Properties

Label 420.2.bn.a.269.9
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.9
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0216419 - 1.73192i) q^{3} +(-2.23530 - 0.0584556i) q^{5} +(-0.0973684 - 2.64396i) q^{7} +(-2.99906 - 0.0749640i) q^{9} +(2.62913 + 1.51793i) q^{11} -2.31738 q^{13} +(-0.149616 + 3.87009i) q^{15} +(-4.49684 - 2.59625i) q^{17} +(-5.58515 + 3.22459i) q^{19} +(-4.58122 + 0.111414i) q^{21} +(-2.43442 - 4.21654i) q^{23} +(4.99317 + 0.261332i) q^{25} +(-0.194737 + 5.19250i) q^{27} -3.48622i q^{29} +(1.16615 + 0.673279i) q^{31} +(2.68582 - 4.52058i) q^{33} +(0.0630937 + 5.91574i) q^{35} +(2.43579 - 1.40630i) q^{37} +(-0.0501525 + 4.01350i) q^{39} -1.06401 q^{41} -2.42063i q^{43} +(6.69944 + 0.342879i) q^{45} +(-3.30233 + 1.90660i) q^{47} +(-6.98104 + 0.514876i) q^{49} +(-4.59381 + 7.73196i) q^{51} +(3.52984 - 6.11386i) q^{53} +(-5.78817 - 3.54672i) q^{55} +(5.46384 + 9.74279i) q^{57} +(6.18029 - 10.7046i) q^{59} +(11.4447 - 6.60758i) q^{61} +(0.0938123 + 7.93670i) q^{63} +(5.18004 + 0.135464i) q^{65} +(3.72081 + 2.14821i) q^{67} +(-7.35538 + 4.12496i) q^{69} -7.08288i q^{71} +(0.0763237 - 0.132196i) q^{73} +(0.560667 - 8.64209i) q^{75} +(3.75734 - 7.09910i) q^{77} +(-3.04462 - 5.27344i) q^{79} +(8.98876 + 0.449644i) q^{81} +10.2758i q^{83} +(9.90003 + 6.06628i) q^{85} +(-6.03784 - 0.0754485i) q^{87} +(-7.10913 - 12.3134i) q^{89} +(0.225639 + 6.12705i) q^{91} +(1.19130 - 2.00511i) q^{93} +(12.6730 - 6.88145i) q^{95} -8.63266 q^{97} +(-7.77113 - 4.74945i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0216419 1.73192i 0.0124950 0.999922i
\(4\) 0 0
\(5\) −2.23530 0.0584556i −0.999658 0.0261421i
\(6\) 0 0
\(7\) −0.0973684 2.64396i −0.0368018 0.999323i
\(8\) 0 0
\(9\) −2.99906 0.0749640i −0.999688 0.0249880i
\(10\) 0 0
\(11\) 2.62913 + 1.51793i 0.792712 + 0.457672i 0.840916 0.541165i \(-0.182017\pi\)
−0.0482045 + 0.998837i \(0.515350\pi\)
\(12\) 0 0
\(13\) −2.31738 −0.642724 −0.321362 0.946956i \(-0.604141\pi\)
−0.321362 + 0.946956i \(0.604141\pi\)
\(14\) 0 0
\(15\) −0.149616 + 3.87009i −0.0386308 + 0.999254i
\(16\) 0 0
\(17\) −4.49684 2.59625i −1.09064 0.629683i −0.156896 0.987615i \(-0.550149\pi\)
−0.933748 + 0.357932i \(0.883482\pi\)
\(18\) 0 0
\(19\) −5.58515 + 3.22459i −1.28132 + 0.739771i −0.977090 0.212827i \(-0.931733\pi\)
−0.304231 + 0.952598i \(0.598400\pi\)
\(20\) 0 0
\(21\) −4.58122 + 0.111414i −0.999704 + 0.0243124i
\(22\) 0 0
\(23\) −2.43442 4.21654i −0.507612 0.879209i −0.999961 0.00881178i \(-0.997195\pi\)
0.492349 0.870398i \(-0.336138\pi\)
\(24\) 0 0
\(25\) 4.99317 + 0.261332i 0.998633 + 0.0522664i
\(26\) 0 0
\(27\) −0.194737 + 5.19250i −0.0374771 + 0.999297i
\(28\) 0 0
\(29\) 3.48622i 0.647374i −0.946164 0.323687i \(-0.895077\pi\)
0.946164 0.323687i \(-0.104923\pi\)
\(30\) 0 0
\(31\) 1.16615 + 0.673279i 0.209447 + 0.120924i 0.601054 0.799208i \(-0.294747\pi\)
−0.391607 + 0.920132i \(0.628081\pi\)
\(32\) 0 0
\(33\) 2.68582 4.52058i 0.467542 0.786931i
\(34\) 0 0
\(35\) 0.0630937 + 5.91574i 0.0106648 + 0.999943i
\(36\) 0 0
\(37\) 2.43579 1.40630i 0.400441 0.231195i −0.286233 0.958160i \(-0.592403\pi\)
0.686674 + 0.726965i \(0.259070\pi\)
\(38\) 0 0
\(39\) −0.0501525 + 4.01350i −0.00803082 + 0.642674i
\(40\) 0 0
\(41\) −1.06401 −0.166171 −0.0830853 0.996542i \(-0.526477\pi\)
−0.0830853 + 0.996542i \(0.526477\pi\)
\(42\) 0 0
\(43\) 2.42063i 0.369142i −0.982819 0.184571i \(-0.940910\pi\)
0.982819 0.184571i \(-0.0590896\pi\)
\(44\) 0 0
\(45\) 6.69944 + 0.342879i 0.998693 + 0.0511134i
\(46\) 0 0
\(47\) −3.30233 + 1.90660i −0.481695 + 0.278106i −0.721122 0.692808i \(-0.756373\pi\)
0.239428 + 0.970914i \(0.423040\pi\)
\(48\) 0 0
\(49\) −6.98104 + 0.514876i −0.997291 + 0.0735537i
\(50\) 0 0
\(51\) −4.59381 + 7.73196i −0.643262 + 1.08269i
\(52\) 0 0
\(53\) 3.52984 6.11386i 0.484861 0.839803i −0.514988 0.857197i \(-0.672204\pi\)
0.999849 + 0.0173942i \(0.00553703\pi\)
\(54\) 0 0
\(55\) −5.78817 3.54672i −0.780476 0.478239i
\(56\) 0 0
\(57\) 5.46384 + 9.74279i 0.723703 + 1.29046i
\(58\) 0 0
\(59\) 6.18029 10.7046i 0.804605 1.39362i −0.111953 0.993714i \(-0.535711\pi\)
0.916558 0.399903i \(-0.130956\pi\)
\(60\) 0 0
\(61\) 11.4447 6.60758i 1.46534 0.846014i 0.466088 0.884738i \(-0.345663\pi\)
0.999250 + 0.0387246i \(0.0123295\pi\)
\(62\) 0 0
\(63\) 0.0938123 + 7.93670i 0.0118192 + 0.999930i
\(64\) 0 0
\(65\) 5.18004 + 0.135464i 0.642505 + 0.0168022i
\(66\) 0 0
\(67\) 3.72081 + 2.14821i 0.454569 + 0.262446i 0.709758 0.704446i \(-0.248804\pi\)
−0.255189 + 0.966891i \(0.582138\pi\)
\(68\) 0 0
\(69\) −7.35538 + 4.12496i −0.885483 + 0.496586i
\(70\) 0 0
\(71\) 7.08288i 0.840583i −0.907389 0.420292i \(-0.861928\pi\)
0.907389 0.420292i \(-0.138072\pi\)
\(72\) 0 0
\(73\) 0.0763237 0.132196i 0.00893301 0.0154724i −0.861524 0.507716i \(-0.830490\pi\)
0.870457 + 0.492244i \(0.163823\pi\)
\(74\) 0 0
\(75\) 0.560667 8.64209i 0.0647402 0.997902i
\(76\) 0 0
\(77\) 3.75734 7.09910i 0.428189 0.809018i
\(78\) 0 0
\(79\) −3.04462 5.27344i −0.342547 0.593309i 0.642358 0.766405i \(-0.277956\pi\)
−0.984905 + 0.173096i \(0.944623\pi\)
\(80\) 0 0
\(81\) 8.98876 + 0.449644i 0.998751 + 0.0499604i
\(82\) 0 0
\(83\) 10.2758i 1.12791i 0.825804 + 0.563957i \(0.190722\pi\)
−0.825804 + 0.563957i \(0.809278\pi\)
\(84\) 0 0
\(85\) 9.90003 + 6.06628i 1.07381 + 0.657980i
\(86\) 0 0
\(87\) −6.03784 0.0754485i −0.647324 0.00808893i
\(88\) 0 0
\(89\) −7.10913 12.3134i −0.753567 1.30522i −0.946084 0.323922i \(-0.894998\pi\)
0.192517 0.981294i \(-0.438335\pi\)
