Properties

Label 420.2.bn.a.269.3
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.3
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48906 + 0.884700i) q^{3} +(-1.06703 + 1.96506i) q^{5} +(0.0973684 + 2.64396i) q^{7} +(1.43461 - 2.63475i) q^{9} +(-2.62913 - 1.51793i) q^{11} +2.31738 q^{13} +(-0.149616 - 3.87009i) q^{15} +(-4.49684 - 2.59625i) q^{17} +(-5.58515 + 3.22459i) q^{19} +(-2.48410 - 3.85088i) q^{21} +(-2.43442 - 4.21654i) q^{23} +(-2.72290 - 4.19354i) q^{25} +(0.194737 + 5.19250i) q^{27} +3.48622i q^{29} +(1.16615 + 0.673279i) q^{31} +(5.25784 - 0.0657018i) q^{33} +(-5.29943 - 2.62984i) q^{35} +(-2.43579 + 1.40630i) q^{37} +(-3.45072 + 2.05018i) q^{39} +1.06401 q^{41} +2.42063i q^{43} +(3.64666 + 5.63044i) q^{45} +(-3.30233 + 1.90660i) q^{47} +(-6.98104 + 0.514876i) q^{49} +(8.99298 - 0.112376i) q^{51} +(3.52984 - 6.11386i) q^{53} +(5.78817 - 3.54672i) q^{55} +(5.46384 - 9.74279i) q^{57} +(-6.18029 + 10.7046i) q^{59} +(11.4447 - 6.60758i) q^{61} +(7.10585 + 3.53651i) q^{63} +(-2.47270 + 4.55378i) q^{65} +(-3.72081 - 2.14821i) q^{67} +(7.35538 + 4.12496i) q^{69} +7.08288i q^{71} +(-0.0763237 + 0.132196i) q^{73} +(7.76460 + 3.83549i) q^{75} +(3.75734 - 7.09910i) q^{77} +(-3.04462 - 5.27344i) q^{79} +(-4.88378 - 7.55967i) q^{81} +10.2758i q^{83} +(9.90003 - 6.06628i) q^{85} +(-3.08426 - 5.19119i) q^{87} +(7.10913 + 12.3134i) q^{89} +(0.225639 + 6.12705i) q^{91} +(-2.33212 + 0.0291421i) q^{93} +(-0.376991 - 14.4159i) q^{95} +8.63266 q^{97} +(-7.77113 + 4.74945i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.48906 + 0.884700i −0.859710 + 0.510782i
\(4\) 0 0
\(5\) −1.06703 + 1.96506i −0.477189 + 0.878801i
\(6\) 0 0
\(7\) 0.0973684 + 2.64396i 0.0368018 + 0.999323i
\(8\) 0 0
\(9\) 1.43461 2.63475i 0.478204 0.878249i
\(10\) 0 0
\(11\) −2.62913 1.51793i −0.792712 0.457672i 0.0482045 0.998837i \(-0.484650\pi\)
−0.840916 + 0.541165i \(0.817983\pi\)
\(12\) 0 0
\(13\) 2.31738 0.642724 0.321362 0.946956i \(-0.395859\pi\)
0.321362 + 0.946956i \(0.395859\pi\)
\(14\) 0 0
\(15\) −0.149616 3.87009i −0.0386308 0.999254i
\(16\) 0 0
\(17\) −4.49684 2.59625i −1.09064 0.629683i −0.156896 0.987615i \(-0.550149\pi\)
−0.933748 + 0.357932i \(0.883482\pi\)
\(18\) 0 0
\(19\) −5.58515 + 3.22459i −1.28132 + 0.739771i −0.977090 0.212827i \(-0.931733\pi\)
−0.304231 + 0.952598i \(0.598400\pi\)
\(20\) 0 0
\(21\) −2.48410 3.85088i −0.542075 0.840330i
\(22\) 0 0
\(23\) −2.43442 4.21654i −0.507612 0.879209i −0.999961 0.00881178i \(-0.997195\pi\)
0.492349 0.870398i \(-0.336138\pi\)
\(24\) 0 0
\(25\) −2.72290 4.19354i −0.544581 0.838708i
\(26\) 0 0
\(27\) 0.194737 + 5.19250i 0.0374771 + 0.999297i
\(28\) 0 0
\(29\) 3.48622i 0.647374i 0.946164 + 0.323687i \(0.104923\pi\)
−0.946164 + 0.323687i \(0.895077\pi\)
\(30\) 0 0
\(31\) 1.16615 + 0.673279i 0.209447 + 0.120924i 0.601054 0.799208i \(-0.294747\pi\)
−0.391607 + 0.920132i \(0.628081\pi\)
\(32\) 0 0
\(33\) 5.25784 0.0657018i 0.915273 0.0114372i
\(34\) 0 0
\(35\) −5.29943 2.62984i −0.895767 0.444525i
\(36\) 0 0
\(37\) −2.43579 + 1.40630i −0.400441 + 0.231195i −0.686674 0.726965i \(-0.740930\pi\)
0.286233 + 0.958160i \(0.407597\pi\)
\(38\) 0 0
\(39\) −3.45072 + 2.05018i −0.552557 + 0.328292i
\(40\) 0 0
\(41\) 1.06401 0.166171 0.0830853 0.996542i \(-0.473523\pi\)
0.0830853 + 0.996542i \(0.473523\pi\)
\(42\) 0 0
\(43\) 2.42063i 0.369142i 0.982819 + 0.184571i \(0.0590896\pi\)
−0.982819 + 0.184571i \(0.940910\pi\)
\(44\) 0 0
\(45\) 3.64666 + 5.63044i 0.543612 + 0.839337i
\(46\) 0 0
\(47\) −3.30233 + 1.90660i −0.481695 + 0.278106i −0.721122 0.692808i \(-0.756373\pi\)
0.239428 + 0.970914i \(0.423040\pi\)
\(48\) 0 0
\(49\) −6.98104 + 0.514876i −0.997291 + 0.0735537i
\(50\) 0 0
\(51\) 8.99298 0.112376i 1.25927 0.0157358i
\(52\) 0 0
\(53\) 3.52984 6.11386i 0.484861 0.839803i −0.514988 0.857197i \(-0.672204\pi\)
0.999849 + 0.0173942i \(0.00553703\pi\)
\(54\) 0 0
\(55\) 5.78817 3.54672i 0.780476 0.478239i
\(56\) 0 0
\(57\) 5.46384 9.74279i 0.723703 1.29046i
\(58\) 0 0
\(59\) −6.18029 + 10.7046i −0.804605 + 1.39362i 0.111953 + 0.993714i \(0.464289\pi\)
−0.916558 + 0.399903i \(0.869044\pi\)
\(60\) 0 0
\(61\) 11.4447 6.60758i 1.46534 0.846014i 0.466088 0.884738i \(-0.345663\pi\)
0.999250 + 0.0387246i \(0.0123295\pi\)
\(62\) 0 0
\(63\) 7.10585 + 3.53651i 0.895253 + 0.445559i
\(64\) 0 0
\(65\) −2.47270 + 4.55378i −0.306701 + 0.564826i
\(66\) 0 0
\(67\) −3.72081 2.14821i −0.454569 0.262446i 0.255189 0.966891i \(-0.417862\pi\)
−0.709758 + 0.704446i \(0.751196\pi\)
\(68\) 0 0
\(69\) 7.35538 + 4.12496i 0.885483 + 0.496586i
\(70\) 0 0
\(71\) 7.08288i 0.840583i 0.907389 + 0.420292i \(0.138072\pi\)
−0.907389 + 0.420292i \(0.861928\pi\)
\(72\) 0 0
\(73\) −0.0763237 + 0.132196i −0.00893301 + 0.0154724i −0.870457 0.492244i \(-0.836177\pi\)
0.861524 + 0.507716i \(0.169510\pi\)
\(74\) 0 0
\(75\) 7.76460 + 3.83549i 0.896579 + 0.442884i
\(76\) 0 0
\(77\) 3.75734 7.09910i 0.428189 0.809018i
\(78\) 0 0
