0.572166i
\(86\) 3.68450 0.397309
\(87\) −3.72118 −0.398952
\(88\) −5.35273 5.35273i −0.570603 0.570603i
\(89\) −10.6130 −1.12497 −0.562487 0.826806i \(-0.690155\pi\)
−0.562487 + 0.826806i \(0.690155\pi\)
\(90\) −7.02003 + 8.23997i −0.739976 + 0.868569i
\(91\) 2.74800 + 2.74800i 0.288069 + 0.288069i
\(92\) −2.06077 + 2.06077i −0.214850 + 0.214850i
\(93\) 2.55804 0.265256
\(94\) 8.75600i 0.903113i
\(95\) −5.80044 + 6.80844i −0.595113 + 0.698531i
\(96\) −2.46425 2.46425i −0.251506 0.251506i
\(97\) −8.76239 8.76239i −0.889686 0.889686i 0.104807 0.994493i \(-0.466578\pi\)
−0.994493 + 0.104807i \(0.966578\pi\)
\(98\) 4.84103i 0.489018i
\(99\) 10.6527 10.6527i 1.07064 1.07064i
\(100\) 0.994540 + 6.18049i 0.0994540 + 0.618049i
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) 3.22391 + 2.65495i 0.319215 + 0.262879i
\(103\) 1.84298i 0.181594i −0.995869 0.0907972i \(-0.971058\pi\)
0.995869 0.0907972i \(-0.0289415\pi\)
\(104\) 1.68450i 0.165178i
\(105\) 2.97529 + 2.53479i 0.290358 + 0.247370i
\(106\) 16.4405 1.59684
\(107\) 12.0115 + 12.0115i 1.16120 + 1.16120i 0.984214 + 0.176984i \(0.0566341\pi\)
0.176984 + 0.984214i \(0.443366\pi\)
\(108\) 2.82673 2.82673i 0.272002 0.272002i
\(109\) −0.315505 0.315505i −0.0302199 0.0302199i 0.691835 0.722055i \(-0.256802\pi\)
−0.722055 + 0.691835i \(0.756802\pi\)
\(110\) −1.80333 22.5575i −0.171941 2.15077i
\(111\) 1.07151i 0.101703i
\(112\) 10.8628 10.8628i 1.02644 1.02644i
\(113\) −8.00768 + 8.00768i −0.753299 + 0.753299i −0.975094 0.221794i \(-0.928809\pi\)
0.221794 + 0.975094i \(0.428809\pi\)
\(114\) 2.86499 2.86499i 0.268331 0.268331i
\(115\) 5.18850 0.414788i 0.483830 0.0386792i
\(116\) −5.86499 + 5.86499i −0.544551 + 0.544551i
\(117\) −3.35240 −0.309929
\(118\) 10.8200i 0.996060i
\(119\) −8.15674 + 9.90474i −0.747728 + 0.907966i
\(120\) 0.135010 + 1.68881i 0.0123247 + 0.154167i
\(121\) 20.4940i 1.86309i
\(122\) −7.21332 7.21332i −0.653063 0.653063i
\(123\) 3.32718i 0.300001i
\(124\) 4.03175 4.03175i 0.362062 0.362062i
\(125\) 5.80637 9.55437i 0.519338 0.854569i
\(126\) 10.6527 + 10.6527i 0.949022 + 0.949022i
\(127\) 5.85000 0.519104 0.259552 0.965729i \(-0.416425\pi\)
0.259552 + 0.965729i \(0.416425\pi\)
\(128\) 10.0364 0.887102
\(129\) 0.811504 + 0.811504i 0.0714489 + 0.0714489i
\(130\) −3.26565 + 3.83315i −0.286416 + 0.336190i
\(131\) 13.8332 13.8332i 1.20862 1.20862i 0.237140 0.971475i \(-0.423790\pi\)
0.971475 0.237140i \(-0.0762101\pi\)
\(132\) 3.94658i 0.343506i
\(133\) 8.80204 + 8.80204i 0.763234 + 0.763234i
\(134\) 15.2600i 1.31826i
\(135\) −7.11699 + 0.568959i −0.612533 + 0.0489682i
\(136\) −5.53575 + 0.535753i −0.474687 + 0.0459404i
\(137\) 13.8577i 1.18394i −0.805959 0.591971i \(-0.798350\pi\)
0.805959 0.591971i \(-0.201650\pi\)
\(138\) −2.35786 −0.200714
\(139\) 7.21225 7.21225i 0.611735 0.611735i −0.331663 0.943398i \(-0.607610\pi\)
0.943398 + 0.331663i \(0.107610\pi\)
\(140\) 8.68450 0.694271i 0.733974 0.0586766i
\(141\) −1.92849 + 1.92849i −0.162409 + 0.162409i
\(142\) −11.2172 + 11.2172i −0.941323 + 0.941323i
\(143\) 4.95555 4.95555i 0.414404 0.414404i
\(144\) 13.2520i 1.10433i
\(145\) 14.7666 1.18049i 1.22630 0.0980347i
\(146\) 2.00000 + 2.00000i 0.165521 + 0.165521i
\(147\) 1.06623 1.06623i 0.0879411 0.0879411i
\(148\) −1.68881 1.68881i −0.138819 0.138819i
\(149\) 15.9365 1.30557 0.652784 0.757544i \(-0.273601\pi\)
0.652784 + 0.757544i \(0.273601\pi\)
\(150\) −2.96679 + 4.10471i −0.242238 + 0.335148i
\(151\) 3.36899i 0.274165i −0.990560 0.137082i \(-0.956228\pi\)
0.990560 0.137082i \(-0.0437725\pi\)
\(152\) 5.39556i 0.437638i
\(153\) −1.06623 11.0170i −0.0861995 0.890670i
\(154\) −31.4940 −2.53786
\(155\) −10.1509 + 0.811504i −0.815343 + 0.0651816i
\(156\) 0.620991 0.620991i 0.0497191 0.0497191i
\(157\) 3.92136i 0.312959i 0.987681 + 0.156479i \(0.0500144\pi\)
−0.987681 + 0.156479i \(0.949986\pi\)
\(158\) −6.26161 6.26161i −0.498147 0.498147i
\(159\) 3.62099 + 3.62099i 0.287163 + 0.287163i
\(160\) 10.5605 + 8.99699i 0.834880 + 0.711275i
\(161\) 7.24400i 0.570907i
\(162\) −11.2889 −0.886936
\(163\) −10.4084 + 10.4084i −0.815247 + 0.815247i −0.985415 0.170168i \(-0.945569\pi\)
0.170168 + 0.985415i \(0.445569\pi\)
\(164\) −5.24400 5.24400i −0.409488 0.409488i
\(165\) 4.57107 5.36543i 0.355857 0.417698i
\(166\) −7.11699 −0.552386
\(167\) −0.297091 0.297091i −0.0229896 0.0229896i 0.695519 0.718508i \(-0.255175\pi\)
−0.718508 + 0.695519i \(0.755175\pi\)
\(168\) 2.35786 0.181913
\(169\) 11.4405 0.880038
\(170\) −13.6355 9.51276i −1.04580 0.729595i
\(171\) −10.7380 −0.821154
\(172\) 2.55804 0.195049
\(173\) 11.7397 + 11.7397i 0.892549 + 0.892549i 0.994763 0.102213i \(-0.0325924\pi\)
−0.102213 + 0.994763i \(0.532592\pi\)
\(174\) −6.71052 −0.508723
\(175\) −12.6108 9.11481i −0.953288 0.689015i
\(176\) −19.5892 19.5892i −1.47659 1.47659i
\(177\) −2.38308 + 2.38308i −0.179123 + 0.179123i
\(178\) −19.1387 −1.43451
\(179\) 19.7935i 1.47943i 0.672918 + 0.739717i \(0.265041\pi\)
−0.672918 + 0.739717i \(0.734959\pi\)
\(180\) −4.87380 + 5.72078i −0.363272 + 0.426401i
\(181\) −6.62099 6.62099i −0.492134 0.492134i 0.416844 0.908978i \(-0.363136\pi\)
−0.908978 + 0.416844i \(0.863136\pi\)
\(182\) 4.95555 + 4.95555i 0.367330 + 0.367330i
\(183\) 3.17744i 0.234883i
\(184\) 2.22025 2.22025i 0.163679 0.163679i
\(185\) 0.339921 + 4.25200i 0.0249915 + 0.312613i
\(186\) 4.61299 0.338241
\(187\) 17.8615 + 14.7093i 1.30616 + 1.07565i
\(188\) 6.07904i 0.443360i
\(189\) 9.93650i 0.722774i
\(190\) −10.4601 + 12.2779i −0.758856 + 0.890730i
\(191\) −13.9365 −1.00841 −0.504205 0.863584i \(-0.668214\pi\)
−0.504205 + 0.863584i \(0.668214\pi\)
\(192\) −0.522493 0.522493i −0.0377077 0.0377077i
\(193\) −2.95204 + 2.95204i −0.212493 + 0.212493i −0.805325 0.592833i \(-0.798009\pi\)
0.592833 + 0.805325i \(0.298009\pi\)
\(194\) −15.8015 15.8015i −1.13448 1.13448i
\(195\) −1.56350 + 0.124992i −0.111964 + 0.00895086i
\(196\) 3.36099i 0.240071i
\(197\) 12.5088 12.5088i 0.891215 0.891215i −0.103423 0.994637i \(-0.532979\pi\)
0.994637 + 0.103423i \(0.0329795\pi\)