\(90\) 0 0
\(91\) 0.225639 + 6.12705i 0.0236534 + 0.642289i
\(92\) 0 0
\(93\) 1.19130 2.00511i 0.123532 0.207920i
\(94\) 0 0
\(95\) 12.6730 6.88145i 1.30022 0.706022i
\(96\) 0 0
\(97\) −8.63266 −0.876514 −0.438257 0.898850i \(-0.644404\pi\)
−0.438257 + 0.898850i \(0.644404\pi\)
\(98\) 0 0
\(99\) −7.77113 4.74945i −0.781028 0.477338i
\(100\) 0 0
\(101\) 8.23108 14.2566i 0.819023 1.41859i −0.0873801 0.996175i \(-0.527849\pi\)
0.906403 0.422414i \(-0.138817\pi\)
\(102\) 0 0
\(103\) 3.30237 + 5.71987i 0.325392 + 0.563596i 0.981592 0.190992i \(-0.0611703\pi\)
−0.656199 + 0.754588i \(0.727837\pi\)
\(104\) 0 0
\(105\) 10.2469 + 0.0187551i 0.999998 + 0.00183031i
\(106\) 0 0
\(107\) 9.26659 + 16.0502i 0.895835 + 1.55163i 0.832768 + 0.553623i \(0.186755\pi\)
0.0630674 + 0.998009i \(0.479912\pi\)
\(108\) 0 0
\(109\) −9.25130 + 16.0237i −0.886114 + 1.53479i −0.0416824 + 0.999131i \(0.513272\pi\)
−0.844432 + 0.535664i \(0.820062\pi\)
\(110\) 0 0
\(111\) −2.38288 4.24901i −0.226173 0.403299i
\(112\) 0 0
\(113\) 5.86968 0.552173 0.276087 0.961133i \(-0.410962\pi\)
0.276087 + 0.961133i \(0.410962\pi\)
\(114\) 0 0
\(115\) 5.19519 + 9.56755i 0.484454 + 0.892179i
\(116\) 0 0
\(117\) 6.94995 + 0.173720i 0.642524 + 0.0160604i
\(118\) 0 0
\(119\) −6.42653 + 12.1423i −0.589119 + 1.11308i
\(120\) 0 0
\(121\) −0.891792 1.54463i −0.0810720 0.140421i
\(122\) 0 0
\(123\) −0.0230272 + 1.84278i −0.00207630 + 0.166158i
\(124\) 0 0
\(125\) −11.1460 0.876035i −0.996926 0.0783550i
\(126\) 0 0
\(127\) 14.5896i 1.29462i −0.762226 0.647311i \(-0.775894\pi\)
0.762226 0.647311i \(-0.224106\pi\)
\(128\) 0 0
\(129\) −4.19232 0.0523870i −0.369113 0.00461242i
\(130\) 0 0
\(131\) 10.0356 + 17.3822i 0.876817 + 1.51869i 0.854815 + 0.518933i \(0.173671\pi\)
0.0220016 + 0.999758i \(0.492996\pi\)
\(132\) 0 0
\(133\) 9.06949 + 14.4529i 0.786425 + 1.25323i
\(134\) 0 0
\(135\) 0.738827 11.5954i 0.0635881 0.997976i
\(136\) 0 0
\(137\) 2.33533 4.04491i 0.199521 0.345580i −0.748852 0.662737i \(-0.769395\pi\)
0.948373 + 0.317157i \(0.102728\pi\)
\(138\) 0 0
\(139\) 5.51296i 0.467603i −0.972284 0.233801i \(-0.924883\pi\)
0.972284 0.233801i \(-0.0751166\pi\)
\(140\) 0 0
\(141\) 3.23060 + 5.76062i 0.272066 + 0.485132i
\(142\) 0 0
\(143\) −6.09268 3.51761i −0.509495 0.294157i
\(144\) 0 0
\(145\) −0.203789 + 7.79276i −0.0169238 + 0.647153i
\(146\) 0 0
\(147\) 0.740639 + 12.1017i 0.0610869 + 0.998132i
\(148\) 0 0
\(149\) 12.6579 7.30806i 1.03698 0.598700i 0.118003 0.993013i \(-0.462351\pi\)
0.918976 + 0.394313i \(0.129018\pi\)
\(150\) 0 0
\(151\) −4.48104 + 7.76139i −0.364662 + 0.631613i −0.988722 0.149764i \(-0.952149\pi\)
0.624060 + 0.781376i \(0.285482\pi\)
\(152\) 0 0
\(153\) 13.2917 + 8.12342i 1.07457 + 0.656740i
\(154\) 0 0
\(155\) −2.56735 1.57315i −0.206214 0.126358i
\(156\) 0 0
\(157\) 10.2703 17.7886i 0.819657 1.41969i −0.0862784 0.996271i \(-0.527497\pi\)
0.905935 0.423416i \(-0.139169\pi\)
\(158\) 0 0
\(159\) −10.5123 6.24570i −0.833679 0.495316i
\(160\) 0 0
\(161\) −10.9113 + 6.84707i −0.859933 + 0.539624i
\(162\) 0 0
\(163\) −17.3645 + 10.0254i −1.36009 + 0.785250i −0.989636 0.143600i \(-0.954132\pi\)
−0.370457 + 0.928850i \(0.620799\pi\)
\(164\) 0 0
\(165\) −6.26788 + 9.94786i −0.487954 + 0.774440i
\(166\) 0 0
\(167\) 12.2463i 0.947646i −0.880620 0.473823i \(-0.842874\pi\)
0.880620 0.473823i \(-0.157126\pi\)
\(168\) 0 0
\(169\) −7.62977 −0.586906
\(170\) 0 0
\(171\) 16.9919 9.25206i 1.29941 0.707522i
\(172\) 0 0
\(173\) −18.9007 + 10.9123i −1.43699 + 0.829647i −0.997640 0.0686676i \(-0.978125\pi\)
−0.439352 + 0.898315i \(0.644792\pi\)
\(174\) 0 0
\(175\) 0.204775 13.2272i 0.0154795 0.999880i
\(176\) 0 0
\(177\) −18.4057 10.9354i −1.38345 0.821955i
\(178\) 0 0
\(179\) 1.11034 + 0.641056i 0.0829909 + 0.0479148i 0.540921 0.841073i \(-0.318076\pi\)
−0.457930 + 0.888988i \(0.651409\pi\)
\(180\) 0 0
\(181\) 14.5617i 1.08236i −0.840906 0.541182i \(-0.817977\pi\)
0.840906 0.541182i \(-0.182023\pi\)
\(182\) 0 0
\(183\) −11.1961 19.9642i −0.827638 1.47579i
\(184\) 0 0
\(185\) −5.52693 + 3.00113i −0.406348 + 0.220647i
\(186\) 0 0
\(187\) −7.88184 13.6518i −0.576377 0.998315i
\(188\) 0 0
\(189\) 13.7477 + 0.00929051i 1.00000 + 0.000675785i
\(190\) 0 0
\(191\) −20.7027 + 11.9527i −1.49800 + 0.864869i −0.999997 0.00230818i \(-0.999265\pi\)
−0.498000 + 0.867177i \(0.665932\pi\)
\(192\) 0 0
\(193\) −7.30736 4.21891i −0.525996 0.303684i 0.213389 0.976967i \(-0.431550\pi\)
−0.739384 + 0.673284i \(0.764883\pi\)
\(194\) 0 0
\(195\) 0.346718 8.96846i 0.0248290 0.642244i
\(196\) 0 0
\(197\) −8.25869 −0.588408 −0.294204 0.955743i \(-0.595054\pi\)
−0.294204 + 0.955743i \(0.595054\pi\)
\(198\) 0 0
\(199\) 8.94051 + 5.16181i 0.633776 + 0.365911i 0.782213 0.623011i \(-0.214091\pi\)
−0.148437 + 0.988922i \(0.547424\pi\)
\(200\) 0 0
\(201\) 3.80104 6.39763i 0.268105 0.451254i
\(202\) 0 0
\(203\) −9.21742 + 0.339448i −0.646936 + 0.0238245i
\(204\) 0 0
\(205\) 2.37839 + 0.0621974i 0.166114 + 0.00434406i
\(206\) 0 0
\(207\) 6.98489 + 12.8282i 0.485484 + 0.891619i
\(208\) 0 0
\(209\) −19.5788 −1.35429
\(210\) 0 0
\(211\) −5.75694 −0.396324 −0.198162 0.980169i \(-0.563497\pi\)
−0.198162 + 0.980169i \(0.563497\pi\)
\(212\) 0 0
\(213\) −12.2670 0.153287i −0.840518 0.0105031i
\(214\) 0 0
\(215\) −0.141499 + 5.41083i −0.00965016 + 0.369016i
\(216\) 0 0
\(217\) 1.66657 3.14882i 0.113134 0.213756i
\(218\) 0 0
\(219\) −0.227301 0.135047i −0.0153596 0.00912564i
\(220\) 0 0
\(221\) 10.4209 + 6.01649i 0.700983 + 0.404713i
\(222\) 0 0