\(79\) −3.04462 5.27344i −0.342547 0.593309i 0.642358 0.766405i \(-0.277956\pi\)
−0.984905 + 0.173096i \(0.944623\pi\)
\(80\) 0 0
\(81\) −4.88378 7.55967i −0.542643 0.839964i
\(82\) 0 0
\(83\) 10.2758i 1.12791i 0.825804 + 0.563957i \(0.190722\pi\)
−0.825804 + 0.563957i \(0.809278\pi\)
\(84\) 0 0
\(85\) 9.90003 6.06628i 1.07381 0.657980i
\(86\) 0 0
\(87\) −3.08426 5.19119i −0.330667 0.556555i
\(88\) 0 0
\(89\) 7.10913 + 12.3134i 0.753567 + 1.30522i 0.946084 + 0.323922i \(0.105002\pi\)
−0.192517 + 0.981294i \(0.561665\pi\)
\(90\) 0 0
\(91\) 0.225639 + 6.12705i 0.0236534 + 0.642289i
\(92\) 0 0
\(93\) −2.33212 + 0.0291421i −0.241830 + 0.00302189i
\(94\) 0 0
\(95\) −0.376991 14.4159i −0.0386784 1.47904i
\(96\) 0 0
\(97\) 8.63266 0.876514 0.438257 0.898850i \(-0.355596\pi\)
0.438257 + 0.898850i \(0.355596\pi\)
\(98\) 0 0
\(99\) −7.77113 + 4.74945i −0.781028 + 0.477338i
\(100\) 0 0
\(101\) −8.23108 + 14.2566i −0.819023 + 1.41859i 0.0873801 + 0.996175i \(0.472151\pi\)
−0.906403 + 0.422414i \(0.861183\pi\)
\(102\) 0 0
\(103\) −3.30237 5.71987i −0.325392 0.563596i 0.656199 0.754588i \(-0.272163\pi\)
−0.981592 + 0.190992i \(0.938830\pi\)
\(104\) 0 0
\(105\) 10.2178 0.772405i 0.997155 0.0753790i
\(106\) 0 0
\(107\) 9.26659 + 16.0502i 0.895835 + 1.55163i 0.832768 + 0.553623i \(0.186755\pi\)
0.0630674 + 0.998009i \(0.479912\pi\)
\(108\) 0 0
\(109\) −9.25130 + 16.0237i −0.886114 + 1.53479i −0.0416824 + 0.999131i \(0.513272\pi\)
−0.844432 + 0.535664i \(0.820062\pi\)
\(110\) 0 0
\(111\) 2.38288 4.24901i 0.226173 0.403299i
\(112\) 0 0
\(113\) 5.86968 0.552173 0.276087 0.961133i \(-0.410962\pi\)
0.276087 + 0.961133i \(0.410962\pi\)
\(114\) 0 0
\(115\) 10.8833 0.284611i 1.01488 0.0265401i
\(116\) 0 0
\(117\) 3.32453 6.10570i 0.307353 0.564472i
\(118\) 0 0
\(119\) 6.42653 12.1423i 0.589119 1.11308i
\(120\) 0 0
\(121\) −0.891792 1.54463i −0.0810720 0.140421i
\(122\) 0 0
\(123\) −1.58438 + 0.941331i −0.142859 + 0.0848769i
\(124\) 0 0
\(125\) 11.1460 0.876035i 0.996926 0.0783550i
\(126\) 0 0
\(127\) 14.5896i 1.29462i 0.762226 + 0.647311i \(0.224106\pi\)
−0.762226 + 0.647311i \(0.775894\pi\)
\(128\) 0 0
\(129\) −2.14153 3.60446i −0.188551 0.317355i
\(130\) 0 0
\(131\) −10.0356 17.3822i −0.876817 1.51869i −0.854815 0.518933i \(-0.826329\pi\)
−0.0220016 0.999758i \(-0.507004\pi\)
\(132\) 0 0
\(133\) −9.06949 14.4529i −0.786425 1.25323i
\(134\) 0 0
\(135\) −10.4114 5.15788i −0.896067 0.443919i
\(136\) 0 0
\(137\) 2.33533 4.04491i 0.199521 0.345580i −0.748852 0.662737i \(-0.769395\pi\)
0.948373 + 0.317157i \(0.102728\pi\)
\(138\) 0 0
\(139\) 5.51296i 0.467603i −0.972284 0.233801i \(-0.924883\pi\)
0.972284 0.233801i \(-0.0751166\pi\)
\(140\) 0 0
\(141\) 3.23060 5.76062i 0.272066 0.485132i
\(142\) 0 0
\(143\) −6.09268 3.51761i −0.509495 0.294157i
\(144\) 0 0
\(145\) −6.85062 3.71989i −0.568913 0.308920i
\(146\) 0 0
\(147\) 9.93969 6.94281i 0.819812 0.572633i
\(148\) 0 0
\(149\) −12.6579 + 7.30806i −1.03698 + 0.598700i −0.918976 0.394313i \(-0.870982\pi\)
−0.118003 + 0.993013i \(0.537649\pi\)
\(150\) 0 0
\(151\) −4.48104 + 7.76139i −0.364662 + 0.631613i −0.988722 0.149764i \(-0.952149\pi\)
0.624060 + 0.781376i \(0.285482\pi\)
\(152\) 0 0
\(153\) −13.2917 + 8.12342i −1.07457 + 0.656740i
\(154\) 0 0
\(155\) −2.56735 + 1.57315i −0.206214 + 0.126358i
\(156\) 0 0
\(157\) −10.2703 + 17.7886i −0.819657 + 1.41969i 0.0862784 + 0.996271i \(0.472503\pi\)
−0.905935 + 0.423416i \(0.860831\pi\)
\(158\) 0 0
\(159\) 0.152785 + 12.2268i 0.0121166 + 0.969645i
\(160\) 0 0
\(161\) 10.9113 6.84707i 0.859933 0.539624i
\(162\) 0 0
\(163\) 17.3645 10.0254i 1.36009 0.785250i 0.370457 0.928850i \(-0.379201\pi\)
0.989636 + 0.143600i \(0.0458678\pi\)
\(164\) 0 0
\(165\) −5.48116 + 10.4021i −0.426708 + 0.809800i
\(166\) 0 0
\(167\) 12.2463i 0.947646i −0.880620 0.473823i \(-0.842874\pi\)
0.880620 0.473823i \(-0.157126\pi\)
\(168\) 0 0
\(169\) −7.62977 −0.586906
\(170\) 0 0
\(171\) 0.483456 + 19.3415i 0.0369708 + 1.47908i
\(172\) 0 0
\(173\) −18.9007 + 10.9123i −1.43699 + 0.829647i −0.997640 0.0686676i \(-0.978125\pi\)
−0.439352 + 0.898315i \(0.644792\pi\)
\(174\) 0 0
\(175\) 10.8224 7.60756i 0.818099 0.575078i
\(176\) 0 0
\(177\) −0.267507 21.4075i −0.0201070 1.60908i
\(178\) 0 0
\(179\) −1.11034 0.641056i −0.0829909 0.0479148i 0.457930 0.888988i \(-0.348591\pi\)
−0.540921 + 0.841073i \(0.681924\pi\)
\(180\) 0 0
\(181\) 14.5617i 1.08236i −0.840906 0.541182i \(-0.817977\pi\)
0.840906 0.541182i \(-0.182023\pi\)
\(182\) 0 0
\(183\) −11.1961 + 19.9642i −0.827638 + 1.47579i
\(184\) 0 0
\(185\) −0.164413 6.28703i −0.0120879 0.462232i
\(186\) 0 0
\(187\) 7.88184 + 13.6518i 0.576377 + 0.998315i
\(188\) 0 0
\(189\) −13.7098 + 1.02046i −0.997241 + 0.0742277i
\(190\) 0 0
\(191\) 20.7027 11.9527i 1.49800 0.864869i 0.498000 0.867177i \(-0.334068\pi\)
0.999997 + 0.00230818i \(0.000734719\pi\)
\(192\) 0 0
\(193\) 7.30736 + 4.21891i 0.525996 + 0.303684i 0.739384 0.673284i \(-0.235117\pi\)
−0.213389 + 0.976967i \(0.568450\pi\)