\(198\) 19.2104 19.2104i 1.36522 1.36522i
\(199\) −3.96025 + 3.96025i −0.280734 + 0.280734i −0.833402 0.552667i \(-0.813610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(200\) −1.07151 6.65879i −0.0757669 0.470848i
\(201\) 3.36099 3.36099i 0.237066 0.237066i
\(202\) 17.3498 1.22073
\(203\) 20.6166i 1.44700i
\(204\) 2.23827 + 1.84326i 0.156710 + 0.129054i
\(205\) 1.05550 + 13.2031i 0.0737195 + 0.922142i
\(206\) 3.32351i 0.231560i
\(207\) 4.41863 + 4.41863i 0.307116 + 0.307116i
\(208\) 6.16470i 0.427445i
\(209\) 15.8730 15.8730i 1.09796 1.09796i
\(210\) 5.36543 + 4.57107i 0.370250 + 0.315434i
\(211\) 0.652743 + 0.652743i 0.0449367 + 0.0449367i 0.729218 0.684281i \(-0.239884\pi\)
−0.684281 + 0.729218i \(0.739884\pi\)
\(212\) 11.4142 0.783928
\(213\) −4.94112 −0.338560
\(214\) 21.6607 + 21.6607i 1.48070 + 1.48070i
\(215\) −3.47769 2.96281i −0.237176 0.202062i
\(216\) −3.04548 + 3.04548i −0.207219 + 0.207219i
\(217\) 14.1724i 0.962084i
\(218\) −0.568959 0.568959i −0.0385348 0.0385348i
\(219\) 0.880993i 0.0595320i
\(220\) −1.25200 15.6610i −0.0844098 1.05587i
\(221\) −0.495999 5.12499i −0.0333645 0.344744i
\(222\) 1.93228i 0.129686i
\(223\) −1.24880 −0.0836259 −0.0418129 0.999125i \(-0.513313\pi\)
−0.0418129 + 0.999125i \(0.513313\pi\)
\(224\) 13.6527 13.6527i 0.912212 0.912212i
\(225\) 13.2520 2.13246i 0.883467 0.142164i
\(226\) −14.4405 + 14.4405i −0.960568 + 0.960568i
\(227\) −8.19025 + 8.19025i −0.543606 + 0.543606i −0.924584 0.380978i \(-0.875587\pi\)
0.380978 + 0.924584i \(0.375587\pi\)
\(228\) 1.98908 1.98908i 0.131730 0.131730i
\(229\) 11.7480i 0.776330i 0.921590 + 0.388165i \(0.126891\pi\)
−0.921590 + 0.388165i \(0.873109\pi\)
\(230\) 9.35657 0.748000i 0.616954 0.0493216i
\(231\) −6.93650 6.93650i −0.456388 0.456388i
\(232\) 6.31887 6.31887i 0.414854 0.414854i
\(233\) −7.99325 7.99325i −0.523655 0.523655i 0.395018 0.918673i \(-0.370738\pi\)
−0.918673 + 0.395018i \(0.870738\pi\)
\(234\) −6.04548 −0.395206
\(235\) 7.04095 8.26453i 0.459301 0.539119i
\(236\) 7.51200i 0.488990i
\(237\) 2.75822i 0.179166i
\(238\) −14.7093 + 17.8615i −0.953463 + 1.15779i
\(239\) −5.13501 −0.332156 −0.166078 0.986113i \(-0.553110\pi\)
−0.166078 + 0.986113i \(0.553110\pi\)
\(240\) 0.494092 + 6.18049i 0.0318935 + 0.398949i
\(241\) 6.00000 6.00000i 0.386494 0.386494i −0.486941 0.873435i \(-0.661887\pi\)
0.873435 + 0.486941i \(0.161887\pi\)
\(242\) 36.9574i 2.37571i
\(243\) −9.25966 9.25966i −0.594008 0.594008i
\(244\) −5.00800 5.00800i −0.320604 0.320604i
\(245\) −3.89281 + 4.56931i −0.248703 + 0.291922i
\(246\) 6.00000i 0.382546i
\(247\) −4.99520 −0.317837
\(248\) −4.34376 + 4.34376i −0.275829 + 0.275829i
\(249\) −1.56750 1.56750i −0.0993366 0.0993366i
\(250\) 10.4708 17.2297i 0.662232 1.08970i
\(251\) 19.8095 1.25036 0.625182 0.780479i \(-0.285025\pi\)
0.625182 + 0.780479i \(0.285025\pi\)
\(252\) 7.39589 + 7.39589i 0.465897 + 0.465897i
\(253\) −13.0633 −0.821284
\(254\) 10.5495 0.661934
\(255\) −0.908031 5.09837i −0.0568631 0.319272i
\(256\) 20.7300 1.29562
\(257\) −24.3982 −1.52192 −0.760958 0.648801i \(-0.775271\pi\)
−0.760958 + 0.648801i \(0.775271\pi\)
\(258\) 1.46341 + 1.46341i 0.0911079 + 0.0911079i
\(259\) 5.93650 0.368876
\(260\) −2.26725 + 2.66125i −0.140609 + 0.165044i
\(261\) 12.5755 + 12.5755i 0.778404 + 0.778404i
\(262\) 24.9459 24.9459i 1.54116 1.54116i
\(263\) 18.0585 1.11354 0.556768 0.830668i \(-0.312041\pi\)
0.556768 + 0.830668i \(0.312041\pi\)
\(264\) 4.25200i 0.261693i
\(265\) −15.5177 13.2203i −0.953245 0.812115i
\(266\) 15.8730 + 15.8730i 0.973236 + 0.973236i
\(267\) −4.21527 4.21527i −0.257970 0.257970i
\(268\) 10.5946i 0.647167i
\(269\) −12.6290 + 12.6290i −0.770003 + 0.770003i −0.978107 0.208104i \(-0.933271\pi\)
0.208104 + 0.978107i \(0.433271\pi\)
\(270\) −12.8343 + 1.02602i −0.781070 + 0.0624417i
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) −20.2590 + 1.96068i −1.22838 + 0.118884i
\(273\) 2.18290i 0.132115i
\(274\) 24.9900i 1.50970i
\(275\) −16.4370 + 22.7415i −0.991190 + 1.37136i
\(276\) −1.63699 −0.0985355
\(277\) −10.0256 10.0256i −0.602381 0.602381i 0.338563 0.940944i \(-0.390059\pi\)
−0.940944 + 0.338563i \(0.890059\pi\)
\(278\) 13.0061 13.0061i 0.780052 0.780052i
\(279\) −8.64474 8.64474i −0.517547 0.517547i
\(280\) −9.35657 + 0.748000i −0.559162 + 0.0447015i
\(281\) 7.80949i 0.465875i 0.972492 + 0.232937i \(0.0748338\pi\)
−0.972492 + 0.232937i \(0.925166\pi\)
\(282\) −3.47771 + 3.47771i −0.207095 + 0.207095i
\(283\) −14.7842 + 14.7842i −0.878828 + 0.878828i −0.993413 0.114586i \(-0.963446\pi\)
0.114586 + 0.993413i \(0.463446\pi\)
\(284\) −7.78775 + 7.78775i −0.462118 + 0.462118i
\(285\) −5.00800 + 0.400358i −0.296648 + 0.0237152i
\(286\) 8.93650 8.93650i 0.528426 0.528426i
\(287\) 18.4337 1.08810
\(288\) 16.6556i 0.981438i
\(289\) 16.6845 3.26000i 0.981441 0.191765i
\(290\) 26.6290 2.12882i 1.56371 0.125009i
\(291\) 6.96050i 0.408032i
\(292\) 1.38854 + 1.38854i 0.0812583 + 0.0812583i
\(293\) 4.79502i 0.280128i −0.990142 0.140064i \(-0.955269\pi\)
0.990142 0.140064i \(-0.0447309\pi\)
\(294\) 1.92276 1.92276i 0.112138 0.112138i
\(295\) 8.70066 10.2127i 0.506572 0.594604i
\(296\) 1.81951 + 1.81951i 0.105757 + 0.105757i
\(297\) 17.9188 1.03975
\(298\) 28.7388 1.66479
\(299\) 2.05550 + 2.05550i 0.118873 + 0.118873i
\(300\) −2.05976 + 2.84978i −0.118920 + 0.164532i
\(301\) −4.49600 + 4.49600i −0.259145 + 0.259145i
\(302\) 6.07540i 0.349600i
\(303\) 3.82127 + 3.82127i 0.219526 + 0.219526i
\(304\) 19.7460i 1.13251i
\(305\) 1.00800 + 12.6089i 0.0577180 + 0.721983i
\(306\) −1.92276 19.8673i −0.109917 1.13574i
\(307\) 24.9924i 1.42639i 0.700966 + 0.713195i \(0.252753\pi\)
−0.700966 + 0.713195i \(0.747247\pi\)
\(308\) −21.8654 −1.24589
\(309\) 0.731997 0.731997i 0.0416418 0.0416418i
\(310\) −18.3055 + 1.46341i −1.03968 + 0.0831161i
\(311\) −2.85126 + 2.85126i −0.161680 + 0.161680i −0.783311 0.621631i \(-0.786471\pi\)
0.621631 + 0.783311i \(0.286471\pi\)
\(312\) −0.669049 + 0.669049i −0.0378774 + 0.0378774i
\(313\) 16.0154 16.0154i 0.905242 0.905242i −0.0906416 0.995884i \(-0.528892\pi\)