\(223\) 27.0927 1.81426 0.907129 0.420852i \(-0.138269\pi\)
0.907129 + 0.420852i \(0.138269\pi\)
\(224\) 0 0
\(225\) −14.9552 1.15806i −0.997015 0.0772040i
\(226\) 0 0
\(227\) 6.20333 + 3.58150i 0.411730 + 0.237712i 0.691533 0.722345i \(-0.256936\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(228\) 0 0
\(229\) 4.16615 2.40533i 0.275307 0.158949i −0.355990 0.934490i \(-0.615856\pi\)
0.631297 + 0.775541i \(0.282523\pi\)
\(230\) 0 0
\(231\) −12.2137 6.66104i −0.803605 0.438264i
\(232\) 0 0
\(233\) 8.90616 + 15.4259i 0.583462 + 1.01059i 0.995065 + 0.0992223i \(0.0316355\pi\)
−0.411604 + 0.911363i \(0.635031\pi\)
\(234\) 0 0
\(235\) 7.49317 4.06879i 0.488800 0.265419i
\(236\) 0 0
\(237\) −9.19905 + 5.15890i −0.597542 + 0.335107i
\(238\) 0 0
\(239\) 13.7867i 0.891789i 0.895086 + 0.445894i \(0.147114\pi\)
−0.895086 + 0.445894i \(0.852886\pi\)
\(240\) 0 0
\(241\) −11.7785 6.80032i −0.758720 0.438047i 0.0701158 0.997539i \(-0.477663\pi\)
−0.828836 + 0.559492i \(0.810996\pi\)
\(242\) 0 0
\(243\) 0.973279 15.5580i 0.0624359 0.998049i
\(244\) 0 0
\(245\) 15.6348 0.742824i 0.998873 0.0474573i
\(246\) 0 0
\(247\) 12.9429 7.47258i 0.823536 0.475469i
\(248\) 0 0
\(249\) 17.7968 + 0.222388i 1.12783 + 0.0140933i
\(250\) 0 0
\(251\) −7.89600 −0.498391 −0.249196 0.968453i \(-0.580166\pi\)
−0.249196 + 0.968453i \(0.580166\pi\)
\(252\) 0 0
\(253\) 14.7811i 0.929280i
\(254\) 0 0
\(255\) 10.7205 17.0147i 0.671346 1.06550i
\(256\) 0 0
\(257\) −15.9997 + 9.23741i −0.998032 + 0.576214i −0.907665 0.419695i \(-0.862137\pi\)
−0.0903666 + 0.995909i \(0.528804\pi\)
\(258\) 0 0
\(259\) −3.95538 6.30320i −0.245775 0.391661i
\(260\) 0 0
\(261\) −0.261341 + 10.4554i −0.0161766 + 0.647172i
\(262\) 0 0
\(263\) 10.7794 18.6705i 0.664687 1.15127i −0.314683 0.949197i \(-0.601898\pi\)
0.979370 0.202075i \(-0.0647686\pi\)
\(264\) 0 0
\(265\) −8.24765 + 13.4600i −0.506649 + 0.826841i
\(266\) 0 0
\(267\) −21.4796 + 12.0459i −1.31453 + 0.737199i
\(268\) 0 0
\(269\) −7.98483 + 13.8301i −0.486844 + 0.843238i −0.999886 0.0151253i \(-0.995185\pi\)
0.513042 + 0.858364i \(0.328519\pi\)
\(270\) 0 0
\(271\) −4.72410 + 2.72746i −0.286968 + 0.165681i −0.636574 0.771216i \(-0.719649\pi\)
0.349605 + 0.936897i \(0.386316\pi\)
\(272\) 0 0
\(273\) 10.6164 0.258187i 0.642534 0.0156262i
\(274\) 0 0
\(275\) 12.7310 + 8.26634i 0.767707 + 0.498479i
\(276\) 0 0
\(277\) −6.72315 3.88162i −0.403955 0.233224i 0.284234 0.958755i \(-0.408261\pi\)
−0.688189 + 0.725531i \(0.741594\pi\)
\(278\) 0 0
\(279\) −3.44689 2.10662i −0.206360 0.126120i
\(280\) 0 0
\(281\) 0.742571i 0.0442981i −0.999755 0.0221490i \(-0.992949\pi\)
0.999755 0.0221490i \(-0.00705084\pi\)
\(282\) 0 0
\(283\) −4.79525 + 8.30562i −0.285048 + 0.493718i −0.972621 0.232398i \(-0.925343\pi\)
0.687573 + 0.726116i \(0.258676\pi\)
\(284\) 0 0
\(285\) −11.6438 22.0975i −0.689720 1.30894i
\(286\) 0 0
\(287\) 0.103601 + 2.81320i 0.00611538 + 0.166058i
\(288\) 0 0
\(289\) 4.98104 + 8.62741i 0.293002 + 0.507495i
\(290\) 0 0
\(291\) −0.186827 + 14.9510i −0.0109520 + 0.876445i
\(292\) 0 0
\(293\) 0.569685i 0.0332814i 0.999862 + 0.0166407i \(0.00529714\pi\)
−0.999862 + 0.0166407i \(0.994703\pi\)
\(294\) 0 0
\(295\) −14.4406 + 23.5667i −0.840762 + 1.37211i
\(296\) 0 0
\(297\) −8.39383 + 13.3562i −0.487059 + 0.775003i
\(298\) 0 0
\(299\) 5.64147 + 9.77131i 0.326254 + 0.565089i
\(300\) 0 0
\(301\) −6.40003 + 0.235692i −0.368892 + 0.0135851i
\(302\) 0 0
\(303\) −24.5132 14.5641i −1.40824 0.836684i
\(304\) 0 0
\(305\) −25.9685 + 14.1009i −1.48695 + 0.807417i
\(306\) 0 0
\(307\) 9.46424 0.540153 0.270076 0.962839i \(-0.412951\pi\)
0.270076 + 0.962839i \(0.412951\pi\)
\(308\) 0 0
\(309\) 9.97781 5.59564i 0.567618 0.318325i
\(310\) 0 0
\(311\) 3.25858 5.64403i 0.184777 0.320044i −0.758724 0.651412i \(-0.774177\pi\)
0.943501 + 0.331368i \(0.107510\pi\)
\(312\) 0 0
\(313\) −11.0684 19.1711i −0.625626 1.08362i −0.988420 0.151746i \(-0.951510\pi\)
0.362794 0.931869i \(-0.381823\pi\)
\(314\) 0 0
\(315\) 0.254246 17.7464i 0.0143251 0.999897i
\(316\) 0 0
\(317\) 2.10782 + 3.65086i 0.118387 + 0.205053i 0.919129 0.393957i \(-0.128894\pi\)
−0.800741 + 0.599010i \(0.795561\pi\)
\(318\) 0 0
\(319\) 5.29183 9.16571i 0.296285 0.513181i
\(320\) 0 0
\(321\) 27.9981 15.7016i 1.56270 0.876378i
\(322\) 0 0
\(323\) 33.4874 1.86329
\(324\) 0 0
\(325\) −11.5710 0.605605i −0.641846 0.0335929i
\(326\) 0 0
\(327\) 27.5515 + 16.3693i 1.52360 + 0.905222i
\(328\) 0 0
\(329\) 5.36252 + 8.54559i 0.295645 + 0.471133i
\(330\) 0 0
\(331\) 12.0041 + 20.7918i 0.659807 + 1.14282i 0.980665 + 0.195693i \(0.0626955\pi\)
−0.320858 + 0.947127i \(0.603971\pi\)
\(332\) 0 0
\(333\) −7.41051 + 4.03500i −0.406093 + 0.221116i
\(334\) 0 0
\(335\) −8.19156 5.01940i −0.447553 0.274239i
\(336\) 0 0
\(337\) 9.42028i 0.513155i 0.966524 + 0.256578i \(0.0825949\pi\)
−0.966524 + 0.256578i \(0.917405\pi\)
\(338\) 0 0
\(339\) 0.127031 10.1658i 0.00689939 0.552130i
\(340\) 0 0
\(341\) 2.04398 + 3.54027i 0.110688 + 0.191716i
\(342\) 0 0
\(343\) 2.04104 + 18.4074i 0.110206 + 0.993909i
\(344\) 0 0
\(345\) 16.6826 8.79057i 0.898163 0.473268i
\(346\) 0 0
\(347\) 11.1961 19.3922i 0.601037 1.04103i −0.391627 0.920124i \(-0.628088\pi\)
0.992664 0.120903i \(-0.0385789\pi\)
\(348\) 0 0
\(349\) 12.0663i 0.645895i −0.946417 0.322948i \(-0.895326\pi\)
0.946417 0.322948i \(-0.104674\pi\)
\(350\) 0 0
\(351\) 0.451278 12.0330i 0.0240875 0.642273i
\(352\) 0 0
\(353\) 7.19515 + 4.15412i 0.382959 + 0.221102i 0.679105 0.734041i \(-0.262368\pi\)