\(194\) 0 0
\(195\) −0.346718 8.96846i −0.0248290 0.642244i
\(196\) 0 0
\(197\) −8.25869 −0.588408 −0.294204 0.955743i \(-0.595054\pi\)
−0.294204 + 0.955743i \(0.595054\pi\)
\(198\) 0 0
\(199\) 8.94051 + 5.16181i 0.633776 + 0.365911i 0.782213 0.623011i \(-0.214091\pi\)
−0.148437 + 0.988922i \(0.547424\pi\)
\(200\) 0 0
\(201\) 7.44104 0.0929828i 0.524850 0.00655850i
\(202\) 0 0
\(203\) −9.21742 + 0.339448i −0.646936 + 0.0238245i
\(204\) 0 0
\(205\) −1.13533 + 2.09084i −0.0792948 + 0.146031i
\(206\) 0 0
\(207\) −14.6020 + 0.364988i −1.01491 + 0.0253684i
\(208\) 0 0
\(209\) 19.5788 1.35429
\(210\) 0 0
\(211\) −5.75694 −0.396324 −0.198162 0.980169i \(-0.563497\pi\)
−0.198162 + 0.980169i \(0.563497\pi\)
\(212\) 0 0
\(213\) −6.26623 10.5468i −0.429355 0.722658i
\(214\) 0 0
\(215\) −4.75667 2.58287i −0.324402 0.176151i
\(216\) 0 0
\(217\) −1.66657 + 3.14882i −0.113134 + 0.213756i
\(218\) 0 0
\(219\) −0.00330358 0.264372i −0.000223236 0.0178646i
\(220\) 0 0
\(221\) −10.4209 6.01649i −0.700983 0.404713i
\(222\) 0 0
\(223\) −27.0927 −1.81426 −0.907129 0.420852i \(-0.861731\pi\)
−0.907129 + 0.420852i \(0.861731\pi\)
\(224\) 0 0
\(225\) −14.9552 + 1.15806i −0.997015 + 0.0772040i
\(226\) 0 0
\(227\) 6.20333 + 3.58150i 0.411730 + 0.237712i 0.691533 0.722345i \(-0.256936\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(228\) 0 0
\(229\) 4.16615 2.40533i 0.275307 0.158949i −0.355990 0.934490i \(-0.615856\pi\)
0.631297 + 0.775541i \(0.282523\pi\)
\(230\) 0 0
\(231\) 0.685661 + 13.8951i 0.0451132 + 0.914232i
\(232\) 0 0
\(233\) 8.90616 + 15.4259i 0.583462 + 1.01059i 0.995065 + 0.0992223i \(0.0316355\pi\)
−0.411604 + 0.911363i \(0.635031\pi\)
\(234\) 0 0
\(235\) −0.222903 8.52367i −0.0145406 0.556023i
\(236\) 0 0
\(237\) 9.19905 + 5.15890i 0.597542 + 0.335107i
\(238\) 0 0
\(239\) 13.7867i 0.891789i −0.895086 0.445894i \(-0.852886\pi\)
0.895086 0.445894i \(-0.147114\pi\)
\(240\) 0 0
\(241\) −11.7785 6.80032i −0.758720 0.438047i 0.0701158 0.997539i \(-0.477663\pi\)
−0.828836 + 0.559492i \(0.810996\pi\)
\(242\) 0 0
\(243\) 13.9603 + 6.93614i 0.895554 + 0.444953i
\(244\) 0 0
\(245\) 6.43720 14.2675i 0.411258 0.911519i
\(246\) 0 0
\(247\) −12.9429 + 7.47258i −0.823536 + 0.475469i
\(248\) 0 0
\(249\) −9.09100 15.3013i −0.576119 0.969680i
\(250\) 0 0
\(251\) 7.89600 0.498391 0.249196 0.968453i \(-0.419834\pi\)
0.249196 + 0.968453i \(0.419834\pi\)
\(252\) 0 0
\(253\) 14.7811i 0.929280i
\(254\) 0 0
\(255\) −9.37493 + 17.7916i −0.587081 + 1.11415i
\(256\) 0 0
\(257\) −15.9997 + 9.23741i −0.998032 + 0.576214i −0.907665 0.419695i \(-0.862137\pi\)
−0.0903666 + 0.995909i \(0.528804\pi\)
\(258\) 0 0
\(259\) −3.95538 6.30320i −0.245775 0.391661i
\(260\) 0 0
\(261\) 9.18530 + 5.00137i 0.568556 + 0.309577i
\(262\) 0 0
\(263\) 10.7794 18.6705i 0.664687 1.15127i −0.314683 0.949197i \(-0.601898\pi\)
0.979370 0.202075i \(-0.0647686\pi\)
\(264\) 0 0
\(265\) 8.24765 + 13.4600i 0.506649 + 0.826841i
\(266\) 0 0
\(267\) −21.4796 12.0459i −1.31453 0.737199i
\(268\) 0 0
\(269\) 7.98483 13.8301i 0.486844 0.843238i −0.513042 0.858364i \(-0.671481\pi\)
0.999886 + 0.0151253i \(0.00481473\pi\)
\(270\) 0 0
\(271\) −4.72410 + 2.72746i −0.286968 + 0.165681i −0.636574 0.771216i \(-0.719649\pi\)
0.349605 + 0.936897i \(0.386316\pi\)
\(272\) 0 0
\(273\) −5.75659 8.92393i −0.348405 0.540101i
\(274\) 0 0
\(275\) 0.793367 + 15.1585i 0.0478418 + 0.914094i
\(276\) 0 0
\(277\) 6.72315 + 3.88162i 0.403955 + 0.233224i 0.688189 0.725531i \(-0.258406\pi\)
−0.284234 + 0.958755i \(0.591739\pi\)
\(278\) 0 0
\(279\) 3.44689 2.10662i 0.206360 0.126120i
\(280\) 0 0
\(281\) 0.742571i 0.0442981i 0.999755 + 0.0221490i \(0.00705084\pi\)
−0.999755 + 0.0221490i \(0.992949\pi\)
\(282\) 0 0
\(283\) 4.79525 8.30562i 0.285048 0.493718i −0.687573 0.726116i \(-0.741324\pi\)
0.972621 + 0.232398i \(0.0746571\pi\)
\(284\) 0 0
\(285\) 13.3151 + 21.1326i 0.788717 + 1.25179i
\(286\) 0 0
\(287\) 0.103601 + 2.81320i 0.00611538 + 0.166058i
\(288\) 0 0
\(289\) 4.98104 + 8.62741i 0.293002 + 0.507495i
\(290\) 0 0
\(291\) −12.8546 + 7.63732i −0.753548 + 0.447707i
\(292\) 0 0
\(293\) 0.569685i 0.0332814i 0.999862 + 0.0166407i \(0.00529714\pi\)
−0.999862 + 0.0166407i \(0.994703\pi\)
\(294\) 0 0
\(295\) −14.4406 23.5667i −0.840762 1.37211i
\(296\) 0 0
\(297\) 7.36985 13.9473i 0.427642 0.809307i
\(298\) 0 0
\(299\) −5.64147 9.77131i −0.326254 0.565089i
\(300\) 0 0
\(301\) −6.40003 + 0.235692i −0.368892 + 0.0135851i
\(302\) 0 0
\(303\) −0.356273 28.5111i −0.0204673 1.63792i
\(304\) 0 0
\(305\) 0.772500 + 29.5399i 0.0442332 + 1.69145i
\(306\) 0 0
\(307\) −9.46424 −0.540153 −0.270076 0.962839i \(-0.587049\pi\)
−0.270076 + 0.962839i \(0.587049\pi\)
\(308\) 0 0
\(309\) 9.97781 + 5.59564i 0.567618 + 0.318325i
\(310\) 0 0
\(311\) −3.25858 + 5.64403i −0.184777 + 0.320044i −0.943501 0.331368i \(-0.892490\pi\)
0.758724 + 0.651412i \(0.225823\pi\)
\(312\) 0 0
\(313\) 11.0684 + 19.1711i 0.625626 + 1.08362i 0.988420 + 0.151746i \(0.0484896\pi\)