0.995884 + 0.0906416i \(0.0288918\pi\)
\(314\) 7.07151i 0.399068i
\(315\) −1.48863 18.6210i −0.0838749 1.04917i
\(316\) −4.34726 4.34726i −0.244552 0.244552i
\(317\) 5.85000 5.85000i 0.328569 0.328569i −0.523473 0.852042i \(-0.675364\pi\)
0.852042 + 0.523473i \(0.175364\pi\)
\(318\) 6.52984 + 6.52984i 0.366175 + 0.366175i
\(319\) −37.1785 −2.08160
\(320\) 2.23913 + 1.90763i 0.125171 + 0.106640i
\(321\) 9.54148i 0.532554i
\(322\) 13.0633i 0.727991i
\(323\) −1.58872 16.4157i −0.0883988 0.913395i
\(324\) −7.83752 −0.435418
\(325\) 6.16470 0.991998i 0.341956 0.0550262i
\(326\) −18.7697 + 18.7697i −1.03956 + 1.03956i
\(327\) 0.250624i 0.0138596i
\(328\) 5.64982 + 5.64982i 0.311959 + 0.311959i
\(329\) −10.6845 10.6845i −0.589055 0.589055i
\(330\) 8.24314 9.67564i 0.453770 0.532626i
\(331\) 5.51200i 0.302967i 0.988460 + 0.151484i \(0.0484050\pi\)
−0.988460 + 0.151484i \(0.951595\pi\)
\(332\) −4.94112 −0.271179
\(333\) −3.62109 + 3.62109i −0.198435 + 0.198435i
\(334\) −0.535753 0.535753i −0.0293151 0.0293151i
\(335\) −12.2710 + 14.4035i −0.670437 + 0.786946i
\(336\) 8.62899 0.470750
\(337\) −6.74445 6.74445i −0.367394 0.367394i 0.499132 0.866526i \(-0.333652\pi\)
−0.866526 + 0.499132i \(0.833652\pi\)
\(338\) 20.6310 1.12218
\(339\) −6.36099 −0.345482
\(340\) −9.46675 6.60444i −0.513407 0.358176i
\(341\) 25.5575 1.38402
\(342\) −19.3641 −1.04709
\(343\) −9.49631 9.49631i −0.512753 0.512753i
\(344\) −2.75600 −0.148594
\(345\) 2.22551 + 1.89602i 0.119818 + 0.102078i
\(346\) 21.1705 + 21.1705i 1.13813 + 1.13813i
\(347\) 8.16503 8.16503i 0.438322 0.438322i −0.453125 0.891447i \(-0.649691\pi\)
0.891447 + 0.453125i \(0.149691\pi\)
\(348\) −4.65892 −0.249744
\(349\) 11.4325i 0.611967i −0.952037 0.305984i \(-0.901015\pi\)
0.952037 0.305984i \(-0.0989853\pi\)
\(350\) −22.7415 16.4370i −1.21558 0.878596i
\(351\) −2.81951 2.81951i −0.150494 0.150494i
\(352\) −24.6204 24.6204i −1.31227 1.31227i
\(353\) 31.8017i 1.69263i 0.532680 + 0.846317i \(0.321185\pi\)
−0.532680 + 0.846317i \(0.678815\pi\)
\(354\) −4.29749 + 4.29749i −0.228409 + 0.228409i
\(355\) 19.6076 1.56750i 1.04066 0.0831945i
\(356\) −13.2875 −0.704234
\(357\) −7.17367 + 0.694271i −0.379671 + 0.0367447i
\(358\) 35.6942i 1.88650i
\(359\) 25.1785i 1.32887i −0.747346 0.664435i \(-0.768672\pi\)
0.747346 0.664435i \(-0.231328\pi\)
\(360\) 5.25098 6.16350i 0.276751 0.324845i
\(361\) 3.00000 0.157895
\(362\) −11.9398 11.9398i −0.627544 0.627544i
\(363\) −8.13981 + 8.13981i −0.427229 + 0.427229i
\(364\) 3.44050 + 3.44050i 0.180331 + 0.180331i
\(365\) −0.279483 3.49600i −0.0146288 0.182989i
\(366\) 5.72998i 0.299511i
\(367\) −4.30411 + 4.30411i −0.224673 + 0.224673i −0.810463 0.585790i \(-0.800784\pi\)
0.585790 + 0.810463i \(0.300784\pi\)
\(368\) 8.12538 8.12538i 0.423565 0.423565i
\(369\) −11.2440 + 11.2440i −0.585339 + 0.585339i
\(370\) 0.612990 + 7.66776i 0.0318678 + 0.398628i
\(371\) −20.0615 + 20.0615i −1.04154 + 1.04154i
\(372\) 3.20267 0.166050
\(373\) 30.0732i 1.55713i −0.627562 0.778566i \(-0.715947\pi\)
0.627562 0.778566i \(-0.284053\pi\)
\(374\) 32.2102 + 26.5257i 1.66555 + 1.37161i
\(375\) 6.10099 1.48863i 0.315054 0.0768726i
\(376\) 6.54949i 0.337764i
\(377\) 5.85000 + 5.85000i 0.301290 + 0.301290i
\(378\) 17.9188i 0.921643i
\(379\) 0.716248 0.716248i 0.0367912 0.0367912i −0.688472 0.725263i \(-0.741718\pi\)
0.725263 + 0.688472i \(0.241718\pi\)
\(380\) −7.26215 + 8.52417i −0.372541 + 0.437281i
\(381\) 2.32351 + 2.32351i 0.119037 + 0.119037i
\(382\) −25.1321 −1.28587
\(383\) −25.8660 −1.32169 −0.660846 0.750521i \(-0.729802\pi\)
−0.660846 + 0.750521i \(0.729802\pi\)
\(384\) 3.98627 + 3.98627i 0.203423 + 0.203423i
\(385\) 29.7262 + 25.3252i 1.51499 + 1.29069i
\(386\) −5.32351 + 5.32351i −0.270959 + 0.270959i
\(387\) 5.48486i 0.278811i
\(388\) −10.9705 10.9705i −0.556944 0.556944i
\(389\) 33.0695i 1.67669i −0.545140 0.838345i \(-0.683524\pi\)
0.545140 0.838345i \(-0.316476\pi\)
\(390\) −2.81951 + 0.225402i −0.142771 + 0.0114137i
\(391\) −6.10124 + 7.40874i −0.308553 + 0.374676i
\(392\) 3.62109i 0.182893i
\(393\) 10.9886 0.554301
\(394\) 22.5575 22.5575i 1.13643 1.13643i
\(395\) 0.875008 + 10.9453i 0.0440264 + 0.550718i
\(396\) 13.3372 13.3372i 0.670221 0.670221i
\(397\) 5.76434 5.76434i 0.289304 0.289304i −0.547501 0.836805i \(-0.684421\pi\)
0.836805 + 0.547501i \(0.184421\pi\)
\(398\) −7.14163 + 7.14163i −0.357978 + 0.357978i
\(399\) 6.99200i 0.350038i
\(400\) −3.92136 24.3690i −0.196068 1.21845i
\(401\) 0.116990 + 0.116990i 0.00584222 + 0.00584222i 0.710022 0.704180i \(-0.248685\pi\)
−0.704180 + 0.710022i \(0.748685\pi\)
\(402\) 6.06097 6.06097i 0.302294 0.302294i
\(403\) −4.02145 4.02145i −0.200323 0.200323i
\(404\) 12.0455 0.599285
\(405\) 10.6552 + 9.07769i 0.529462 + 0.451074i
\(406\) 37.1785i 1.84514i
\(407\) 10.7055i 0.530650i
\(408\) −2.41148 1.98590i −0.119386 0.0983168i
\(409\) −13.3690 −0.661054 −0.330527 0.943797i \(-0.607226\pi\)
−0.330527 + 0.943797i \(0.607226\pi\)
\(410\) 1.90342 + 23.8095i 0.0940032 + 1.17587i
\(411\) 5.50400 5.50400i 0.271492 0.271492i
\(412\) 2.30741i 0.113678i
\(413\) −13.2031 13.2031i −0.649680 0.649680i
\(414\) 7.96825 + 7.96825i 0.391618 + 0.391618i
\(415\) 6.71752 + 5.72298i 0.329750 + 0.280930i
\(416\) 7.74800i 0.379877i
\(417\) 5.72913 0.280557
\(418\) 28.6242 28.6242i 1.40006 1.40006i
\(419\) 16.6687 + 16.6687i 0.814322 + 0.814322i 0.985278 0.170957i \(-0.0546859\pi\)
−0.170957 + 0.985278i \(0.554686\pi\)
\(420\) 3.72506 + 3.17356i 0.181764 + 0.154854i
\(421\) 5.82751 0.284015 0.142008 0.989866i \(-0.454644\pi\)
0.142008 + 0.989866i \(0.454644\pi\)
\(422\) 1.17711 + 1.17711i 0.0573009 + 0.0573009i
\(423\) 13.0345 0.633757
\(424\) −12.2975 −0.597219
\(425\) 5.22068 + 19.9435i 0.253240 + 0.967403i
\(426\) −8.91047 −0.431714
\(427\) 17.6041 0.851921
\(428\) 15.0384 + 15.0384i 0.726910 + 0.726910i
\(429\) 3.93650 0.190056
\(430\) −6.27142 5.34292i −0.302435 0.257659i
\(431\) 4.90474 + 4.90474i 0.236253 + 0.236253i 0.815297 0.579043i \(-0.196574\pi\)
−0.579043 + 0.815297i \(0.696574\pi\)