−0.296146 + 0.955143i \(0.595701\pi\)
\(354\) 0 0
\(355\) −0.414034 + 15.8324i −0.0219747 + 0.840296i
\(356\) 0 0
\(357\) 20.8903 + 11.3930i 1.10563 + 0.602981i
\(358\) 0 0
\(359\) −6.27295 + 3.62169i −0.331074 + 0.191145i −0.656318 0.754485i \(-0.727887\pi\)
0.325244 + 0.945630i \(0.394554\pi\)
\(360\) 0 0
\(361\) 11.2959 19.5651i 0.594522 1.02974i
\(362\) 0 0
\(363\) −2.69447 + 1.51108i −0.141423 + 0.0793111i
\(364\) 0 0
\(365\) −0.178334 + 0.291038i −0.00933444 + 0.0152336i
\(366\) 0 0
\(367\) −0.624486 + 1.08164i −0.0325979 + 0.0564612i −0.881864 0.471504i \(-0.843711\pi\)
0.849266 + 0.527965i \(0.177045\pi\)
\(368\) 0 0
\(369\) 3.19104 + 0.0797625i 0.166119 + 0.00415227i
\(370\) 0 0
\(371\) −16.5085 8.73745i −0.857078 0.453626i
\(372\) 0 0
\(373\) −26.7505 + 15.4444i −1.38509 + 0.799682i −0.992757 0.120141i \(-0.961665\pi\)
−0.392334 + 0.919823i \(0.628332\pi\)
\(374\) 0 0
\(375\) −1.75844 + 19.2849i −0.0908054 + 0.995869i
\(376\) 0 0
\(377\) 8.07888i 0.416083i
\(378\) 0 0
\(379\) 29.6463 1.52283 0.761413 0.648267i \(-0.224506\pi\)
0.761413 + 0.648267i \(0.224506\pi\)
\(380\) 0 0
\(381\) −25.2680 0.315748i −1.29452 0.0161763i
\(382\) 0 0
\(383\) 18.1740 10.4927i 0.928646 0.536154i 0.0422631 0.999107i \(-0.486543\pi\)
0.886383 + 0.462952i \(0.153210\pi\)
\(384\) 0 0
\(385\) −8.81379 + 15.6490i −0.449192 + 0.797548i
\(386\) 0 0
\(387\) −0.181460 + 7.25961i −0.00922412 + 0.369027i
\(388\) 0 0
\(389\) −14.2540 8.22952i −0.722704 0.417253i 0.0930430 0.995662i \(-0.470341\pi\)
−0.815747 + 0.578409i \(0.803674\pi\)
\(390\) 0 0
\(391\) 25.2815i 1.27854i
\(392\) 0 0
\(393\) 30.3217 17.0047i 1.52953 0.857772i
\(394\) 0 0
\(395\) 6.49740 + 11.9657i 0.326919 + 0.602061i
\(396\) 0 0
\(397\) −2.04631 3.54432i −0.102702 0.177884i 0.810095 0.586298i \(-0.199415\pi\)
−0.912797 + 0.408414i \(0.866082\pi\)
\(398\) 0 0
\(399\) 25.2275 15.3948i 1.26296 0.770704i
\(400\) 0 0
\(401\) 22.5314 13.0085i 1.12516 0.649613i 0.182449 0.983215i \(-0.441598\pi\)
0.942714 + 0.333602i \(0.108264\pi\)
\(402\) 0 0
\(403\) −2.70241 1.56024i −0.134617 0.0777210i
\(404\) 0 0
\(405\) −20.0663 1.53053i −0.997104 0.0760528i
\(406\) 0 0
\(407\) 8.53866 0.423246
\(408\) 0 0
\(409\) 30.5083 + 17.6140i 1.50854 + 0.870955i 0.999951 + 0.00994431i \(0.00316542\pi\)
0.508587 + 0.861010i \(0.330168\pi\)
\(410\) 0 0
\(411\) −6.95490 4.13214i −0.343060 0.203823i
\(412\) 0 0
\(413\) −28.9042 15.2981i −1.42228 0.752772i
\(414\) 0 0
\(415\) 0.600678 22.9695i 0.0294861 1.12753i
\(416\) 0 0
\(417\) −9.54798 0.119311i −0.467566 0.00584269i
\(418\) 0 0
\(419\) 40.3278 1.97014 0.985072 0.172146i \(-0.0550700\pi\)
0.985072 + 0.172146i \(0.0550700\pi\)
\(420\) 0 0
\(421\) 0.216416 0.0105475 0.00527375 0.999986i \(-0.498321\pi\)
0.00527375 + 0.999986i \(0.498321\pi\)
\(422\) 0 0
\(423\) 10.0468 5.47046i 0.488493 0.265983i
\(424\) 0 0
\(425\) −21.7750 14.1387i −1.05624 0.685827i
\(426\) 0 0
\(427\) −18.5845 29.6158i −0.899367 1.43321i
\(428\) 0 0
\(429\) −6.22406 + 10.4759i −0.300500 + 0.505780i
\(430\) 0 0
\(431\) −25.3179 14.6173i −1.21952 0.704090i −0.254705 0.967019i \(-0.581978\pi\)
−0.964815 + 0.262928i \(0.915312\pi\)
\(432\) 0 0
\(433\) 19.8669 0.954743 0.477371 0.878702i \(-0.341590\pi\)
0.477371 + 0.878702i \(0.341590\pi\)
\(434\) 0 0
\(435\) 13.4920 + 0.521596i 0.646891 + 0.0250086i
\(436\) 0 0
\(437\) 27.1932 + 15.7000i 1.30083 + 0.751033i
\(438\) 0 0
\(439\) 19.0134 10.9774i 0.907459 0.523921i 0.0278460 0.999612i \(-0.491135\pi\)
0.879613 + 0.475691i \(0.157802\pi\)
\(440\) 0 0
\(441\) 20.9752 1.02082i 0.998818 0.0486105i
\(442\) 0 0
\(443\) 4.36391 + 7.55852i 0.207336 + 0.359116i 0.950874 0.309577i \(-0.100187\pi\)
−0.743539 + 0.668693i \(0.766854\pi\)
\(444\) 0 0
\(445\) 15.1713 + 27.9397i 0.719188 + 1.32447i
\(446\) 0 0
\(447\) −12.3830 22.0806i −0.585696 1.04438i
\(448\) 0 0
\(449\) 1.03244i 0.0487238i −0.999703 0.0243619i \(-0.992245\pi\)
0.999703 0.0243619i \(-0.00775540\pi\)
\(450\) 0 0
\(451\) −2.79742 1.61509i −0.131725 0.0760517i
\(452\) 0 0
\(453\) 13.3451 + 7.92875i 0.627007 + 0.372525i
\(454\) 0 0
\(455\) −0.146212 13.7090i −0.00685452 0.642688i
\(456\) 0 0
\(457\) 27.2085 15.7088i 1.27276 0.734828i 0.297253 0.954799i \(-0.403930\pi\)
0.975506 + 0.219971i \(0.0705963\pi\)
\(458\) 0 0
\(459\) 14.3567 22.8443i 0.670115 1.06628i
\(460\) 0 0
\(461\) 3.22290 0.150105 0.0750526 0.997180i \(-0.476088\pi\)
0.0750526 + 0.997180i \(0.476088\pi\)
\(462\) 0 0
\(463\) 5.06917i 0.235584i −0.993038 0.117792i \(-0.962418\pi\)
0.993038 0.117792i \(-0.0375817\pi\)
\(464\) 0 0
\(465\) −2.78013 + 4.41238i −0.128925 + 0.204619i
\(466\) 0 0
\(467\) −7.81525 + 4.51214i −0.361647 + 0.208797i −0.669803 0.742539i \(-0.733621\pi\)
0.308156 + 0.951336i \(0.400288\pi\)
\(468\) 0 0
\(469\) 5.31749 10.0468i 0.245539 0.463920i
\(470\) 0 0
\(471\) −30.5861 18.1722i −1.40933 0.837332i
\(472\) 0 0
\(473\) 3.67433 6.36413i 0.168946 0.292623i
\(474\) 0 0
\(475\) −28.7303 + 14.6413i −1.31823 + 0.671790i
\(476\) 0 0
\(477\) −11.0445 + 18.0712i −0.505694 + 0.827425i
\(478\) 0 0
\(479\) −1.26094 + 2.18401i −0.0576137 + 0.0997899i −0.893394 0.449275i \(-0.851683\pi\)
0.835780 + 0.549064i \(0.185016\pi\)
\(480\) 0 0
\(481\) −5.64464 + 3.25893i −0.257373 + 0.148594i
\(482\) 0 0
\(483\) 11.6224 + 19.0457i 0.528837 + 0.866608i
\(484\) 0 0
\(485\) 19.2966 + 0.504628i 0.876214 + 0.0229140i
\(486\) 0 0
\(487\) −2.12791 1.22855i −0.0964247 0.0556709i 0.451012 0.892518i \(-0.351063\pi\)
−0.547437 + 0.836847i \(0.684396\pi\)
\(488\) 0 0