−0.362794 + 0.931869i \(0.618177\pi\)
\(314\) 0 0
\(315\) −14.5316 + 10.1898i −0.818762 + 0.574133i
\(316\) 0 0
\(317\) 2.10782 + 3.65086i 0.118387 + 0.205053i 0.919129 0.393957i \(-0.128894\pi\)
−0.800741 + 0.599010i \(0.795561\pi\)
\(318\) 0 0
\(319\) 5.29183 9.16571i 0.296285 0.513181i
\(320\) 0 0
\(321\) −27.9981 15.7016i −1.56270 0.876378i
\(322\) 0 0
\(323\) 33.4874 1.86329
\(324\) 0 0
\(325\) −6.30999 9.71801i −0.350015 0.539058i
\(326\) 0 0
\(327\) −0.400432 32.0449i −0.0221439 1.77209i
\(328\) 0 0
\(329\) −5.36252 8.54559i −0.295645 0.471133i
\(330\) 0 0
\(331\) 12.0041 + 20.7918i 0.659807 + 1.14282i 0.980665 + 0.195693i \(0.0626955\pi\)
−0.320858 + 0.947127i \(0.603971\pi\)
\(332\) 0 0
\(333\) 0.210844 + 8.43518i 0.0115542 + 0.462245i
\(334\) 0 0
\(335\) 8.19156 5.01940i 0.447553 0.274239i
\(336\) 0 0
\(337\) 9.42028i 0.513155i −0.966524 0.256578i \(-0.917405\pi\)
0.966524 0.256578i \(-0.0825949\pi\)
\(338\) 0 0
\(339\) −8.74032 + 5.19291i −0.474709 + 0.282040i
\(340\) 0 0
\(341\) −2.04398 3.54027i −0.110688 0.191716i
\(342\) 0 0
\(343\) −2.04104 18.4074i −0.110206 0.993909i
\(344\) 0 0
\(345\) −15.9542 + 10.0523i −0.858944 + 0.541197i
\(346\) 0 0
\(347\) 11.1961 19.3922i 0.601037 1.04103i −0.391627 0.920124i \(-0.628088\pi\)
0.992664 0.120903i \(-0.0385789\pi\)
\(348\) 0 0
\(349\) 12.0663i 0.645895i −0.946417 0.322948i \(-0.895326\pi\)
0.946417 0.322948i \(-0.104674\pi\)
\(350\) 0 0
\(351\) 0.451278 + 12.0330i 0.0240875 + 0.642273i
\(352\) 0 0
\(353\) 7.19515 + 4.15412i 0.382959 + 0.221102i 0.679105 0.734041i \(-0.262368\pi\)
−0.296146 + 0.955143i \(0.595701\pi\)
\(354\) 0 0
\(355\) −13.9183 7.55763i −0.738705 0.401117i
\(356\) 0 0
\(357\) 1.17275 + 23.7661i 0.0620684 + 1.25784i
\(358\) 0 0
\(359\) 6.27295 3.62169i 0.331074 0.191145i −0.325244 0.945630i \(-0.605446\pi\)
0.656318 + 0.754485i \(0.272113\pi\)
\(360\) 0 0
\(361\) 11.2959 19.5651i 0.594522 1.02974i
\(362\) 0 0
\(363\) 2.69447 + 1.51108i 0.141423 + 0.0793111i
\(364\) 0 0
\(365\) −0.178334 0.291038i −0.00933444 0.0152336i
\(366\) 0 0
\(367\) 0.624486 1.08164i 0.0325979 0.0564612i −0.849266 0.527965i \(-0.822955\pi\)
0.881864 + 0.471504i \(0.156289\pi\)
\(368\) 0 0
\(369\) 1.52644 2.80340i 0.0794634 0.145939i
\(370\) 0 0
\(371\) 16.5085 + 8.73745i 0.857078 + 0.453626i
\(372\) 0 0
\(373\) 26.7505 15.4444i 1.38509 0.799682i 0.392334 0.919823i \(-0.371668\pi\)
0.992757 + 0.120141i \(0.0383346\pi\)
\(374\) 0 0
\(375\) −15.8220 + 11.1653i −0.817045 + 0.576574i
\(376\) 0 0
\(377\) 8.07888i 0.416083i
\(378\) 0 0
\(379\) 29.6463 1.52283 0.761413 0.648267i \(-0.224506\pi\)
0.761413 + 0.648267i \(0.224506\pi\)
\(380\) 0 0
\(381\) −12.9075 21.7249i −0.661269 1.11300i
\(382\) 0 0
\(383\) 18.1740 10.4927i 0.928646 0.536154i 0.0422631 0.999107i \(-0.486543\pi\)
0.886383 + 0.462952i \(0.153210\pi\)
\(384\) 0 0
\(385\) 9.94096 + 14.9583i 0.506638 + 0.762348i
\(386\) 0 0
\(387\) 6.37774 + 3.47266i 0.324199 + 0.176525i
\(388\) 0 0
\(389\) 14.2540 + 8.22952i 0.722704 + 0.417253i 0.815747 0.578409i \(-0.196326\pi\)
−0.0930430 + 0.995662i \(0.529659\pi\)
\(390\) 0 0
\(391\) 25.2815i 1.27854i
\(392\) 0 0
\(393\) 30.3217 + 17.0047i 1.52953 + 0.857772i
\(394\) 0 0
\(395\) 13.6113 0.355951i 0.684860 0.0179098i
\(396\) 0 0
\(397\) 2.04631 + 3.54432i 0.102702 + 0.177884i 0.912797 0.408414i \(-0.133918\pi\)
−0.810095 + 0.586298i \(0.800585\pi\)
\(398\) 0 0
\(399\) 26.2916 + 13.4975i 1.31622 + 0.675722i
\(400\) 0 0
\(401\) −22.5314 + 13.0085i −1.12516 + 0.649613i −0.942714 0.333602i \(-0.891736\pi\)
−0.182449 + 0.983215i \(0.558402\pi\)
\(402\) 0 0
\(403\) 2.70241 + 1.56024i 0.134617 + 0.0777210i
\(404\) 0 0
\(405\) 20.0663 1.53053i 0.997104 0.0760528i
\(406\) 0 0
\(407\) 8.53866 0.423246
\(408\) 0 0
\(409\) 30.5083 + 17.6140i 1.50854 + 0.870955i 0.999951 + 0.00994431i \(0.00316542\pi\)
0.508587 + 0.861010i \(0.330168\pi\)
\(410\) 0 0
\(411\) 0.101082 + 8.08919i 0.00498601 + 0.399010i
\(412\) 0 0
\(413\) −28.9042 15.2981i −1.42228 0.752772i
\(414\) 0 0
\(415\) −20.1925 10.9646i −0.991212 0.538229i
\(416\) 0 0
\(417\) 4.87731 + 8.20913i 0.238843 + 0.402003i
\(418\) 0 0
\(419\) −40.3278 −1.97014 −0.985072 0.172146i \(-0.944930\pi\)
−0.985072 + 0.172146i \(0.944930\pi\)
\(420\) 0 0
\(421\) 0.216416 0.0105475 0.00527375 0.999986i \(-0.498321\pi\)
0.00527375 + 0.999986i \(0.498321\pi\)
\(422\) 0 0
\(423\) 0.285853 + 11.4360i 0.0138986 + 0.556039i
\(424\) 0 0
\(425\) 1.35697 + 25.9270i 0.0658226 + 1.25765i
\(426\) 0 0
\(427\) 18.5845 + 29.6158i 0.899367 + 1.43321i
\(428\) 0 0
\(429\) 12.1844 0.152256i 0.588268 0.00735097i
\(430\) 0 0
\(431\) 25.3179 + 14.6173i 1.21952 + 0.704090i 0.964815 0.262928i \(-0.0846883\pi\)
0.254705 + 0.967019i \(0.418022\pi\)
\(432\) 0 0
\(433\) −19.8669 −0.954743 −0.477371 0.878702i \(-0.658410\pi\)
−0.477371 + 0.878702i \(0.658410\pi\)
\(434\) 0 0
\(435\) 13.4920 0.521596i 0.646891 0.0250086i
\(436\) 0 0
\(437\) 27.1932 + 15.7000i 1.30083 + 0.751033i
\(438\) 0 0