\(432\) −11.1455 + 11.1455i −0.536237 + 0.536237i
\(433\) 15.4464 0.742307 0.371153 0.928572i \(-0.378962\pi\)
0.371153 + 0.928572i \(0.378962\pi\)
\(434\) 25.5575i 1.22680i
\(435\) 6.33386 + 5.39612i 0.303685 + 0.258724i
\(436\) −0.395012 0.395012i −0.0189176 0.0189176i
\(437\) 6.58392 + 6.58392i 0.314952 + 0.314952i
\(438\) 1.58872i 0.0759121i
\(439\) 1.03975 1.03975i 0.0496247 0.0496247i −0.681859 0.731484i \(-0.738828\pi\)
0.731484 + 0.681859i \(0.238828\pi\)
\(440\) 1.34889 + 16.8730i 0.0643058 + 0.804388i
\(441\) −7.20652 −0.343167
\(442\) −0.894450 9.24205i −0.0425447 0.439600i
\(443\) 12.7838i 0.607379i −0.952771 0.303689i \(-0.901782\pi\)
0.952771 0.303689i \(-0.0982185\pi\)
\(444\) 1.34153i 0.0636660i
\(445\) 18.0645 + 15.3900i 0.856339 + 0.729556i
\(446\) −2.25200 −0.106635
\(447\) 6.32966 + 6.32966i 0.299383 + 0.299383i
\(448\) 2.89478 2.89478i 0.136766 0.136766i
\(449\) 6.88099 + 6.88099i 0.324734 + 0.324734i 0.850580 0.525846i \(-0.176251\pi\)
−0.525846 + 0.850580i \(0.676251\pi\)
\(450\) 23.8977 3.84553i 1.12655 0.181280i
\(451\) 33.2420i 1.56530i
\(452\) −10.0256 + 10.0256i −0.471566 + 0.471566i
\(453\) 1.33810 1.33810i 0.0628693 0.0628693i
\(454\) −14.7697 + 14.7697i −0.693178 + 0.693178i
\(455\) −0.692497 8.66230i −0.0324648 0.406095i
\(456\) −2.14301 + 2.14301i −0.100356 + 0.100356i
\(457\) −36.2279 −1.69467 −0.847336 0.531058i \(-0.821795\pi\)
−0.847336 + 0.531058i \(0.821795\pi\)
\(458\) 21.1855i 0.989935i
\(459\) 8.36899 10.1625i 0.390631 0.474344i
\(460\) 6.49600 0.519315i 0.302878 0.0242132i
\(461\) 40.0595i 1.86576i −0.360193 0.932878i \(-0.617289\pi\)
0.360193 0.932878i \(-0.382711\pi\)
\(462\) −12.5088 12.5088i −0.581962 0.581962i
\(463\) 15.3607i 0.713874i 0.934128 + 0.356937i \(0.116179\pi\)
−0.934128 + 0.356937i \(0.883821\pi\)
\(464\) 23.1250 23.1250i 1.07355 1.07355i
\(465\) −4.35407 3.70944i −0.201915 0.172021i
\(466\) −14.4145 14.4145i −0.667738 0.667738i
\(467\) −19.4471 −0.899903 −0.449952 0.893053i \(-0.648559\pi\)
−0.449952 + 0.893053i \(0.648559\pi\)
\(468\) −4.19721 −0.194016
\(469\) 18.6210 + 18.6210i 0.859837 + 0.859837i
\(470\) 12.6972 14.9037i 0.585677 0.687456i
\(471\) −1.55749 + 1.55749i −0.0717652 + 0.0717652i
\(472\) 8.09334i 0.372526i
\(473\) 8.10777 + 8.10777i 0.372796 + 0.372796i
\(474\) 4.97398i 0.228462i
\(475\) 19.7460 3.17744i 0.906008 0.145791i
\(476\) −10.2122 + 12.4007i −0.468078 + 0.568387i
\(477\) 24.4739i 1.12058i
\(478\) −9.26012 −0.423548
\(479\) 10.2918 10.2918i 0.470242 0.470242i −0.431751 0.901993i \(-0.642104\pi\)
0.901993 + 0.431751i \(0.142104\pi\)
\(480\) 0.620991 + 7.76785i 0.0283442 + 0.354552i
\(481\) −1.68450 + 1.68450i −0.0768064 + 0.0768064i
\(482\) 10.8200 10.8200i 0.492837 0.492837i
\(483\) 2.87717 2.87717i 0.130916 0.130916i
\(484\) 25.6585i 1.16629i
\(485\) 2.20813 + 27.6210i 0.100266 + 1.25420i
\(486\) −16.6982 16.6982i −0.757447 0.757447i
\(487\) −20.9993 + 20.9993i −0.951570 + 0.951570i −0.998880 0.0473104i \(-0.984935\pi\)
0.0473104 + 0.998880i \(0.484935\pi\)
\(488\) 5.39556 + 5.39556i 0.244246 + 0.244246i
\(489\) −8.26800 −0.373892
\(490\) −7.02003 + 8.23997i −0.317133 + 0.372244i
\(491\) 21.0715i 0.950944i 0.879731 + 0.475472i \(0.157723\pi\)
−0.879731 + 0.475472i \(0.842277\pi\)
\(492\) 4.16563i 0.187801i
\(493\) −17.3643 + 21.0854i −0.782047 + 0.949640i
\(494\) −9.00800 −0.405289
\(495\) −33.5798 + 2.68450i −1.50930 + 0.120659i
\(496\) −15.8967 + 15.8967i −0.713785 + 0.713785i
\(497\) 27.3754i 1.22796i
\(498\) −2.82673 2.82673i −0.126669 0.126669i
\(499\) −6.65274 6.65274i −0.297818 0.297818i 0.542341 0.840159i \(-0.317538\pi\)
−0.840159 + 0.542341i \(0.817538\pi\)
\(500\) 7.26958 11.9621i 0.325106 0.534960i
\(501\) 0.235997i 0.0105436i
\(502\) 35.7231 1.59440
\(503\) −20.7739 + 20.7739i −0.926263 + 0.926263i −0.997462 0.0711991i \(-0.977317\pi\)
0.0711991 + 0.997462i \(0.477317\pi\)
\(504\) −7.96825 7.96825i −0.354934 0.354934i
\(505\) −16.3760 13.9515i −0.728722 0.620833i
\(506\) −23.5575 −1.04726
\(507\) 4.54394 + 4.54394i 0.201804 + 0.201804i
\(508\) 7.32420 0.324959
\(509\) −14.3930 −0.637958 −0.318979 0.947762i \(-0.603340\pi\)
−0.318979 + 0.947762i \(0.603340\pi\)
\(510\) −1.63748 9.19404i −0.0725088 0.407119i
\(511\) −4.88099 −0.215922
\(512\) 17.3102 0.765009
\(513\) −9.03108 9.03108i −0.398732 0.398732i
\(514\) −43.9980 −1.94067
\(515\) −2.67253 + 3.13696i −0.117766 + 0.138231i
\(516\) 1.01600 + 1.01600i 0.0447270 + 0.0447270i
\(517\) −19.2677 + 19.2677i −0.847391 + 0.847391i
\(518\) 10.7055 0.470371
\(519\) 9.32552i 0.409345i
\(520\) 2.44270 2.86720i 0.107120 0.125735i
\(521\) −19.5655 19.5655i −0.857180 0.857180i 0.133825 0.991005i \(-0.457274\pi\)
−0.991005 + 0.133825i \(0.957274\pi\)
\(522\) 22.6778 + 22.6778i 0.992580 + 0.992580i
\(523\) 37.4867i 1.63918i −0.572950 0.819590i \(-0.694201\pi\)
0.572950 0.819590i \(-0.305799\pi\)
\(524\) 17.3192 17.3192i 0.756594 0.756594i
\(525\) −1.38854 8.62899i −0.0606010 0.376600i
\(526\) 32.5655 1.41992
\(527\) 11.9367 14.4947i 0.519969 0.631399i
\(528\) 15.5609i 0.677202i
\(529\) 17.5815i 0.764413i
\(530\) −27.9835 23.8405i −1.21553 1.03557i
\(531\) 16.1070 0.698983
\(532\) 11.0202 + 11.0202i 0.477785 + 0.477785i
\(533\) −5.23060 + 5.23060i −0.226562 + 0.226562i
\(534\) −7.60153 7.60153i −0.328950 0.328950i
\(535\) −3.02691 37.8630i −0.130865 1.63696i
\(536\) 11.4145i 0.493030i
\(537\) −7.86158 + 7.86158i −0.339252 + 0.339252i
\(538\) −22.7742 + 22.7742i −0.981867 + 0.981867i
\(539\) 10.6527 10.6527i 0.458846 0.458846i
\(540\) −8.91047 + 0.712337i −0.383446 + 0.0306541i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −28.5954 −1.22828
\(543\) 5.25946i 0.225705i
\(544\) −25.4622 + 2.46425i −1.09168 + 0.105654i
\(545\) 0.0795073 + 0.994540i 0.00340572 + 0.0426014i
\(546\) 3.93650i 0.168466i
\(547\) 20.3591 + 20.3591i 0.870493 + 0.870493i 0.992526 0.122033i \(-0.0389413\pi\)
−0.122033 + 0.992526i \(0.538941\pi\)
\(548\) 17.3498i 0.741148i
\(549\) −10.7380 + 10.7380i −0.458286 + 0.458286i
\(550\) −29.6414 + 41.0104i −1.26391 + 1.74869i
\(551\) 18.7380 + 18.7380i 0.798265 + 0.798265i