\(489\) 16.9873 + 30.2908i 0.768194 + 1.36980i
\(490\) 0 0
\(491\) 14.3239i 0.646429i −0.946326 0.323215i \(-0.895236\pi\)
0.946326 0.323215i \(-0.104764\pi\)
\(492\) 0 0
\(493\) −9.05110 + 15.6770i −0.407641 + 0.706055i
\(494\) 0 0
\(495\) 17.0932 + 11.0707i 0.768282 + 0.497592i
\(496\) 0 0
\(497\) −18.7268 + 0.689649i −0.840014 + 0.0309350i
\(498\) 0 0
\(499\) −19.8770 34.4279i −0.889816 1.54121i −0.840093 0.542443i \(-0.817500\pi\)
−0.0497229 0.998763i \(-0.515834\pi\)
\(500\) 0 0
\(501\) −21.2095 0.265033i −0.947572 0.0118408i
\(502\) 0 0
\(503\) 10.6486i 0.474796i 0.971412 + 0.237398i \(0.0762946\pi\)
−0.971412 + 0.237398i \(0.923705\pi\)
\(504\) 0 0
\(505\) −19.2323 + 31.3868i −0.855828 + 1.39669i
\(506\) 0 0
\(507\) −0.165123 + 13.2141i −0.00733337 + 0.586860i
\(508\) 0 0
\(509\) 18.5593 + 32.1456i 0.822626 + 1.42483i 0.903721 + 0.428123i \(0.140825\pi\)
−0.0810950 + 0.996706i \(0.525842\pi\)
\(510\) 0 0
\(511\) −0.356954 0.188925i −0.0157907 0.00835755i
\(512\) 0 0
\(513\) −15.6560 29.6288i −0.691231 1.30815i
\(514\) 0 0
\(515\) −7.04744 12.9787i −0.310547 0.571910i
\(516\) 0 0
\(517\) −11.5763 −0.509127
\(518\) 0 0
\(519\) 18.4901 + 32.9705i 0.811627 + 1.44725i
\(520\) 0 0
\(521\) −8.12000 + 14.0642i −0.355744 + 0.616166i −0.987245 0.159209i \(-0.949106\pi\)
0.631501 + 0.775375i \(0.282439\pi\)
\(522\) 0 0
\(523\) 8.87476 + 15.3715i 0.388066 + 0.672150i 0.992189 0.124741i \(-0.0398099\pi\)
−0.604123 + 0.796891i \(0.706477\pi\)
\(524\) 0 0
\(525\) −22.9039 0.640914i −0.999609 0.0279718i
\(526\) 0 0
\(527\) −3.49600 6.05525i −0.152288 0.263771i
\(528\) 0 0
\(529\) −0.352809 + 0.611082i −0.0153395 + 0.0265688i
\(530\) 0 0
\(531\) −19.3375 + 31.6404i −0.839177 + 1.37308i
\(532\) 0 0
\(533\) 2.46571 0.106802
\(534\) 0 0
\(535\) −19.7754 36.4188i −0.854966 1.57452i
\(536\) 0 0
\(537\) 1.13429 1.90914i 0.0489480 0.0823857i
\(538\) 0 0
\(539\) −19.1356 9.24304i −0.824228 0.398126i
\(540\) 0 0
\(541\) −0.167695 0.290456i −0.00720976 0.0124877i 0.862398 0.506231i \(-0.168962\pi\)
−0.869608 + 0.493743i \(0.835628\pi\)
\(542\) 0 0
\(543\) −25.2197 0.315144i −1.08228 0.0135241i
\(544\) 0 0
\(545\) 21.6161 35.2771i 0.925934 1.51110i
\(546\) 0 0
\(547\) 11.7041i 0.500433i 0.968190 + 0.250216i \(0.0805018\pi\)
−0.968190 + 0.250216i \(0.919498\pi\)
\(548\) 0 0
\(549\) −34.8186 + 18.9586i −1.48602 + 0.809133i
\(550\) 0 0
\(551\) 11.2416 + 19.4710i 0.478909 + 0.829495i
\(552\) 0 0
\(553\) −13.6463 + 8.56333i −0.580300 + 0.364150i
\(554\) 0 0
\(555\) 5.07809 + 9.63713i 0.215553 + 0.409073i
\(556\) 0 0
\(557\) −2.55833 + 4.43115i −0.108400 + 0.187754i −0.915122 0.403177i \(-0.867906\pi\)
0.806722 + 0.590931i \(0.201239\pi\)
\(558\) 0 0
\(559\) 5.60950i 0.237256i
\(560\) 0 0
\(561\) −23.8143 + 13.3552i −1.00544 + 0.563858i
\(562\) 0 0
\(563\) −16.8089 9.70464i −0.708412 0.409002i 0.102061 0.994778i \(-0.467456\pi\)
−0.810473 + 0.585776i \(0.800790\pi\)
\(564\) 0 0
\(565\) −13.1205 0.343116i −0.551984 0.0144350i
\(566\) 0 0
\(567\) 0.313618 23.8097i 0.0131707 0.999913i
\(568\) 0 0
\(569\) 20.1553 11.6367i 0.844954 0.487834i −0.0139912 0.999902i \(-0.504454\pi\)
0.858945 + 0.512068i \(0.171120\pi\)
\(570\) 0 0
\(571\) 7.04462 12.2016i 0.294808 0.510623i −0.680132 0.733090i \(-0.738078\pi\)
0.974940 + 0.222467i \(0.0714109\pi\)
\(572\) 0 0
\(573\) 20.2531 + 36.1141i 0.846084 + 1.50869i
\(574\) 0 0
\(575\) −11.0535 21.6901i −0.460965 0.904539i
\(576\) 0 0
\(577\) 11.0816 19.1938i 0.461332 0.799050i −0.537696 0.843139i \(-0.680705\pi\)
0.999028 + 0.0440886i \(0.0140384\pi\)
\(578\) 0 0
\(579\) −7.46494 + 12.5644i −0.310232 + 0.522160i
\(580\) 0 0
\(581\) 27.1688 1.00054i 1.12715 0.0415093i
\(582\) 0 0
\(583\) 18.5608 10.7161i 0.768709 0.443815i
\(584\) 0 0
\(585\) −15.5251 0.794580i −0.641884 0.0328518i
\(586\) 0 0
\(587\) 11.5459i 0.476550i −0.971198 0.238275i \(-0.923418\pi\)
0.971198 0.238275i \(-0.0765819\pi\)
\(588\) 0 0
\(589\) −8.68418 −0.357825
\(590\) 0 0
\(591\) −0.178734 + 14.3034i −0.00735214 + 0.588362i
\(592\) 0 0
\(593\) −18.5778 + 10.7259i −0.762901 + 0.440461i −0.830336 0.557263i \(-0.811852\pi\)
0.0674357 + 0.997724i \(0.478518\pi\)
\(594\) 0 0
\(595\) 15.0750 26.7660i 0.618016 1.09730i
\(596\) 0 0
\(597\) 9.13331 15.3725i 0.373801 0.629155i
\(598\) 0 0
\(599\) −3.19001 1.84175i −0.130340 0.0752519i 0.433412 0.901196i \(-0.357309\pi\)
−0.563752 + 0.825944i \(0.690643\pi\)
\(600\) 0 0
\(601\) 8.20607i 0.334733i 0.985895 + 0.167366i \(0.0535263\pi\)
−0.985895 + 0.167366i \(0.946474\pi\)
\(602\) 0 0
\(603\) −10.9979 6.72154i −0.447869 0.273722i
\(604\) 0 0
\(605\) 1.90313 + 3.50484i 0.0773734 + 0.142492i
\(606\) 0 0
\(607\) 3.52607 + 6.10733i 0.143119 + 0.247889i 0.928670 0.370908i \(-0.120954\pi\)
−0.785551 + 0.618797i \(0.787620\pi\)
\(608\) 0 0
\(609\) 0.388412 + 15.9711i 0.0157392 + 0.647183i
\(610\) 0 0
\(611\) 7.65274 4.41831i 0.309597 0.178746i
\(612\) 0 0
\(613\) −17.0882 9.86586i −0.690185 0.398478i 0.113496 0.993538i \(-0.463795\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(614\) 0 0
\(615\) 0.159194 4.11782i 0.00641930 0.166047i
\(616\) 0 0
\(617\) 7.15802 0.288171 0.144086 0.989565i \(-0.453976\pi\)
0.144086 + 0.989565i \(0.453976\pi\)
\(618\) 0 0
\(619\) −8.50675 4.91137i −0.341915 0.197405i 0.319204 0.947686i \(-0.396585\pi\)
−0.661119 + 0.750281i \(0.729918\pi\)
\(620\) 0 0
\(621\) 22.3685 11.8196i 0.897616 0.474305i
\(622\) 0 0
\(623\) −31.8639 + 19.9952i −1.27660 + 0.801090i
\(624\) 0 0
\(625\) 24.8634 + 2.60975i 0.994536 + 0.104390i
\(626\) 0 0