\(439\) 19.0134 10.9774i 0.907459 0.523921i 0.0278460 0.999612i \(-0.491135\pi\)
0.879613 + 0.475691i \(0.157802\pi\)
\(440\) 0 0
\(441\) −8.65851 + 19.1319i −0.412310 + 0.911044i
\(442\) 0 0
\(443\) 4.36391 + 7.55852i 0.207336 + 0.359116i 0.950874 0.309577i \(-0.100187\pi\)
−0.743539 + 0.668693i \(0.766854\pi\)
\(444\) 0 0
\(445\) −31.7821 + 0.831138i −1.50662 + 0.0393997i
\(446\) 0 0
\(447\) 12.3830 22.0806i 0.585696 1.04438i
\(448\) 0 0
\(449\) 1.03244i 0.0487238i 0.999703 + 0.0243619i \(0.00775540\pi\)
−0.999703 + 0.0243619i \(0.992245\pi\)
\(450\) 0 0
\(451\) −2.79742 1.61509i −0.131725 0.0760517i
\(452\) 0 0
\(453\) −0.193957 15.5216i −0.00911288 0.729267i
\(454\) 0 0
\(455\) −12.2808 6.09433i −0.575731 0.285707i
\(456\) 0 0
\(457\) −27.2085 + 15.7088i −1.27276 + 0.734828i −0.975506 0.219971i \(-0.929404\pi\)
−0.297253 + 0.954799i \(0.596070\pi\)
\(458\) 0 0
\(459\) 12.6053 23.8554i 0.588367 1.11348i
\(460\) 0 0
\(461\) −3.22290 −0.150105 −0.0750526 0.997180i \(-0.523912\pi\)
−0.0750526 + 0.997180i \(0.523912\pi\)
\(462\) 0 0
\(463\) 5.06917i 0.235584i 0.993038 + 0.117792i \(0.0375817\pi\)
−0.993038 + 0.117792i \(0.962418\pi\)
\(464\) 0 0
\(465\) 2.43117 4.61385i 0.112743 0.213962i
\(466\) 0 0
\(467\) −7.81525 + 4.51214i −0.361647 + 0.208797i −0.669803 0.742539i \(-0.733621\pi\)
0.308156 + 0.951336i \(0.400288\pi\)
\(468\) 0 0
\(469\) 5.31749 10.0468i 0.245539 0.463920i
\(470\) 0 0
\(471\) −0.444537 35.5745i −0.0204832 1.63919i
\(472\) 0 0
\(473\) 3.67433 6.36413i 0.168946 0.292623i
\(474\) 0 0
\(475\) 28.7303 + 14.6413i 1.31823 + 0.671790i
\(476\) 0 0
\(477\) −11.0445 18.0712i −0.505694 0.827425i
\(478\) 0 0
\(479\) 1.26094 2.18401i 0.0576137 0.0997899i −0.835780 0.549064i \(-0.814984\pi\)
0.893394 + 0.449275i \(0.148317\pi\)
\(480\) 0 0
\(481\) −5.64464 + 3.25893i −0.257373 + 0.148594i
\(482\) 0 0
\(483\) −10.1900 + 19.8490i −0.463663 + 0.903159i
\(484\) 0 0
\(485\) −9.21129 + 16.9637i −0.418263 + 0.770281i
\(486\) 0 0
\(487\) 2.12791 + 1.22855i 0.0964247 + 0.0556709i 0.547437 0.836847i \(-0.315604\pi\)
−0.451012 + 0.892518i \(0.648937\pi\)
\(488\) 0 0
\(489\) −16.9873 + 30.2908i −0.768194 + 1.36980i
\(490\) 0 0
\(491\) 14.3239i 0.646429i 0.946326 + 0.323215i \(0.104764\pi\)
−0.946326 + 0.323215i \(0.895236\pi\)
\(492\) 0 0
\(493\) 9.05110 15.6770i 0.407641 0.706055i
\(494\) 0 0
\(495\) −1.04093 20.3385i −0.0467864 0.914148i
\(496\) 0 0
\(497\) −18.7268 + 0.689649i −0.840014 + 0.0309350i
\(498\) 0 0
\(499\) −19.8770 34.4279i −0.889816 1.54121i −0.840093 0.542443i \(-0.817500\pi\)
−0.0497229 0.998763i \(-0.515834\pi\)
\(500\) 0 0
\(501\) 10.8343 + 18.2355i 0.484040 + 0.814701i
\(502\) 0 0
\(503\) 10.6486i 0.474796i 0.971412 + 0.237398i \(0.0762946\pi\)
−0.971412 + 0.237398i \(0.923705\pi\)
\(504\) 0 0
\(505\) −19.2323 31.3868i −0.855828 1.39669i
\(506\) 0 0
\(507\) 11.3612 6.75006i 0.504569 0.299781i
\(508\) 0 0
\(509\) −18.5593 32.1456i −0.822626 1.42483i −0.903721 0.428123i \(-0.859175\pi\)
0.0810950 0.996706i \(-0.474158\pi\)
\(510\) 0 0
\(511\) −0.356954 0.188925i −0.0157907 0.00835755i
\(512\) 0 0
\(513\) −17.8313 28.3730i −0.787272 1.25270i
\(514\) 0 0
\(515\) 14.7636 0.386084i 0.650562 0.0170129i
\(516\) 0 0
\(517\) 11.5763 0.509127
\(518\) 0 0
\(519\) 18.4901 32.9705i 0.811627 1.44725i
\(520\) 0 0
\(521\) 8.12000 14.0642i 0.355744 0.616166i −0.631501 0.775375i \(-0.717561\pi\)
0.987245 + 0.159209i \(0.0508943\pi\)
\(522\) 0 0
\(523\) −8.87476 15.3715i −0.388066 0.672150i 0.604123 0.796891i \(-0.293523\pi\)
−0.992189 + 0.124741i \(0.960190\pi\)
\(524\) 0 0
\(525\) −9.38485 + 20.9027i −0.409589 + 0.912270i
\(526\) 0 0
\(527\) −3.49600 6.05525i −0.152288 0.263771i
\(528\) 0 0
\(529\) −0.352809 + 0.611082i −0.0153395 + 0.0265688i
\(530\) 0 0
\(531\) 19.3375 + 31.6404i 0.839177 + 1.37308i
\(532\) 0 0
\(533\) 2.46571 0.106802
\(534\) 0 0
\(535\) −41.4273 + 1.08337i −1.79106 + 0.0468381i
\(536\) 0 0
\(537\) 2.22051 0.0277474i 0.0958221 0.00119739i
\(538\) 0 0
\(539\) 19.1356 + 9.24304i 0.824228 + 0.398126i
\(540\) 0 0
\(541\) −0.167695 0.290456i −0.00720976 0.0124877i 0.862398 0.506231i \(-0.168962\pi\)
−0.869608 + 0.493743i \(0.835628\pi\)
\(542\) 0 0
\(543\) 12.8827 + 21.6833i 0.552852 + 0.930519i
\(544\) 0 0
\(545\) −21.6161 35.2771i −0.925934 1.51110i
\(546\) 0 0
\(547\) 11.7041i 0.500433i −0.968190 0.250216i \(-0.919498\pi\)
0.968190 0.250216i \(-0.0805018\pi\)
\(548\) 0 0
\(549\) −0.990661 39.6331i −0.0422804 1.69150i
\(550\) 0 0
\(551\) −11.2416 19.4710i −0.478909 0.829495i
\(552\) 0 0
\(553\) 13.6463 8.56333i 0.580300 0.364150i
\(554\) 0 0
\(555\) 5.80696 + 9.21632i 0.246492 + 0.391211i
\(556\) 0 0
\(557\) −2.55833 + 4.43115i −0.108400 + 0.187754i −0.915122 0.403177i \(-0.867906\pi\)
0.806722 + 0.590931i \(0.201239\pi\)
\(558\) 0 0
\(559\) 5.60950i 0.237256i
\(560\) 0 0
\(561\) −23.8143 13.3552i −1.00544 0.563858i
\(562\) 0 0
\(563\) −16.8089 9.70464i −0.708412 0.409002i 0.102061 0.994778i \(-0.467456\pi\)