\(552\) 1.76368 0.0750671
\(553\) 15.2814 0.649833
\(554\) −18.0795 18.0795i −0.768125 0.768125i
\(555\) −1.55380 + 1.82382i −0.0659552 + 0.0774169i
\(556\) 9.02974 9.02974i 0.382946 0.382946i
\(557\) 4.93477i 0.209093i −0.994520 0.104546i \(-0.966661\pi\)
0.994520 0.104546i \(-0.0333391\pi\)
\(558\) −15.5893 15.5893i −0.659949 0.659949i
\(559\) 2.55150i 0.107917i
\(560\) −34.2420 + 2.73743i −1.44699 + 0.115678i
\(561\) 1.25200 + 12.9365i 0.0528595 + 0.546179i
\(562\) 14.0831i 0.594059i
\(563\) 3.97544 0.167545 0.0837724 0.996485i \(-0.473303\pi\)
0.0837724 + 0.996485i \(0.473303\pi\)
\(564\) −2.41448 + 2.41448i −0.101668 + 0.101668i
\(565\) 25.2420 2.01794i 1.06194 0.0848953i
\(566\) −26.6607 + 26.6607i −1.12063 + 1.12063i
\(567\) 13.7752 13.7752i 0.578504 0.578504i
\(568\) 8.39043 8.39043i 0.352055 0.352055i
\(569\) 5.49600i 0.230404i −0.993342 0.115202i \(-0.963248\pi\)
0.993342 0.115202i \(-0.0367516\pi\)
\(570\) −9.03108 + 0.721979i −0.378270 + 0.0302404i
\(571\) 12.3372 + 12.3372i 0.516297 + 0.516297i 0.916449 0.400152i \(-0.131043\pi\)
−0.400152 + 0.916449i \(0.631043\pi\)
\(572\) 6.20435 6.20435i 0.259417 0.259417i
\(573\) −5.53530 5.53530i −0.231241 0.231241i
\(574\) 33.2420 1.38749
\(575\) −9.43288 6.81788i −0.393378 0.284325i
\(576\) 3.53147i 0.147144i
\(577\) 32.3418i 1.34641i 0.739458 + 0.673203i \(0.235082\pi\)
−0.739458 + 0.673203i \(0.764918\pi\)
\(578\) 30.0877 5.87886i 1.25148 0.244528i
\(579\) −2.34499 −0.0974543
\(580\) 18.4877 1.47798i 0.767662 0.0613698i
\(581\) 8.68450 8.68450i 0.360294 0.360294i
\(582\) 12.5521i 0.520301i
\(583\) 36.1775 + 36.1775i 1.49832 + 1.49832i
\(584\) −1.49600 1.49600i −0.0619049 0.0619049i
\(585\) 5.70616 + 4.86135i 0.235920 + 0.200992i
\(586\) 8.64701i 0.357205i
\(587\) 28.6847 1.18394 0.591972 0.805959i \(-0.298350\pi\)
0.591972 + 0.805959i \(0.298350\pi\)
\(588\) 1.33492 1.33492i 0.0550511 0.0550511i
\(589\) −12.8810 12.8810i −0.530752 0.530752i
\(590\) 15.6902 18.4168i 0.645954 0.758208i
\(591\) 9.93650 0.408733
\(592\) 6.65879 + 6.65879i 0.273675 + 0.273675i
\(593\) −9.74614 −0.400226 −0.200113 0.979773i \(-0.564131\pi\)
−0.200113 + 0.979773i \(0.564131\pi\)
\(594\) 32.3135 1.32584
\(595\) 28.2467 5.03079i 1.15800 0.206242i
\(596\) 19.9525 0.817286
\(597\) −3.14586 −0.128752
\(598\) 3.70675 + 3.70675i 0.151580 + 0.151580i
\(599\) 8.07951 0.330120 0.165060 0.986284i \(-0.447218\pi\)
0.165060 + 0.986284i \(0.447218\pi\)
\(600\) 2.21916 3.07032i 0.0905969 0.125345i
\(601\) −12.8810 12.8810i −0.525427 0.525427i 0.393779 0.919205i \(-0.371168\pi\)
−0.919205 + 0.393779i \(0.871168\pi\)
\(602\) −8.10777 + 8.10777i −0.330448 + 0.330448i
\(603\) −22.7165 −0.925089
\(604\) 4.21798i 0.171627i
\(605\) 29.7185 34.8830i 1.20823 1.41820i
\(606\) 6.89101 + 6.89101i 0.279928 + 0.279928i
\(607\) 8.37964 + 8.37964i 0.340119 + 0.340119i 0.856412 0.516293i \(-0.172688\pi\)
−0.516293 + 0.856412i \(0.672688\pi\)
\(608\) 24.8174i 1.00648i
\(609\) 8.18850 8.18850i 0.331815 0.331815i
\(610\) 1.81776 + 22.7380i 0.0735989 + 0.920634i
\(611\) 6.06350 0.245303
\(612\) −1.33492 13.7933i −0.0539609 0.557560i
\(613\) 23.1494i 0.934995i −0.883994 0.467497i \(-0.845156\pi\)
0.883994 0.467497i \(-0.154844\pi\)
\(614\) 45.0695i 1.81886i
\(615\) −4.82477 + 5.66322i −0.194554 + 0.228363i
\(616\) 23.5575 0.949158
\(617\) −7.41350 7.41350i −0.298456 0.298456i 0.541953 0.840409i \(-0.317685\pi\)
−0.840409 + 0.541953i \(0.817685\pi\)
\(618\) 1.32003 1.32003i 0.0530995 0.0530995i
\(619\) −16.4702 16.4702i −0.661995 0.661995i 0.293855 0.955850i \(-0.405062\pi\)
−0.955850 + 0.293855i \(0.905062\pi\)
\(620\) −12.7090 + 1.01600i −0.510405 + 0.0408037i
\(621\) 7.43250i 0.298256i
\(622\) −5.14176 + 5.14176i −0.206166 + 0.206166i
\(623\) 23.3540 23.3540i 0.935658 0.935658i
\(624\) −2.44850 + 2.44850i −0.0980184 + 0.0980184i
\(625\) −23.7380 + 7.84272i −0.949519 + 0.313709i
\(626\) 28.8810 28.8810i 1.15432 1.15432i
\(627\) 12.6089 0.503550
\(628\) 4.90954i 0.195912i
\(629\) −6.07151 5.00000i −0.242087 0.199363i
\(630\) −2.68450 33.5798i −0.106953 1.33785i
\(631\) 41.1310i 1.63740i 0.574223 + 0.818699i \(0.305304\pi\)
−0.574223 + 0.818699i \(0.694696\pi\)
\(632\) 4.68368 + 4.68368i 0.186307 + 0.186307i
\(633\) 0.518514i 0.0206091i
\(634\) 10.5495 10.5495i 0.418974 0.418974i
\(635\) −9.95735 8.48315i −0.395145 0.336643i
\(636\) 4.53348 + 4.53348i 0.179764 + 0.179764i
\(637\) −3.35240 −0.132827
\(638\) −67.0451 −2.65434
\(639\) 16.6982 + 16.6982i 0.660572 + 0.660572i
\(640\) −17.0831 14.5539i −0.675268 0.575294i
\(641\) 33.4325 33.4325i 1.32050 1.32050i 0.407137 0.913367i \(-0.366527\pi\)
0.913367 0.407137i \(-0.133473\pi\)
\(642\) 17.2064i 0.679084i
\(643\) −4.99838 4.99838i −0.197117 0.197117i 0.601646 0.798763i \(-0.294512\pi\)
−0.798763 + 0.601646i \(0.794512\pi\)
\(644\) 9.06949i 0.357388i
\(645\) −0.204499 2.55804i −0.00805215 0.100723i
\(646\) −2.86499 29.6030i −0.112722 1.16471i
\(647\) 26.9462i 1.05937i 0.848196 + 0.529683i \(0.177689\pi\)
−0.848196 + 0.529683i \(0.822311\pi\)
\(648\) 8.44406 0.331714
\(649\) −23.8095 + 23.8095i −0.934604 + 0.934604i
\(650\) 11.1170 1.78890i 0.436044 0.0701665i
\(651\) −5.62899 + 5.62899i −0.220618 + 0.220618i
\(652\) −13.0313 + 13.0313i −0.510345 + 0.510345i
\(653\) −19.9764 + 19.9764i −0.781736 + 0.781736i −0.980124 0.198388i \(-0.936430\pi\)
0.198388 + 0.980124i \(0.436430\pi\)
\(654\) 0.451959i 0.0176730i
\(655\) −43.6054 + 3.48598i −1.70380 + 0.136209i
\(656\) 20.6765 + 20.6765i 0.807281 + 0.807281i
\(657\) 2.97726 2.97726i 0.116154 0.116154i
\(658\) −19.2677 19.2677i −0.751132 0.751132i
\(659\) 14.1230 0.550153 0.275077 0.961422i \(-0.411297\pi\)
0.275077 + 0.961422i \(0.411297\pi\)
\(660\) 5.72298 6.71752i 0.222767 0.261479i
\(661\) 49.0355i 1.90726i 0.300984 + 0.953629i \(0.402685\pi\)
−0.300984 + 0.953629i \(0.597315\pi\)
\(662\) 9.93996i 0.386328i
\(663\) 1.83855 2.23255i 0.0714032 0.0867050i
\(664\) 5.32351 0.206592
\(665\) −2.21812 27.7460i −0.0860149 1.07594i
\(666\) −6.53002 + 6.53002i −0.253033 + 0.253033i