\(627\) −0.423722 + 33.9088i −0.0169218 + 1.35419i
\(628\) 0 0
\(629\) −14.6045 −0.582318
\(630\) 0 0
\(631\) −13.2595 −0.527854 −0.263927 0.964543i \(-0.585018\pi\)
−0.263927 + 0.964543i \(0.585018\pi\)
\(632\) 0 0
\(633\) −0.124591 + 9.97054i −0.00495206 + 0.396293i
\(634\) 0 0
\(635\) −0.852847 + 32.6123i −0.0338442 + 1.29418i
\(636\) 0 0
\(637\) 16.1777 1.19316i 0.640983 0.0472748i
\(638\) 0 0
\(639\) −0.530961 + 21.2420i −0.0210045 + 0.840321i
\(640\) 0 0
\(641\) −24.8302 14.3357i −0.980734 0.566227i −0.0782423 0.996934i \(-0.524931\pi\)
−0.902492 + 0.430707i \(0.858264\pi\)
\(642\) 0 0
\(643\) 38.1006 1.50254 0.751271 0.659994i \(-0.229441\pi\)
0.751271 + 0.659994i \(0.229441\pi\)
\(644\) 0 0
\(645\) 9.36804 + 0.362166i 0.368866 + 0.0142603i
\(646\) 0 0
\(647\) −33.4126 19.2908i −1.31359 0.758399i −0.330897 0.943667i \(-0.607351\pi\)
−0.982688 + 0.185268i \(0.940685\pi\)
\(648\) 0 0
\(649\) 32.4975 18.7625i 1.27564 0.736491i
\(650\) 0 0
\(651\) −5.41742 2.95451i −0.212325 0.115796i
\(652\) 0 0
\(653\) −21.2942 36.8826i −0.833306 1.44333i −0.895402 0.445259i \(-0.853112\pi\)
0.0620956 0.998070i \(-0.480222\pi\)
\(654\) 0 0
\(655\) −21.4166 39.4412i −0.836815 1.54109i
\(656\) 0 0
\(657\) −0.238810 + 0.390744i −0.00931685 + 0.0152444i
\(658\) 0 0
\(659\) 13.0441i 0.508128i −0.967187 0.254064i \(-0.918233\pi\)
0.967187 0.254064i \(-0.0817674\pi\)
\(660\) 0 0
\(661\) −12.9159 7.45701i −0.502371 0.290044i 0.227321 0.973820i \(-0.427003\pi\)
−0.729692 + 0.683776i \(0.760337\pi\)
\(662\) 0 0
\(663\) 10.6456 17.9178i 0.413440 0.695871i
\(664\) 0 0
\(665\) −19.4282 32.8369i −0.753394 1.27336i
\(666\) 0 0
\(667\) −14.6998 + 8.48692i −0.569178 + 0.328615i
\(668\) 0 0
\(669\) 0.586337 46.9222i 0.0226691 1.81412i
\(670\) 0 0
\(671\) 40.1193 1.54879
\(672\) 0 0
\(673\) 51.0490i 1.96780i −0.178732 0.983898i \(-0.557199\pi\)
0.178732 0.983898i \(-0.442801\pi\)
\(674\) 0 0
\(675\) −2.32932 + 25.8761i −0.0896556 + 0.995973i
\(676\) 0 0
\(677\) 0.281190 0.162345i 0.0108070 0.00623942i −0.494587 0.869128i \(-0.664681\pi\)
0.505394 + 0.862889i \(0.331347\pi\)
\(678\) 0 0
\(679\) 0.840548 + 22.8244i 0.0322573 + 0.875920i
\(680\) 0 0
\(681\) 6.33710 10.6661i 0.242838 0.408727i
\(682\) 0 0
\(683\) −14.8704 + 25.7563i −0.569001 + 0.985538i 0.427665 + 0.903938i \(0.359336\pi\)
−0.996665 + 0.0816004i \(0.973997\pi\)
\(684\) 0 0
\(685\) −5.45662 + 8.90509i −0.208487 + 0.340246i
\(686\) 0 0
\(687\) −4.07566 7.26748i −0.155496 0.277272i
\(688\) 0 0
\(689\) −8.17996 + 14.1681i −0.311632 + 0.539762i
\(690\) 0 0
\(691\) −25.2719 + 14.5907i −0.961388 + 0.555058i −0.896600 0.442842i \(-0.853970\pi\)
−0.0647879 + 0.997899i \(0.520637\pi\)
\(692\) 0 0
\(693\) −11.8007 + 21.0090i −0.448271 + 0.798066i
\(694\) 0 0
\(695\) −0.322263 + 12.3231i −0.0122241 + 0.467443i
\(696\) 0 0
\(697\) 4.78468 + 2.76244i 0.181233 + 0.104635i
\(698\) 0 0
\(699\) 26.9091 15.0909i 1.01780 0.570789i
\(700\) 0 0
\(701\) 4.22879i 0.159719i 0.996806 + 0.0798596i \(0.0254472\pi\)
−0.996806 + 0.0798596i \(0.974553\pi\)
\(702\) 0 0
\(703\) −9.06949 + 15.7088i −0.342062 + 0.592470i
\(704\) 0 0
\(705\) −6.88464 13.0656i −0.259291 0.492078i
\(706\) 0 0
\(707\) −38.4954 20.3745i −1.44777 0.766261i
\(708\) 0 0
\(709\) 13.9852 + 24.2230i 0.525225 + 0.909716i 0.999568 + 0.0293760i \(0.00935203\pi\)
−0.474344 + 0.880340i \(0.657315\pi\)
\(710\) 0 0
\(711\) 8.73570 + 16.0436i 0.327614 + 0.601683i
\(712\) 0 0
\(713\) 6.55617i 0.245531i
\(714\) 0 0
\(715\) 13.4134 + 8.21907i 0.501631 + 0.307376i
\(716\) 0 0
\(717\) 23.8774 + 0.298371i 0.891719 + 0.0111429i
\(718\) 0 0
\(719\) 2.81744 + 4.87995i 0.105073 + 0.181991i 0.913768 0.406237i \(-0.133159\pi\)
−0.808695 + 0.588228i \(0.799826\pi\)
\(720\) 0 0
\(721\) 14.8016 9.28827i 0.551239 0.345913i
\(722\) 0 0
\(723\) −12.0325 + 20.2522i −0.447493 + 0.753188i
\(724\) 0 0
\(725\) 0.911061 17.4073i 0.0338360 0.646490i
\(726\) 0 0
\(727\) −36.1095 −1.33923 −0.669613 0.742710i \(-0.733540\pi\)
−0.669613 + 0.742710i \(0.733540\pi\)
\(728\) 0 0
\(729\) −26.9242 2.02234i −0.997191 0.0749016i
\(730\) 0 0
\(731\) −6.28455 + 10.8852i −0.232443 + 0.402602i
\(732\) 0 0
\(733\) −2.99103 5.18062i −0.110476 0.191351i 0.805486 0.592615i \(-0.201904\pi\)
−0.915962 + 0.401264i \(0.868571\pi\)
\(734\) 0 0
\(735\) −0.948140 27.0943i −0.0349727 0.999388i
\(736\) 0 0
\(737\) 6.52165 + 11.2958i 0.240228 + 0.416087i
\(738\) 0 0
\(739\) −19.1257 + 33.1266i −0.703549 + 1.21858i 0.263663 + 0.964615i \(0.415069\pi\)
−0.967213 + 0.253968i \(0.918264\pi\)
\(740\) 0 0
\(741\) −12.6618 22.5777i −0.465142 0.829413i
\(742\) 0 0
\(743\) −3.60215 −0.132150 −0.0660750 0.997815i \(-0.521048\pi\)
−0.0660750 + 0.997815i \(0.521048\pi\)
\(744\) 0 0
\(745\) −28.7215 + 15.5958i −1.05228 + 0.571386i
\(746\) 0 0
\(747\) 0.770315 30.8178i 0.0281843 1.12756i
\(748\) 0 0
\(749\) 41.5338 26.0633i 1.51761 0.952331i
\(750\) 0 0
\(751\) 2.07691 + 3.59731i 0.0757874 + 0.131268i 0.901428 0.432928i \(-0.142520\pi\)
−0.825641 + 0.564196i \(0.809186\pi\)
\(752\) 0 0
\(753\) −0.170885 + 13.6752i −0.00622738 + 0.498352i
\(754\) 0 0
\(755\) 10.4702 17.0871i 0.381049 0.621864i
\(756\) 0 0
\(757\) 15.4535i 0.561668i 0.959756 + 0.280834i \(0.0906110\pi\)
−0.959756 + 0.280834i \(0.909389\pi\)
\(758\) 0 0
\(759\) −25.5996 0.319891i −0.929207 0.0116113i
\(760\) 0 0
\(761\) −14.2676 24.7122i −0.517199 0.895816i −0.999800 0.0199755i \(-0.993641\pi\)
0.482601 0.875840i \(-0.339692\pi\)
\(762\) 0 0
\(763\) 43.2669 + 22.8999i 1.56637 + 0.829031i