−0.810473 + 0.585776i \(0.800790\pi\)
\(564\) 0 0
\(565\) −6.26311 + 11.5343i −0.263491 + 0.485250i
\(566\) 0 0
\(567\) 19.5119 13.6486i 0.819424 0.573187i
\(568\) 0 0
\(569\) −20.1553 + 11.6367i −0.844954 + 0.487834i −0.858945 0.512068i \(-0.828880\pi\)
0.0139912 + 0.999902i \(0.495546\pi\)
\(570\) 0 0
\(571\) 7.04462 12.2016i 0.294808 0.510623i −0.680132 0.733090i \(-0.738078\pi\)
0.974940 + 0.222467i \(0.0714109\pi\)
\(572\) 0 0
\(573\) −20.2531 + 36.1141i −0.846084 + 1.50869i
\(574\) 0 0
\(575\) −11.0535 + 21.6901i −0.460965 + 0.904539i
\(576\) 0 0
\(577\) −11.0816 + 19.1938i −0.461332 + 0.799050i −0.999028 0.0440886i \(-0.985962\pi\)
0.537696 + 0.843139i \(0.319295\pi\)
\(578\) 0 0
\(579\) −14.6136 + 0.182611i −0.607320 + 0.00758904i
\(580\) 0 0
\(581\) −27.1688 + 1.00054i −1.12715 + 0.0415093i
\(582\) 0 0
\(583\) −18.5608 + 10.7161i −0.768709 + 0.443815i
\(584\) 0 0
\(585\) 8.45068 + 13.0478i 0.349393 + 0.539462i
\(586\) 0 0
\(587\) 11.5459i 0.476550i −0.971198 0.238275i \(-0.923418\pi\)
0.971198 0.238275i \(-0.0765819\pi\)
\(588\) 0 0
\(589\) −8.68418 −0.357825
\(590\) 0 0
\(591\) 12.2977 7.30647i 0.505860 0.300548i
\(592\) 0 0
\(593\) −18.5778 + 10.7259i −0.762901 + 0.440461i −0.830336 0.557263i \(-0.811852\pi\)
0.0674357 + 0.997724i \(0.478518\pi\)
\(594\) 0 0
\(595\) 17.0029 + 25.5846i 0.697052 + 1.04887i
\(596\) 0 0
\(597\) −17.8796 + 0.223423i −0.731765 + 0.00914409i
\(598\) 0 0
\(599\) 3.19001 + 1.84175i 0.130340 + 0.0752519i 0.563752 0.825944i \(-0.309357\pi\)
−0.433412 + 0.901196i \(0.642691\pi\)
\(600\) 0 0
\(601\) 8.20607i 0.334733i 0.985895 + 0.167366i \(0.0535263\pi\)
−0.985895 + 0.167366i \(0.946474\pi\)
\(602\) 0 0
\(603\) −10.9979 + 6.72154i −0.447869 + 0.273722i
\(604\) 0 0
\(605\) 3.98685 0.104260i 0.162089 0.00423879i
\(606\) 0 0
\(607\) −3.52607 6.10733i −0.143119 0.247889i 0.785551 0.618797i \(-0.212380\pi\)
−0.928670 + 0.370908i \(0.879046\pi\)
\(608\) 0 0
\(609\) 13.4250 8.66011i 0.544008 0.350925i
\(610\) 0 0
\(611\) −7.65274 + 4.41831i −0.309597 + 0.178746i
\(612\) 0 0
\(613\) 17.0882 + 9.86586i 0.690185 + 0.398478i 0.803681 0.595060i \(-0.202872\pi\)
−0.113496 + 0.993538i \(0.536205\pi\)
\(614\) 0 0
\(615\) −0.159194 4.11782i −0.00641930 0.166047i
\(616\) 0 0
\(617\) 7.15802 0.288171 0.144086 0.989565i \(-0.453976\pi\)
0.144086 + 0.989565i \(0.453976\pi\)
\(618\) 0 0
\(619\) −8.50675 4.91137i −0.341915 0.197405i 0.319204 0.947686i \(-0.396585\pi\)
−0.661119 + 0.750281i \(0.729918\pi\)
\(620\) 0 0
\(621\) 21.4203 13.4619i 0.859568 0.540205i
\(622\) 0 0
\(623\) −31.8639 + 19.9952i −1.27660 + 0.801090i
\(624\) 0 0
\(625\) −10.1716 + 22.8372i −0.406864 + 0.913489i
\(626\) 0 0
\(627\) −29.1540 + 17.3213i −1.16430 + 0.691747i
\(628\) 0 0
\(629\) 14.6045 0.582318
\(630\) 0 0
\(631\) −13.2595 −0.527854 −0.263927 0.964543i \(-0.585018\pi\)
−0.263927 + 0.964543i \(0.585018\pi\)
\(632\) 0 0
\(633\) 8.57244 5.09317i 0.340724 0.202435i
\(634\) 0 0
\(635\) −28.6695 15.5676i −1.13771 0.617780i
\(636\) 0 0
\(637\) −16.1777 + 1.19316i −0.640983 + 0.0472748i
\(638\) 0 0
\(639\) 18.6616 + 10.1612i 0.738242 + 0.401970i
\(640\) 0 0
\(641\) 24.8302 + 14.3357i 0.980734 + 0.566227i 0.902492 0.430707i \(-0.141736\pi\)
0.0782423 + 0.996934i \(0.475069\pi\)
\(642\) 0 0
\(643\) −38.1006 −1.50254 −0.751271 0.659994i \(-0.770559\pi\)
−0.751271 + 0.659994i \(0.770559\pi\)
\(644\) 0 0
\(645\) 9.36804 0.362166i 0.368866 0.0142603i
\(646\) 0 0
\(647\) −33.4126 19.2908i −1.31359 0.758399i −0.330897 0.943667i \(-0.607351\pi\)
−0.982688 + 0.185268i \(0.940685\pi\)
\(648\) 0 0
\(649\) 32.4975 18.7625i 1.27564 0.736491i
\(650\) 0 0
\(651\) −0.304126 6.16320i −0.0119196 0.241555i
\(652\) 0 0
\(653\) −21.2942 36.8826i −0.833306 1.44333i −0.895402 0.445259i \(-0.853112\pi\)
0.0620956 0.998070i \(-0.480222\pi\)
\(654\) 0 0
\(655\) 44.8653 1.17328i 1.75303 0.0458437i
\(656\) 0 0
\(657\) 0.238810 + 0.390744i 0.00931685 + 0.0152444i
\(658\) 0 0
\(659\) 13.0441i 0.508128i 0.967187 + 0.254064i \(0.0817674\pi\)
−0.967187 + 0.254064i \(0.918233\pi\)
\(660\) 0 0
\(661\) −12.9159 7.45701i −0.502371 0.290044i 0.227321 0.973820i \(-0.427003\pi\)
−0.729692 + 0.683776i \(0.760337\pi\)
\(662\) 0 0
\(663\) 20.8401 0.260417i 0.809362 0.0101138i
\(664\) 0 0
\(665\) 38.0782 2.40040i 1.47661 0.0930834i
\(666\) 0 0
\(667\) 14.6998 8.48692i 0.569178 0.328615i
\(668\) 0 0
\(669\) 40.3426 23.9689i 1.55974 0.926690i
\(670\) 0 0
\(671\) −40.1193 −1.54879
\(672\) 0 0
\(673\) 51.0490i 1.96780i 0.178732 + 0.983898i \(0.442801\pi\)
−0.178732 + 0.983898i \(0.557199\pi\)
\(674\) 0 0
\(675\) 21.2447 14.9553i 0.817710 0.575630i
\(676\) 0 0
\(677\) 0.281190 0.162345i 0.0108070 0.00623942i −0.494587 0.869128i \(-0.664681\pi\)
0.505394 + 0.862889i \(0.331347\pi\)
\(678\) 0 0
\(679\) 0.840548 + 22.8244i 0.0322573 + 0.875920i
\(680\) 0 0
\(681\) −12.4057 + 0.155021i −0.475387 + 0.00594042i
\(682\) 0 0
\(683\) −14.8704 + 25.7563i −0.569001 + 0.985538i 0.427665 + 0.903938i \(0.359336\pi\)