\(667\) 15.4212i 0.597111i
\(668\) −0.371958 0.371958i −0.0143915 0.0143915i
\(669\) −0.495999 0.495999i −0.0191764 0.0191764i
\(670\) −22.1287 + 25.9742i −0.854906 + 1.00347i
\(671\) 31.7460i 1.22554i
\(672\) 10.8452 0.418363
\(673\) 22.2405 22.2405i 0.857308 0.857308i −0.133712 0.991020i \(-0.542690\pi\)
0.991020 + 0.133712i \(0.0426897\pi\)
\(674\) −12.1625 12.1625i −0.468481 0.468481i
\(675\) 12.9390 + 9.35199i 0.498021 + 0.359958i
\(676\) 14.3235 0.550904
\(677\) 21.4109 + 21.4109i 0.822889 + 0.822889i 0.986521 0.163633i \(-0.0523212\pi\)
−0.163633 + 0.986521i \(0.552321\pi\)
\(678\) −11.4710 −0.440540
\(679\) 38.5635 1.47993
\(680\) 10.1994 + 7.11554i 0.391128 + 0.272869i
\(681\) −6.50602 −0.249311
\(682\) 46.0886 1.76482
\(683\) −32.6533 32.6533i −1.24944 1.24944i −0.955966 0.293479i \(-0.905187\pi\)
−0.293479 0.955966i \(-0.594813\pi\)
\(684\) −13.4440 −0.514043
\(685\) −20.0952 + 23.5873i −0.767797 + 0.901225i
\(686\) −17.1250 17.1250i −0.653835 0.653835i
\(687\) −4.66608 + 4.66608i −0.178022 + 0.178022i
\(688\) −10.0861 −0.384527
\(689\) 11.3850i 0.433734i
\(690\) 4.01334 + 3.41916i 0.152785 + 0.130165i
\(691\) −7.52775 7.52775i −0.286369 0.286369i 0.549273 0.835643i \(-0.314905\pi\)
−0.835643 + 0.549273i \(0.814905\pi\)
\(692\) 14.6981 + 14.6981i 0.558736 + 0.558736i
\(693\) 46.8830i 1.78094i
\(694\) 14.7242 14.7242i 0.558925 0.558925i
\(695\) −22.7346 + 1.81749i −0.862372 + 0.0689413i
\(696\) 5.01946 0.190262
\(697\) −18.8529 15.5257i −0.714104 0.588078i
\(698\) 20.6166i 0.780349i
\(699\) 6.34953i 0.240161i
\(700\) −15.7887 11.4117i −0.596758 0.431324i
\(701\) −39.4145 −1.48866 −0.744332 0.667810i \(-0.767232\pi\)
−0.744332 + 0.667810i \(0.767232\pi\)
\(702\) −5.08450 5.08450i −0.191902 0.191902i
\(703\) −5.39556 + 5.39556i −0.203497 + 0.203497i
\(704\) −5.22025 5.22025i −0.196746 0.196746i
\(705\) 6.07904 0.485981i 0.228950 0.0183031i
\(706\) 57.3490i 2.15836i
\(707\) −21.1711 + 21.1711i −0.796221 + 0.796221i
\(708\) −2.98362 + 2.98362i −0.112131 + 0.112131i
\(709\) 10.7460 10.7460i 0.403574 0.403574i −0.475917 0.879490i \(-0.657884\pi\)
0.879490 + 0.475917i \(0.157884\pi\)
\(710\) 35.3590 2.82673i 1.32700 0.106085i
\(711\) −9.32124 + 9.32124i −0.349574 + 0.349574i
\(712\) 14.3158 0.536506
\(713\) 10.6009i 0.397008i
\(714\) −12.9365 + 1.25200i −0.484136 + 0.0468549i
\(715\) −15.6210 + 1.24880i −0.584192 + 0.0467025i
\(716\) 24.7815i 0.926126i
\(717\) −2.03953 2.03953i −0.0761675 0.0761675i
\(718\) 45.4051i 1.69450i
\(719\) −4.84924 + 4.84924i −0.180846 + 0.180846i −0.791724 0.610878i \(-0.790816\pi\)
0.610878 + 0.791724i \(0.290816\pi\)
\(720\) 19.2169 22.5564i 0.716170 0.840626i
\(721\) 4.05550 + 4.05550i 0.151035 + 0.151035i
\(722\) 5.40999 0.201339
\(723\) 4.76617 0.177256
\(724\) −8.28948 8.28948i −0.308076 0.308076i
\(725\) −26.8462 19.4038i −0.997042 0.720639i
\(726\) −14.6788 + 14.6788i −0.544780 + 0.544780i
\(727\) 38.5606i 1.43013i −0.699057 0.715066i \(-0.746397\pi\)
0.699057 0.715066i \(-0.253603\pi\)
\(728\) −3.70675 3.70675i −0.137381 0.137381i
\(729\) 11.4245i 0.423129i
\(730\) −0.504001 6.30444i −0.0186539 0.233338i
\(731\) 8.38499 0.811504i 0.310130 0.0300146i
\(732\) 3.97816i 0.147037i
\(733\) 42.7425 1.57873 0.789366 0.613923i \(-0.210409\pi\)
0.789366 + 0.613923i \(0.210409\pi\)
\(734\) −7.76173 + 7.76173i −0.286491 + 0.286491i
\(735\) −3.36099 + 0.268690i −0.123972 + 0.00991078i
\(736\) 10.2122 10.2122i 0.376428 0.376428i
\(737\) 33.5798 33.5798i 1.23693 1.23693i
\(738\) −20.2766 + 20.2766i −0.746394 + 0.746394i
\(739\) 6.00000i 0.220714i 0.993892 + 0.110357i \(0.0351994\pi\)
−0.993892 + 0.110357i \(0.964801\pi\)
\(740\) 0.425581 + 5.32351i 0.0156447 + 0.195696i
\(741\) −1.98400 1.98400i −0.0728839 0.0728839i
\(742\) −36.1775 + 36.1775i −1.32812 + 1.32812i
\(743\) 36.9750 + 36.9750i 1.35648 + 1.35648i 0.878214 + 0.478269i \(0.158735\pi\)
0.478269 + 0.878214i \(0.341265\pi\)
\(744\) −3.45051 −0.126502
\(745\) −27.1257 23.1097i −0.993808 0.846673i
\(746\) 54.2320i 1.98557i
\(747\) 10.5946i 0.387635i
\(748\) 22.3626 + 18.4161i 0.817659 + 0.673358i
\(749\) −52.8630 −1.93157
\(750\) 11.0021 2.68450i 0.401740 0.0980239i
\(751\) 27.9027 27.9027i 1.01818 1.01818i 0.0183534 0.999832i \(-0.494158\pi\)
0.999832 0.0183534i \(-0.00584240\pi\)
\(752\) 23.9690i 0.874058i
\(753\) 7.86794 + 7.86794i 0.286724 + 0.286724i
\(754\) 10.5495 + 10.5495i 0.384190 + 0.384190i
\(755\) −4.88541 + 5.73439i −0.177798 + 0.208696i
\(756\) 12.4405i 0.452456i
\(757\) 8.61186 0.313003 0.156502 0.987678i \(-0.449978\pi\)
0.156502 + 0.987678i \(0.449978\pi\)
\(758\) 1.29163 1.29163i 0.0469141 0.0469141i
\(759\) −5.18850 5.18850i −0.188330 0.188330i
\(760\) 7.82416 9.18384i 0.283812 0.333133i
\(761\) −41.2400 −1.49495 −0.747474 0.664291i \(-0.768733\pi\)
−0.747474 + 0.664291i \(0.768733\pi\)
\(762\) 4.19005 + 4.19005i 0.151789 + 0.151789i
\(763\) 1.38854 0.0502686
\(764\) −17.4485 −0.631265
\(765\) −14.1610 + 20.2983i −0.511992 + 0.733886i
\(766\) −46.6450 −1.68535
\(767\) 7.49280 0.270549
\(768\) 8.23354 + 8.23354i 0.297102 + 0.297102i
\(769\) 17.3510 0.625692 0.312846 0.949804i \(-0.398718\pi\)
0.312846 + 0.949804i \(0.398718\pi\)
\(770\) 53.6062 + 45.6697i 1.93183 + 1.64582i
\(771\) −9.69048 9.69048i −0.348994 0.348994i
\(772\) −3.69596 + 3.69596i −0.133020 + 0.133020i
\(773\) 20.0124 0.719796 0.359898 0.932992i \(-0.382812\pi\)
0.359898 + 0.932992i \(0.382812\pi\)
\(774\) 9.89101i 0.355525i
\(775\) 18.4548 + 13.3387i 0.662915 + 0.479140i
\(776\) 11.8195 + 11.8195i 0.424296 + 0.424296i
\(777\) 2.35786 + 2.35786i 0.0845878 + 0.0845878i
\(778\) 59.6352i 2.13803i
\(779\) −16.7540 + 16.7540i −0.600274 + 0.600274i
\(780\) −1.95750 + 0.156490i −0.0700898 + 0.00560324i
\(781\) −49.3670 −1.76649
\(782\) −11.0026 + 13.3604i −0.393451 + 0.477767i
\(783\) 21.1530i 0.755948i
\(784\) 13.2520i 0.473286i
\(785\) 5.68640 6.67459i 0.202956 0.238226i
\(786\) 19.8160 0.706815
\(787\) −23.9802 23.9802i −0.854802 0.854802i 0.135918 0.990720i \(-0.456602\pi\)
−0.990720 + 0.135918i \(0.956602\pi\)