\(764\) 0 0
\(765\) −29.2361 18.9353i −1.05703 0.684607i
\(766\) 0 0
\(767\) −14.3220 + 24.8065i −0.517139 + 0.895711i
\(768\) 0 0
\(769\) 19.5067i 0.703431i −0.936107 0.351716i \(-0.885598\pi\)
0.936107 0.351716i \(-0.114402\pi\)
\(770\) 0 0
\(771\) 15.6522 + 27.9100i 0.563699 + 1.00515i
\(772\) 0 0
\(773\) 18.2685 + 10.5473i 0.657074 + 0.379362i 0.791161 0.611608i \(-0.209477\pi\)
−0.134087 + 0.990970i \(0.542810\pi\)
\(774\) 0 0
\(775\) 5.64684 + 3.66654i 0.202841 + 0.131706i
\(776\) 0 0
\(777\) −11.0022 + 6.71396i −0.394702 + 0.240862i
\(778\) 0 0
\(779\) 5.94266 3.43100i 0.212918 0.122928i
\(780\) 0 0
\(781\) 10.7513 18.6218i 0.384712 0.666340i
\(782\) 0 0
\(783\) 18.1022 + 0.678895i 0.646920 + 0.0242617i
\(784\) 0 0
\(785\) −23.9970 + 39.1626i −0.856490 + 1.39777i
\(786\) 0 0
\(787\) −2.60421 + 4.51062i −0.0928301 + 0.160786i −0.908701 0.417448i \(-0.862925\pi\)
0.815871 + 0.578234i \(0.196258\pi\)
\(788\) 0 0
\(789\) −32.1024 19.0731i −1.14288 0.679021i
\(790\) 0 0
\(791\) −0.571521 15.5192i −0.0203210 0.551799i
\(792\) 0 0
\(793\) −26.5216 + 15.3122i −0.941808 + 0.543753i
\(794\) 0 0
\(795\) 23.1331 + 14.5755i 0.820446 + 0.516941i
\(796\) 0 0
\(797\) 41.1247i 1.45671i −0.685199 0.728356i \(-0.740285\pi\)
0.685199 0.728356i \(-0.259715\pi\)
\(798\) 0 0
\(799\) 19.8001 0.700476
\(800\) 0 0
\(801\) 20.3977 + 37.4615i 0.720717 + 1.32364i
\(802\) 0 0
\(803\) 0.401329 0.231708i 0.0141626 0.00817679i
\(804\) 0 0
\(805\) 24.7904 14.6674i 0.873746 0.516960i
\(806\) 0 0
\(807\) 23.7798 + 14.1284i 0.837089 + 0.497342i
\(808\) 0 0
\(809\) −8.18379 4.72491i −0.287727 0.166119i 0.349190 0.937052i \(-0.386457\pi\)
−0.636916 + 0.770933i \(0.719790\pi\)
\(810\) 0 0
\(811\) 13.1110i 0.460388i 0.973145 + 0.230194i \(0.0739361\pi\)
−0.973145 + 0.230194i \(0.926064\pi\)
\(812\) 0 0
\(813\) 4.62149 + 8.24076i 0.162083 + 0.289016i
\(814\) 0 0
\(815\) 39.4010 21.3948i 1.38016 0.749426i
\(816\) 0 0
\(817\) 7.80552 + 13.5196i 0.273081 + 0.472989i
\(818\) 0 0
\(819\) −0.217398 18.3923i −0.00759651 0.642679i
\(820\) 0 0
\(821\) 24.7530 14.2911i 0.863885 0.498764i −0.00142663 0.999999i \(-0.500454\pi\)
0.865311 + 0.501235i \(0.167121\pi\)
\(822\) 0 0
\(823\) −21.4406 12.3787i −0.747371 0.431495i 0.0773725 0.997002i \(-0.475347\pi\)
−0.824743 + 0.565508i \(0.808680\pi\)
\(824\) 0 0
\(825\) 14.5921 21.8701i 0.508033 0.761419i
\(826\) 0 0
\(827\) 35.9582 1.25039 0.625194 0.780470i \(-0.285020\pi\)
0.625194 + 0.780470i \(0.285020\pi\)
\(828\) 0 0
\(829\) −12.8068 7.39399i −0.444798 0.256804i 0.260833 0.965384i \(-0.416003\pi\)
−0.705631 + 0.708580i \(0.749336\pi\)
\(830\) 0 0
\(831\) −6.86813 + 11.5599i −0.238253 + 0.401010i
\(832\) 0 0
\(833\) 32.7294 + 15.8092i 1.13400 + 0.547757i
\(834\) 0 0
\(835\) −0.715864 + 27.3742i −0.0247735 + 0.947322i
\(836\) 0 0
\(837\) −3.72309 + 5.92414i −0.128689 + 0.204768i
\(838\) 0 0
\(839\) −0.979006 −0.0337991 −0.0168995 0.999857i \(-0.505380\pi\)
−0.0168995 + 0.999857i \(0.505380\pi\)
\(840\) 0 0
\(841\) 16.8463 0.580906
\(842\) 0 0
\(843\) −1.28607 0.0160707i −0.0442946 0.000553504i
\(844\) 0 0
\(845\) 17.0549 + 0.446003i 0.586705 + 0.0153430i
\(846\) 0 0
\(847\) −3.99710 + 2.50826i −0.137342 + 0.0861848i
\(848\) 0 0
\(849\) 14.2809 + 8.48472i 0.490118 + 0.291195i
\(850\) 0 0
\(851\) −11.8595 6.84707i −0.406537 0.234714i
\(852\) 0 0
\(853\) 31.6889 1.08501 0.542504 0.840053i \(-0.317476\pi\)
0.542504 + 0.840053i \(0.317476\pi\)
\(854\) 0 0
\(855\) −38.5230 + 19.6879i −1.31746 + 0.673311i
\(856\) 0 0
\(857\) 28.0280 + 16.1820i 0.957419 + 0.552766i 0.895378 0.445307i \(-0.146906\pi\)
0.0620413 + 0.998074i \(0.480239\pi\)
\(858\) 0 0
\(859\) −41.2350 + 23.8070i −1.40692 + 0.812285i −0.995090 0.0989753i \(-0.968444\pi\)
−0.411830 + 0.911261i \(0.635110\pi\)
\(860\) 0 0
\(861\) 4.87447 0.118545i 0.166121 0.00404001i
\(862\) 0 0
\(863\) −2.98476 5.16975i −0.101602 0.175980i 0.810743 0.585403i \(-0.199064\pi\)
−0.912345 + 0.409422i \(0.865730\pi\)
\(864\) 0 0
\(865\) 42.8866 23.2875i 1.45819 0.791798i
\(866\) 0 0
\(867\) 15.0497 8.44002i 0.511116 0.286638i
\(868\) 0 0
\(869\) 18.4861i 0.627097i
\(870\) 0 0
\(871\) −8.62251 4.97821i −0.292163 0.168680i
\(872\) 0 0
\(873\) 25.8899 + 0.647139i 0.876240 + 0.0219023i
\(874\) 0 0
\(875\) −1.23094 + 29.5548i −0.0416132 + 0.999134i
\(876\) 0 0
\(877\) −14.7945 + 8.54159i −0.499574 + 0.288429i −0.728537 0.685006i \(-0.759800\pi\)
0.228964 + 0.973435i \(0.426466\pi\)
\(878\) 0 0
\(879\) 0.986646 + 0.0123291i 0.0332788 + 0.000415850i
\(880\) 0 0
\(881\) −13.7490 −0.463215 −0.231607 0.972809i \(-0.574399\pi\)
−0.231607 + 0.972809i \(0.574399\pi\)
\(882\) 0 0
\(883\) 29.4325i 0.990482i −0.868756 0.495241i \(-0.835080\pi\)
0.868756 0.495241i \(-0.164920\pi\)
\(884\) 0 0
\(885\) 40.5030 + 25.5199i 1.36149 + 0.857841i
\(886\) 0 0
\(887\) 14.5904 8.42380i 0.489899 0.282843i −0.234633 0.972084i \(-0.575389\pi\)
0.724533 + 0.689240i \(0.242056\pi\)
\(888\) 0 0
\(889\) −38.5744 + 1.42057i −1.29374 + 0.0476444i
\(890\) 0 0
\(891\) 22.9501 + 14.8265i 0.768856 + 0.496705i
\(892\) 0 0
\(893\) 12.2960 21.2973i 0.411470 0.712687i
\(894\) 0 0
\(895\) −2.44448 1.49786i −0.0817099 0.0500680i
\(896\) 0 0
\(897\) 17.0452 9.55907i 0.569122 0.319168i
\(898\) 0 0
\(899\) 2.34720 4.06546i 0.0782834 0.135591i
\(900\) 0 0
\(901\) −31.7462 + 18.3287i −1.05762 + 0.610617i
\(902\) 0 0
\(903\) 0.269690 + 11.0894i 0.00897473 + 0.369033i
\(904\) 0 0
\(905\) −0.851214 + 32.5498i −0.0282953 + 1.08199i
\(906\) 0 0