−0.996665 + 0.0816004i \(0.973997\pi\)
\(684\) 0 0
\(685\) 5.45662 + 8.90509i 0.208487 + 0.340246i
\(686\) 0 0
\(687\) −4.07566 + 7.26748i −0.155496 + 0.277272i
\(688\) 0 0
\(689\) 8.17996 14.1681i 0.311632 0.539762i
\(690\) 0 0
\(691\) −25.2719 + 14.5907i −0.961388 + 0.555058i −0.896600 0.442842i \(-0.853970\pi\)
−0.0647879 + 0.997899i \(0.520637\pi\)
\(692\) 0 0
\(693\) −13.3140 20.0841i −0.505758 0.762932i
\(694\) 0 0
\(695\) 10.8333 + 5.88248i 0.410930 + 0.223135i
\(696\) 0 0
\(697\) −4.78468 2.76244i −0.181233 0.104635i
\(698\) 0 0
\(699\) −26.9091 15.0909i −1.01780 0.570789i
\(700\) 0 0
\(701\) 4.22879i 0.159719i −0.996806 0.0798596i \(-0.974553\pi\)
0.996806 0.0798596i \(-0.0254472\pi\)
\(702\) 0 0
\(703\) 9.06949 15.7088i 0.342062 0.592470i
\(704\) 0 0
\(705\) 7.87281 + 12.4951i 0.296507 + 0.470592i
\(706\) 0 0
\(707\) −38.4954 20.3745i −1.44777 0.766261i
\(708\) 0 0
\(709\) 13.9852 + 24.2230i 0.525225 + 0.909716i 0.999568 + 0.0293760i \(0.00935203\pi\)
−0.474344 + 0.880340i \(0.657315\pi\)
\(710\) 0 0
\(711\) −18.2620 + 0.456474i −0.684880 + 0.0171191i
\(712\) 0 0
\(713\) 6.55617i 0.245531i
\(714\) 0 0
\(715\) 13.4134 8.21907i 0.501631 0.307376i
\(716\) 0 0
\(717\) 12.1971 + 20.5293i 0.455510 + 0.766680i
\(718\) 0 0
\(719\) −2.81744 4.87995i −0.105073 0.181991i 0.808695 0.588228i \(-0.200174\pi\)
−0.913768 + 0.406237i \(0.866841\pi\)
\(720\) 0 0
\(721\) 14.8016 9.28827i 0.551239 0.345913i
\(722\) 0 0
\(723\) 23.5552 0.294344i 0.876026 0.0109468i
\(724\) 0 0
\(725\) 14.6196 9.49263i 0.542958 0.352548i
\(726\) 0 0
\(727\) 36.1095 1.33923 0.669613 0.742710i \(-0.266460\pi\)
0.669613 + 0.742710i \(0.266460\pi\)
\(728\) 0 0
\(729\) −26.9242 + 2.02234i −0.997191 + 0.0749016i
\(730\) 0 0
\(731\) 6.28455 10.8852i 0.232443 0.402602i
\(732\) 0 0
\(733\) 2.99103 + 5.18062i 0.110476 + 0.191351i 0.915962 0.401264i \(-0.131429\pi\)
−0.805486 + 0.592615i \(0.798096\pi\)
\(734\) 0 0
\(735\) 3.03710 + 26.9402i 0.112025 + 0.993705i
\(736\) 0 0
\(737\) 6.52165 + 11.2958i 0.240228 + 0.416087i
\(738\) 0 0
\(739\) −19.1257 + 33.1266i −0.703549 + 1.21858i 0.263663 + 0.964615i \(0.415069\pi\)
−0.967213 + 0.253968i \(0.918264\pi\)
\(740\) 0 0
\(741\) 12.6618 22.5777i 0.465142 0.829413i
\(742\) 0 0
\(743\) −3.60215 −0.132150 −0.0660750 0.997815i \(-0.521048\pi\)
−0.0660750 + 0.997815i \(0.521048\pi\)
\(744\) 0 0
\(745\) −0.854395 32.6715i −0.0313026 1.19699i
\(746\) 0 0
\(747\) 27.0741 + 14.7418i 0.990590 + 0.539373i
\(748\) 0 0
\(749\) −41.5338 + 26.0633i −1.51761 + 0.952331i
\(750\) 0 0
\(751\) 2.07691 + 3.59731i 0.0757874 + 0.131268i 0.901428 0.432928i \(-0.142520\pi\)
−0.825641 + 0.564196i \(0.809186\pi\)
\(752\) 0 0
\(753\) −11.7576 + 6.98559i −0.428472 + 0.254569i
\(754\) 0 0
\(755\) −10.4702 17.0871i −0.381049 0.621864i
\(756\) 0 0
\(757\) 15.4535i 0.561668i −0.959756 0.280834i \(-0.909389\pi\)
0.959756 0.280834i \(-0.0906110\pi\)
\(758\) 0 0
\(759\) −13.0768 22.0100i −0.474659 0.798911i
\(760\) 0 0
\(761\) 14.2676 + 24.7122i 0.517199 + 0.895816i 0.999800 + 0.0199755i \(0.00635881\pi\)
−0.482601 + 0.875840i \(0.660308\pi\)
\(762\) 0 0
\(763\) −43.2669 22.8999i −1.56637 0.829031i
\(764\) 0 0
\(765\) −1.78040 34.7868i −0.0643706 1.25772i
\(766\) 0 0
\(767\) −14.3220 + 24.8065i −0.517139 + 0.895711i
\(768\) 0 0
\(769\) 19.5067i 0.703431i −0.936107 0.351716i \(-0.885598\pi\)
0.936107 0.351716i \(-0.114402\pi\)
\(770\) 0 0
\(771\) 15.6522 27.9100i 0.563699 1.00515i
\(772\) 0 0
\(773\) 18.2685 + 10.5473i 0.657074 + 0.379362i 0.791161 0.611608i \(-0.209477\pi\)
−0.134087 + 0.990970i \(0.542810\pi\)
\(774\) 0 0
\(775\) −0.351899 6.72358i −0.0126406 0.241518i
\(776\) 0 0
\(777\) 11.4662 + 5.88653i 0.411349 + 0.211178i
\(778\) 0 0
\(779\) −5.94266 + 3.43100i −0.212918 + 0.122928i
\(780\) 0 0
\(781\) 10.7513 18.6218i 0.384712 0.666340i
\(782\) 0 0
\(783\) −18.1022 + 0.678895i −0.646920 + 0.0242617i
\(784\) 0 0
\(785\) −23.9970 39.1626i −0.856490 1.39777i
\(786\) 0 0
\(787\) 2.60421 4.51062i 0.0928301 0.160786i −0.815871 0.578234i \(-0.803742\pi\)
0.908701 + 0.417448i \(0.137075\pi\)
\(788\) 0 0
\(789\) 0.466575 + 37.3381i 0.0166105 + 1.32927i
\(790\) 0 0
\(791\) 0.571521 + 15.5192i 0.0203210 + 0.551799i
\(792\) 0 0
\(793\) 26.5216 15.3122i 0.941808 0.543753i
\(794\) 0 0
\(795\) −24.1893 12.7461i −0.857907 0.452056i
\(796\) 0 0
\(797\) 41.1247i 1.45671i −0.685199 0.728356i \(-0.740285\pi\)
0.685199 0.728356i \(-0.259715\pi\)
\(798\) 0 0
\(799\) 19.8001 0.700476
\(800\) 0 0
\(801\) 42.6415 1.06586i 1.50666 0.0376602i
\(802\) 0 0
\(803\) 0.401329 0.231708i 0.0141626 0.00817679i
\(804\) 0 0
\(805\) 1.81219 + 28.7474i 0.0638714 + 1.01321i
\(806\) 0 0
\(807\) 0.345614 + 27.6581i 0.0121662 + 0.973612i
\(808\) 0 0
\(809\) 8.18379 + 4.72491i 0.287727 + 0.166119i 0.636916 0.770933i \(-0.280210\pi\)
−0.349190 + 0.937052i \(0.613543\pi\)
\(810\) 0 0
\(811\) 13.1110i 0.460388i 0.973145 + 0.230194i \(0.0739361\pi\)
−0.973145 + 0.230194i \(0.926064\pi\)