\(788\) 15.6610 15.6610i 0.557901 0.557901i
\(789\) 7.17249 + 7.17249i 0.255348 + 0.255348i
\(790\) 1.57793 + 19.7380i 0.0561402 + 0.702246i
\(791\) 35.2420i 1.25306i
\(792\) −14.3694 + 14.3694i −0.510594 + 0.510594i
\(793\) −4.99520 + 4.99520i −0.177385 + 0.177385i
\(794\) 10.3950 10.3950i 0.368905 0.368905i
\(795\) −0.912491 11.4142i −0.0323627 0.404819i
\(796\) −4.95823 + 4.95823i −0.175740 + 0.175740i
\(797\) 0.730287 0.0258681 0.0129340 0.999916i \(-0.495883\pi\)
0.0129340 + 0.999916i \(0.495883\pi\)
\(798\) 12.6089i 0.446350i
\(799\) 1.92849 + 19.9265i 0.0682252 + 0.704948i
\(800\) −4.92849 30.6278i −0.174249 1.08285i
\(801\) 28.4905i 1.00666i
\(802\) 0.210972 + 0.210972i 0.00744970 + 0.00744970i
\(803\) 8.80204i 0.310617i
\(804\) 4.20796 4.20796i 0.148403 0.148403i
\(805\) −10.5046 + 12.3301i −0.370238 + 0.434578i
\(806\) −7.25200 7.25200i −0.255441 0.255441i
\(807\) −10.0320 −0.353142
\(808\) −12.9777 −0.456553
\(809\) 14.4485 + 14.4485i 0.507982 + 0.507982i 0.913907 0.405924i \(-0.133050\pi\)
−0.405924 + 0.913907i \(0.633050\pi\)
\(810\) 19.2149 + 16.3701i 0.675142 + 0.575186i
\(811\) −1.77975 + 1.77975i −0.0624955 + 0.0624955i −0.737664 0.675168i \(-0.764071\pi\)
0.675168 + 0.737664i \(0.264071\pi\)
\(812\) 25.8119i 0.905822i
\(813\) −6.29809 6.29809i −0.220883 0.220883i
\(814\) 19.3055i 0.676657i
\(815\) 32.8095 2.62291i 1.14927 0.0918767i
\(816\) −8.82524 7.26775i −0.308945 0.254422i
\(817\) 8.17265i 0.285925i
\(818\) −24.1087 −0.842941
\(819\) 7.37699 7.37699i 0.257773 0.257773i
\(820\) 1.32149 + 16.5302i 0.0461484 + 0.577261i
\(821\) 10.8175 10.8175i 0.377533 0.377533i −0.492678 0.870211i \(-0.663982\pi\)
0.870211 + 0.492678i \(0.163982\pi\)
\(822\) 9.92553 9.92553i 0.346193 0.346193i
\(823\) 10.1433 10.1433i 0.353574 0.353574i −0.507864 0.861437i \(-0.669565\pi\)
0.861437 + 0.507864i \(0.169565\pi\)
\(824\) 2.48598i 0.0866033i
\(825\) −15.5609 + 2.50400i −0.541762 + 0.0871781i
\(826\) −23.8095 23.8095i −0.828438 0.828438i
\(827\) −28.5066 + 28.5066i −0.991270 + 0.991270i −0.999962 0.00869233i \(-0.997233\pi\)
0.00869233 + 0.999962i \(0.497233\pi\)
\(828\) 5.53213 + 5.53213i 0.192255 + 0.192255i
\(829\) 37.1150 1.28906 0.644528 0.764581i \(-0.277054\pi\)
0.644528 + 0.764581i \(0.277054\pi\)
\(830\) 12.1139 + 10.3204i 0.420480 + 0.358227i
\(831\) 7.96396i 0.276267i
\(832\) 1.64280i 0.0569540i
\(833\) −1.06623 11.0170i −0.0369426 0.381716i
\(834\) 10.3315 0.357751
\(835\) 0.0748670 + 0.936496i 0.00259088 + 0.0324088i
\(836\) 19.8730 19.8730i 0.687322 0.687322i
\(837\) 14.5412i 0.502616i
\(838\) 30.0593 + 30.0593i 1.03838 + 1.03838i
\(839\) −5.02173 5.02173i −0.173370 0.173370i 0.615089 0.788458i \(-0.289120\pi\)
−0.788458 + 0.615089i \(0.789120\pi\)
\(840\) −4.01334 3.41916i −0.138473 0.117972i
\(841\) 14.8890i 0.513414i
\(842\) 10.5089 0.362161
\(843\) −3.10178 + 3.10178i −0.106831 + 0.106831i
\(844\) 0.817235 + 0.817235i 0.0281304 + 0.0281304i
\(845\) −19.4730 16.5900i −0.669891 0.570713i
\(846\) 23.5054 0.808134
\(847\) −45.0972 45.0972i −1.54956 1.54956i
\(848\) −45.0048 −1.54547
\(849\) −11.7440 −0.403052
\(850\) 9.41461 + 35.9648i 0.322919 + 1.23358i
\(851\) 4.44050 0.152218
\(852\) −6.18629 −0.211939
\(853\) −27.1104 27.1104i −0.928242 0.928242i 0.0693502 0.997592i \(-0.477907\pi\)
−0.997592 + 0.0693502i \(0.977907\pi\)
\(854\) 31.7460 1.08633
\(855\) 18.2772 + 15.5713i 0.625068 + 0.532526i
\(856\) −16.2022 16.2022i −0.553781 0.553781i
\(857\) −1.22358 + 1.22358i −0.0417966 + 0.0417966i −0.727696 0.685900i \(-0.759409\pi\)
0.685900 + 0.727696i \(0.259409\pi\)
\(858\) 7.09880 0.242349
\(859\) 30.9245i 1.05513i 0.849515 + 0.527565i \(0.176895\pi\)
−0.849515 + 0.527565i \(0.823105\pi\)
\(860\) −4.35407 3.70944i −0.148472 0.126491i
\(861\) 7.32149 + 7.32149i 0.249516 + 0.249516i
\(862\) 8.84487 + 8.84487i 0.301258 + 0.301258i
\(863\) 40.2134i 1.36888i 0.729070 + 0.684439i \(0.239953\pi\)
−0.729070 + 0.684439i \(0.760047\pi\)
\(864\) −14.0080 + 14.0080i −0.476562 + 0.476562i
\(865\) −2.95840 37.0060i −0.100589 1.25824i
\(866\) 27.8550 0.946550
\(867\) 7.92156 + 5.33195i 0.269030 + 0.181082i
\(868\) 17.7438i 0.602265i
\(869\) 27.5575i 0.934824i
\(870\) 11.4220 + 9.73099i 0.387243 + 0.329911i
\(871\) −10.5675 −0.358066
\(872\) 0.425581 + 0.425581i 0.0144120 + 0.0144120i
\(873\) −23.5226 + 23.5226i −0.796119 + 0.796119i
\(874\) 11.8730 + 11.8730i 0.401610 + 0.401610i
\(875\) 8.24751 + 33.8015i 0.278817 + 1.14270i
\(876\) 1.10300i 0.0372670i
\(877\) −0.715057 + 0.715057i −0.0241458 + 0.0241458i −0.719077 0.694931i \(-0.755435\pi\)
0.694931 + 0.719077i \(0.255435\pi\)
\(878\) 1.87502 1.87502i 0.0632788 0.0632788i
\(879\) 1.90449 1.90449i 0.0642368 0.0642368i
\(880\) 4.93650 + 61.7496i 0.166409 + 2.08158i
\(881\) 13.8095 13.8095i 0.465253 0.465253i −0.435119 0.900373i \(-0.643294\pi\)
0.900373 + 0.435119i \(0.143294\pi\)
\(882\) −12.9957 −0.437589
\(883\) 12.6125i 0.424445i −0.977221 0.212223i \(-0.931930\pi\)
0.977221 0.212223i \(-0.0680702\pi\)
\(884\) −0.620991 6.41649i −0.0208862 0.215810i
\(885\) 7.51200 0.600538i 0.252513 0.0201869i
\(886\) 23.0535i 0.774497i
\(887\) −26.2443 26.2443i −0.881199 0.881199i 0.112458 0.993657i \(-0.464128\pi\)
−0.993657 + 0.112458i \(0.964128\pi\)
\(888\) 1.44534i 0.0485026i
\(889\) −12.8730 + 12.8730i −0.431746 + 0.431746i
\(890\) 32.5762 + 27.7533i 1.09196 + 0.930291i
\(891\) −24.8412 24.8412i −0.832213 0.832213i
\(892\) −1.56350 −0.0523498
\(893\) 19.4218 0.649927
\(894\) 11.4145 + 11.4145i 0.381757 + 0.381757i
\(895\) 28.7027 33.6907i 0.959427 1.12616i
\(896\) −22.0852 + 22.0852i −0.737816 + 0.737816i
\(897\) 1.63281i 0.0545180i
\(898\) 12.4087 + 12.4087i 0.414084 + 0.414084i
\(899\) 30.1705i 1.00624i
\(900\) 16.5915 2.66984i 0.553050 0.0889946i
\(901\) 37.4145 3.62099i 1.24646 0.120633i
\(902\) 59.9463i 1.99599i
\(903\) −3.57145 −0.118850
\(904\) 10.8015 10.8015i 0.359252 0.359252i
\(905\) 1.66849 + 20.8708i 0.0554626 + 0.693770i
\(906\) 2.41303 2.41303i 0.0801676 0.0801676i
\(907\) −24.3554 + 24.3554i −0.808706 + 0.808706i −0.984438 0.175732i \(-0.943771\pi\)