\(907\) 14.0050 + 8.08581i 0.465030 + 0.268485i 0.714157 0.699986i \(-0.246810\pi\)
−0.249127 + 0.968471i \(0.580144\pi\)
\(908\) 0 0
\(909\) −25.7543 + 42.1395i −0.854215 + 1.39768i
\(910\) 0 0
\(911\) 13.3127i 0.441071i 0.975379 + 0.220535i \(0.0707805\pi\)
−0.975379 + 0.220535i \(0.929220\pi\)
\(912\) 0 0
\(913\) −15.5979 + 27.0164i −0.516216 + 0.894111i
\(914\) 0 0
\(915\) 23.8596 + 45.2805i 0.788775 + 1.49693i
\(916\) 0 0
\(917\) 44.9807 28.2263i 1.48539 0.932113i
\(918\) 0 0
\(919\) 6.00415 + 10.3995i 0.198058 + 0.343047i 0.947899 0.318571i \(-0.103203\pi\)
−0.749840 + 0.661619i \(0.769870\pi\)
\(920\) 0 0
\(921\) 0.204824 16.3913i 0.00674919 0.540110i
\(922\) 0 0
\(923\) 16.4137i 0.540263i
\(924\) 0 0
\(925\) 12.5298 6.38535i 0.411978 0.209949i
\(926\) 0 0
\(927\) −9.47523 17.4018i −0.311208 0.571551i
\(928\) 0 0
\(929\) −3.50004 6.06225i −0.114833 0.198896i 0.802880 0.596140i \(-0.203300\pi\)
−0.917713 + 0.397244i \(0.869966\pi\)
\(930\) 0 0
\(931\) 37.3299 25.3866i 1.22344 0.832013i
\(932\) 0 0
\(933\) −9.70446 5.76574i −0.317710 0.188762i
\(934\) 0 0
\(935\) 16.8203 + 30.9765i 0.550082 + 1.01304i
\(936\) 0 0
\(937\) 20.7984 0.679456 0.339728 0.940524i \(-0.389665\pi\)
0.339728 + 0.940524i \(0.389665\pi\)
\(938\) 0 0
\(939\) −33.4423 + 18.7547i −1.09135 + 0.612037i
\(940\) 0 0
\(941\) −14.5688 + 25.2339i −0.474929 + 0.822600i −0.999588 0.0287120i \(-0.990859\pi\)
0.524659 + 0.851312i \(0.324193\pi\)
\(942\) 0 0
\(943\) 2.59025 + 4.48644i 0.0843501 + 0.146099i
\(944\) 0 0
\(945\) −30.7298 0.824399i −0.999640 0.0268177i
\(946\) 0 0
\(947\) 7.98578 + 13.8318i 0.259503 + 0.449472i 0.966109 0.258135i \(-0.0831079\pi\)
−0.706606 + 0.707607i \(0.749775\pi\)
\(948\) 0 0
\(949\) −0.176871 + 0.306349i −0.00574146 + 0.00994451i
\(950\) 0 0
\(951\) 6.36860 3.57156i 0.206516 0.115816i
\(952\) 0 0
\(953\) 24.9487 0.808167 0.404084 0.914722i \(-0.367590\pi\)
0.404084 + 0.914722i \(0.367590\pi\)
\(954\) 0 0
\(955\) 46.9756 25.5078i 1.52009 0.825413i
\(956\) 0 0
\(957\) −15.7597 9.36336i −0.509439 0.302674i
\(958\) 0 0
\(959\) −10.9220 5.78067i −0.352689 0.186668i
\(960\) 0 0
\(961\) −14.5934 25.2765i −0.470755 0.815371i
\(962\) 0 0
\(963\) −26.5879 48.8302i −0.856783 1.57353i
\(964\) 0 0
\(965\) 16.0876 + 9.85770i 0.517877 + 0.317331i
\(966\) 0 0
\(967\) 7.93647i 0.255220i −0.991824 0.127610i \(-0.959269\pi\)
0.991824 0.127610i \(-0.0407305\pi\)
\(968\) 0 0
\(969\) 0.724731 57.9973i 0.0232817 1.86314i
\(970\) 0 0
\(971\) −17.5378 30.3763i −0.562814 0.974822i −0.997249 0.0741192i \(-0.976385\pi\)
0.434436 0.900703i \(-0.356948\pi\)
\(972\) 0 0
\(973\) −14.5760 + 0.536788i −0.467286 + 0.0172086i
\(974\) 0 0
\(975\) −1.29928 + 20.0270i −0.0416101 + 0.641376i
\(976\) 0 0
\(977\) −1.56200 + 2.70546i −0.0499728 + 0.0865554i −0.889930 0.456098i \(-0.849247\pi\)
0.839957 + 0.542653i \(0.182580\pi\)
\(978\) 0 0
\(979\) 43.1646i 1.37955i
\(980\) 0 0
\(981\) 28.9464 47.3626i 0.924189 1.51217i
\(982\) 0 0
\(983\) 19.8301 + 11.4489i 0.632481 + 0.365163i 0.781712 0.623639i \(-0.214347\pi\)
−0.149231 + 0.988802i \(0.547680\pi\)
\(984\) 0 0
\(985\) 18.4607 + 0.482767i 0.588207 + 0.0153822i
\(986\) 0 0
\(987\) 14.9163 9.10249i 0.474791 0.289735i
\(988\) 0 0
\(989\) −10.2067 + 5.89282i −0.324553 + 0.187381i
\(990\) 0 0
\(991\) −5.34209 + 9.25277i −0.169697 + 0.293924i −0.938313 0.345786i \(-0.887612\pi\)
0.768616 + 0.639710i \(0.220946\pi\)
\(992\) 0 0
\(993\) 36.2694 20.3402i 1.15098 0.645476i
\(994\) 0 0
\(995\) −19.6830 12.0608i −0.623994 0.382354i
\(996\) 0 0
\(997\) −25.1937 + 43.6367i −0.797892 + 1.38199i 0.123094 + 0.992395i \(0.460718\pi\)
−0.920986 + 0.389595i \(0.872615\pi\)
\(998\) 0 0
\(999\) 6.82789 + 12.9217i 0.216025 + 0.408824i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.9 yes 32
3.2 odd 2 inner 420.2.bn.a.269.14 yes 32
5.2 odd 4 2100.2.bi.n.101.1 32
5.3 odd 4 2100.2.bi.n.101.16 32
5.4 even 2 inner 420.2.bn.a.269.8 yes 32
7.3 odd 6 2940.2.f.a.1469.25 32
7.4 even 3 2940.2.f.a.1469.8 32
7.5 odd 6 inner 420.2.bn.a.89.3 32
15.2 even 4 2100.2.bi.n.101.6 32
15.8 even 4 2100.2.bi.n.101.11 32
15.14 odd 2 inner 420.2.bn.a.269.3 yes 32
21.5 even 6 inner 420.2.bn.a.89.8 yes 32
21.11 odd 6 2940.2.f.a.1469.5 32
21.17 even 6 2940.2.f.a.1469.28 32
35.4 even 6 2940.2.f.a.1469.26 32
35.12 even 12 2100.2.bi.n.1601.6 32
35.19 odd 6 inner 420.2.bn.a.89.14 yes 32
35.24 odd 6 2940.2.f.a.1469.7 32
35.33 even 12 2100.2.bi.n.1601.11 32
105.47 odd 12 2100.2.bi.n.1601.1 32
105.59 even 6 2940.2.f.a.1469.6 32
105.68 odd 12 2100.2.bi.n.1601.16 32
105.74 odd 6 2940.2.f.a.1469.27 32
105.89 even 6 inner 420.2.bn.a.89.9 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.3 32 7.5 odd 6 inner
420.2.bn.a.89.8 yes 32 21.5 even 6 inner
420.2.bn.a.89.9 yes 32 105.89 even 6 inner
420.2.bn.a.89.14 yes 32 35.19 odd 6 inner
420.2.bn.a.269.3 yes 32 15.14 odd 2 inner
420.2.bn.a.269.8 yes 32 5.4 even 2 inner
420.2.bn.a.269.9 yes 32 1.1 even 1 trivial
420.2.bn.a.269.14 yes 32 3.2 odd 2 inner
2100.2.bi.n.101.1 32 5.2 odd 4
2100.2.bi.n.101.6 32 15.2 even 4
2100.2.bi.n.101.11 32 15.8 even 4
2100.2.bi.n.101.16 32 5.3 odd 4
2100.2.bi.n.1601.1 32 105.47 odd 12
2100.2.bi.n.1601.6 32 35.12 even 12
2100.2.bi.n.1601.11 32 35.33 even 12
2100.2.bi.n.1601.16 32 105.68 odd 12
2940.2.f.a.1469.5 32 21.11 odd 6
2940.2.f.a.1469.6 32 105.59 even 6
2940.2.f.a.1469.7 32 35.24 odd 6
2940.2.f.a.1469.8 32 7.4 even 3
2940.2.f.a.1469.25 32 7.3 odd 6
2940.2.f.a.1469.26 32 35.4 even 6
2940.2.f.a.1469.27 32 105.74 odd 6
2940.2.f.a.1469.28 32 21.17 even 6