0.175732 + 0.984438i \(0.443771\pi\)
\(908\) −10.2542 + 10.2542i −0.340298 + 0.340298i
\(909\) 25.8275i 0.856644i
\(910\) −1.24880 15.6210i −0.0413973 0.517831i
\(911\) −7.21023 7.21023i −0.238886 0.238886i 0.577503 0.816389i \(-0.304027\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(912\) −7.84272 + 7.84272i −0.259698 + 0.259698i
\(913\) −15.6610 15.6610i −0.518304 0.518304i
\(914\) −65.3309 −2.16096
\(915\) −4.60764 + 5.40836i −0.152324 + 0.178795i
\(916\) 14.7085i 0.485983i
\(917\) 60.8804i 2.01045i
\(918\) 15.0921 18.3263i 0.498112 0.604858i
\(919\) 50.5315 1.66688 0.833440 0.552611i \(-0.186368\pi\)
0.833440 + 0.552611i \(0.186368\pi\)
\(920\) −6.99871 + 0.559503i −0.230741 + 0.0184463i
\(921\) −9.92648 + 9.92648i −0.327089 + 0.327089i
\(922\) 72.2405i 2.37911i
\(923\) 7.76785 + 7.76785i 0.255682 + 0.255682i
\(924\) −8.68450 8.68450i −0.285699 0.285699i
\(925\) 5.58729 7.73030i 0.183709 0.254171i
\(926\) 27.7005i 0.910295i
\(927\) −4.94748 −0.162496
\(928\) 29.0643 29.0643i 0.954081 0.954081i
\(929\) 20.0615 + 20.0615i 0.658196 + 0.658196i 0.954953 0.296757i \(-0.0959051\pi\)
−0.296757 + 0.954953i \(0.595905\pi\)
\(930\) −7.85182 6.68934i −0.257471 0.219352i
\(931\) −10.7380 −0.351923
\(932\) −10.0076 10.0076i −0.327808 0.327808i
\(933\) −2.26493 −0.0741504
\(934\) −35.0695 −1.14751
\(935\) −9.07218 50.9380i −0.296692 1.66585i
\(936\) 4.52202 0.147807
\(937\) 47.5024 1.55183 0.775917 0.630835i \(-0.217287\pi\)
0.775917 + 0.630835i \(0.217287\pi\)
\(938\) 33.5798 + 33.5798i 1.09642 + 1.09642i
\(939\) 12.7220 0.415166
\(940\) 8.81528 10.3472i 0.287523 0.337488i
\(941\) 32.5555 + 32.5555i 1.06128 + 1.06128i 0.997996 + 0.0632823i \(0.0201569\pi\)
0.0632823 + 0.997996i \(0.479843\pi\)
\(942\) −2.80866 + 2.80866i −0.0915112 + 0.0915112i
\(943\) 13.7884 0.449011
\(944\) 29.6190i 0.964016i
\(945\) 14.4090 16.9130i 0.468725 0.550180i
\(946\) 14.6210 + 14.6210i 0.475369 + 0.475369i
\(947\) 21.0282 + 21.0282i 0.683324 + 0.683324i 0.960748 0.277424i \(-0.0894806\pi\)
−0.277424 + 0.960748i \(0.589481\pi\)
\(948\) 3.45329i 0.112158i
\(949\) 1.38499 1.38499i 0.0449588 0.0449588i
\(950\) 35.6085 5.72998i 1.15529 0.185905i
\(951\) 4.64701 0.150690
\(952\) 11.0026 13.3604i 0.356595 0.433014i
\(953\) 9.02109i 0.292222i −0.989268 0.146111i \(-0.953324\pi\)
0.989268 0.146111i \(-0.0466756\pi\)
\(954\) 44.1344i 1.42891i
\(955\) 23.7215 + 20.2095i 0.767608 + 0.653963i
\(956\) −6.42903 −0.207930
\(957\) −14.7666 14.7666i −0.477335 0.477335i
\(958\) 18.5594 18.5594i 0.599628 0.599628i
\(959\) 30.4940 + 30.4940i 0.984702 + 0.984702i
\(960\) 0.131668 + 1.64701i 0.00424958 + 0.0531571i
\(961\) 10.2600i 0.330968i
\(962\) −3.03770 + 3.03770i −0.0979394 + 0.0979394i
\(963\) 32.2449 32.2449i 1.03908 1.03908i
\(964\) 7.51200 7.51200i 0.241945 0.241945i
\(965\) 9.30549 0.743916i 0.299554 0.0239475i
\(966\) 5.18850 5.18850i 0.166937 0.166937i
\(967\) 11.7541 0.377986 0.188993 0.981978i \(-0.439478\pi\)
0.188993 + 0.981978i \(0.439478\pi\)
\(968\) 27.6441i 0.888516i
\(969\) 5.88899 7.15101i 0.189182 0.229724i
\(970\) 3.98198 + 49.8098i 0.127854 + 1.59930i
\(971\) 19.9525i 0.640306i 0.947366 + 0.320153i \(0.103734\pi\)
−0.947366 + 0.320153i \(0.896266\pi\)
\(972\) −11.5931 11.5931i −0.371849 0.371849i
\(973\) 31.7413i 1.01758i
\(974\) −37.8687 + 37.8687i −1.21339 + 1.21339i
\(975\) 2.84250 + 2.05450i 0.0910329 + 0.0657965i
\(976\) 19.7460 + 19.7460i 0.632054 + 0.632054i
\(977\) −27.2005 −0.870221 −0.435110 0.900377i \(-0.643291\pi\)
−0.435110 + 0.900377i \(0.643291\pi\)
\(978\) −14.9099 −0.476767
\(979\) −42.1150 42.1150i −1.34600 1.34600i
\(980\) −4.87380 + 5.72078i −0.155688 + 0.182743i
\(981\) −0.846971 + 0.846971i −0.0270417 + 0.0270417i
\(982\) 37.9989i 1.21259i
\(983\) 5.03803 + 5.03803i 0.160688 + 0.160688i 0.782872 0.622183i \(-0.213754\pi\)
−0.622183 + 0.782872i \(0.713754\pi\)
\(984\) 4.48800i 0.143072i
\(985\) −39.4305 + 3.15222i −1.25636 + 0.100438i
\(986\) −31.3135 + 38.0240i −0.997225 + 1.21093i
\(987\) 8.48734i 0.270155i
\(988\) −6.25400 −0.198966
\(989\) −3.36301 + 3.36301i −0.106937 + 0.106937i
\(990\) −60.5555 + 4.84103i −1.92458 + 0.153858i
\(991\) 40.2817 40.2817i 1.27959 1.27959i 0.338695 0.940896i \(-0.390014\pi\)
0.940896 0.338695i \(-0.109986\pi\)
\(992\) −19.9796 + 19.9796i −0.634351 + 0.634351i
\(993\) −2.18926 + 2.18926i −0.0694740 + 0.0694740i
\(994\) 49.3670i 1.56583i
\(995\) 12.4836 0.997984i 0.395756 0.0316382i
\(996\) −1.96252 1.96252i −0.0621847 0.0621847i
\(997\) 3.56701 3.56701i 0.112968 0.112968i −0.648363 0.761331i \(-0.724546\pi\)
0.761331 + 0.648363i \(0.224546\pi\)
\(998\) −11.9971 11.9971i −0.379761 0.379761i
\(999\) −6.09097 −0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 85.2.j.c.4.5 yes 12
3.2 odd 2 765.2.t.e.514.2 12
5.2 odd 4 425.2.e.d.276.5 12
5.3 odd 4 425.2.e.d.276.2 12
5.4 even 2 inner 85.2.j.c.4.2 12
15.14 odd 2 765.2.t.e.514.5 12
17.8 even 8 1445.2.b.f.579.3 12
17.9 even 8 1445.2.b.f.579.4 12
17.13 even 4 inner 85.2.j.c.64.2 yes 12
51.47 odd 4 765.2.t.e.64.5 12
85.8 odd 8 7225.2.a.bp.1.4 12
85.9 even 8 1445.2.b.f.579.9 12
85.13 odd 4 425.2.e.d.251.5 12
85.42 odd 8 7225.2.a.bp.1.9 12
85.43 odd 8 7225.2.a.bp.1.3 12
85.47 odd 4 425.2.e.d.251.2 12
85.59 even 8 1445.2.b.f.579.10 12
85.64 even 4 inner 85.2.j.c.64.5 yes 12
85.77 odd 8 7225.2.a.bp.1.10 12
255.149 odd 4 765.2.t.e.64.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 5.4 even 2 inner
85.2.j.c.4.5 yes 12 1.1 even 1 trivial
85.2.j.c.64.2 yes 12 17.13 even 4 inner
85.2.j.c.64.5 yes 12 85.64 even 4 inner
425.2.e.d.251.2 12 85.47 odd 4
425.2.e.d.251.5 12 85.13 odd 4
425.2.e.d.276.2 12 5.3 odd 4
425.2.e.d.276.5 12 5.2 odd 4
765.2.t.e.64.2 12 255.149 odd 4
765.2.t.e.64.5 12 51.47 odd 4
765.2.t.e.514.2 12 3.2 odd 2
765.2.t.e.514.5 12 15.14 odd 2
1445.2.b.f.579.3 12 17.8 even 8
1445.2.b.f.579.4 12 17.9 even 8
1445.2.b.f.579.9 12 85.9 even 8
1445.2.b.f.579.10 12 85.59 even 8
7225.2.a.bp.1.3 12 85.43 odd 8
7225.2.a.bp.1.4 12 85.8 odd 8
7225.2.a.bp.1.9 12 85.42 odd 8
7225.2.a.bp.1.10 12 85.77 odd 8