\(812\) 0 0
\(813\) 4.62149 8.24076i 0.162083 0.289016i
\(814\) 0 0
\(815\) 1.17208 + 44.8196i 0.0410562 + 1.56996i
\(816\) 0 0
\(817\) −7.80552 13.5196i −0.273081 0.472989i
\(818\) 0 0
\(819\) 16.4669 + 8.19542i 0.575401 + 0.286371i
\(820\) 0 0
\(821\) −24.7530 + 14.2911i −0.863885 + 0.498764i −0.865311 0.501235i \(-0.832879\pi\)
0.00142663 + 0.999999i \(0.499546\pi\)
\(822\) 0 0
\(823\) 21.4406 + 12.3787i 0.747371 + 0.431495i 0.824743 0.565508i \(-0.191320\pi\)
−0.0773725 + 0.997002i \(0.524653\pi\)
\(824\) 0 0
\(825\) −14.5921 21.8701i −0.508033 0.761419i
\(826\) 0 0
\(827\) 35.9582 1.25039 0.625194 0.780470i \(-0.285020\pi\)
0.625194 + 0.780470i \(0.285020\pi\)
\(828\) 0 0
\(829\) −12.8068 7.39399i −0.444798 0.256804i 0.260833 0.965384i \(-0.416003\pi\)
−0.705631 + 0.708580i \(0.749336\pi\)
\(830\) 0 0
\(831\) −13.4453 + 0.168011i −0.466411 + 0.00582825i
\(832\) 0 0
\(833\) 32.7294 + 15.8092i 1.13400 + 0.547757i
\(834\) 0 0
\(835\) 24.0647 + 13.0671i 0.832792 + 0.452207i
\(836\) 0 0
\(837\) −3.26891 + 6.18636i −0.112990 + 0.213832i
\(838\) 0 0
\(839\) 0.979006 0.0337991 0.0168995 0.999857i \(-0.494620\pi\)
0.0168995 + 0.999857i \(0.494620\pi\)
\(840\) 0 0
\(841\) 16.8463 0.580906
\(842\) 0 0
\(843\) −0.656953 1.10573i −0.0226267 0.0380835i
\(844\) 0 0
\(845\) 8.14118 14.9929i 0.280065 0.515773i
\(846\) 0 0
\(847\) 3.99710 2.50826i 0.137342 0.0861848i
\(848\) 0 0
\(849\) 0.207557 + 16.6099i 0.00712334 + 0.570052i
\(850\) 0 0
\(851\) 11.8595 + 6.84707i 0.406537 + 0.234714i
\(852\) 0 0
\(853\) −31.6889 −1.08501 −0.542504 0.840053i \(-0.682524\pi\)
−0.542504 + 0.840053i \(0.682524\pi\)
\(854\) 0 0
\(855\) −38.5230 19.6879i −1.31746 0.673311i
\(856\) 0 0
\(857\) 28.0280 + 16.1820i 0.957419 + 0.552766i 0.895378 0.445307i \(-0.146906\pi\)
0.0620413 + 0.998074i \(0.480239\pi\)
\(858\) 0 0
\(859\) −41.2350 + 23.8070i −1.40692 + 0.812285i −0.995090 0.0989753i \(-0.968444\pi\)
−0.411830 + 0.911261i \(0.635110\pi\)
\(860\) 0 0
\(861\) −2.64311 4.09737i −0.0900769 0.139638i
\(862\) 0 0
\(863\) −2.98476 5.16975i −0.101602 0.175980i 0.810743 0.585403i \(-0.199064\pi\)
−0.912345 + 0.409422i \(0.865730\pi\)
\(864\) 0 0
\(865\) −1.27577 48.7846i −0.0433775 1.65873i
\(866\) 0 0
\(867\) −15.0497 8.44002i −0.511116 0.286638i
\(868\) 0 0
\(869\) 18.4861i 0.627097i
\(870\) 0 0
\(871\) −8.62251 4.97821i −0.292163 0.168680i
\(872\) 0 0
\(873\) 12.3845 22.7449i 0.419152 0.769797i
\(874\) 0 0
\(875\) 3.40147 + 29.3842i 0.114991 + 0.993367i
\(876\) 0 0
\(877\) 14.7945 8.54159i 0.499574 0.288429i −0.228964 0.973435i \(-0.573534\pi\)
0.728537 + 0.685006i \(0.240200\pi\)
\(878\) 0 0
\(879\) −0.504001 0.848296i −0.0169995 0.0286123i
\(880\) 0 0
\(881\) 13.7490 0.463215 0.231607 0.972809i \(-0.425601\pi\)
0.231607 + 0.972809i \(0.425601\pi\)
\(882\) 0 0
\(883\) 29.4325i 0.990482i 0.868756 + 0.495241i \(0.164920\pi\)
−0.868756 + 0.495241i \(0.835080\pi\)
\(884\) 0 0
\(885\) 42.3523 + 22.3167i 1.42366 + 0.750168i
\(886\) 0 0
\(887\) 14.5904 8.42380i 0.489899 0.282843i −0.234633 0.972084i \(-0.575389\pi\)
0.724533 + 0.689240i \(0.242056\pi\)
\(888\) 0 0
\(889\) −38.5744 + 1.42057i −1.29374 + 0.0476444i
\(890\) 0 0
\(891\) 1.36505 + 27.2886i 0.0457310 + 0.914202i
\(892\) 0 0
\(893\) 12.2960 21.2973i 0.411470 0.712687i
\(894\) 0 0
\(895\) 2.44448 1.49786i 0.0817099 0.0500680i
\(896\) 0 0
\(897\) 17.0452 + 9.55907i 0.569122 + 0.319168i
\(898\) 0 0
\(899\) −2.34720 + 4.06546i −0.0782834 + 0.135591i
\(900\) 0 0
\(901\) −31.7462 + 18.3287i −1.05762 + 0.610617i
\(902\) 0 0
\(903\) 9.32153 6.01307i 0.310201 0.200103i
\(904\) 0 0
\(905\) 28.6146 + 15.5378i 0.951182 + 0.516492i
\(906\) 0 0
\(907\) −14.0050 8.08581i −0.465030 0.268485i 0.249127 0.968471i \(-0.419856\pi\)
−0.714157 + 0.699986i \(0.753190\pi\)
\(908\) 0 0
\(909\) 25.7543 + 42.1395i 0.854215 + 1.39768i
\(910\) 0 0
\(911\) 13.3127i 0.441071i −0.975379 0.220535i \(-0.929220\pi\)
0.975379 0.220535i \(-0.0707805\pi\)
\(912\) 0 0
\(913\) 15.5979 27.0164i 0.516216 0.894111i
\(914\) 0 0
\(915\) −27.2842 43.3033i −0.901989 1.43156i
\(916\) 0 0
\(917\) 44.9807 28.2263i 1.48539 0.932113i
\(918\) 0 0
\(919\) 6.00415 + 10.3995i 0.198058 + 0.343047i 0.947899 0.318571i \(-0.103203\pi\)
−0.749840 + 0.661619i \(0.769870\pi\)
\(920\) 0 0
\(921\) 14.0928 8.37301i 0.464375 0.275900i
\(922\) 0 0
\(923\) 16.4137i 0.540263i
\(924\) 0 0
\(925\) 12.5298 + 6.38535i 0.411978 + 0.209949i
\(926\) 0 0
\(927\) −19.8080 + 0.495118i −0.650581 + 0.0162618i
\(928\) 0 0
\(929\) 3.50004 + 6.06225i 0.114833 + 0.198896i 0.917713 0.397244i \(-0.130034\pi\)
−0.802880 + 0.596140i \(0.796700\pi\)
\(930\) 0 0
\(931\) 37.3299 25.3866i 1.22344 0.832013i
\(932\) 0 0
\(933\) −0.141044 11.2872i −0.00461758 0.369526i
\(934\) 0 0
\(935\) −35.2366 + 0.921476i −1.15236 + 0.0301355i
\(936\) 0 0
\(937\) −20.7984 −0.679456 −0.339728 0.940524i \(-0.610335\pi\)
−0.339728 + 0.940524i \(0.610335\pi\)
\(938\) 0 0
\(939\) −33.4423 18.7547i −1.09135 0.612037i
\(940\) 0 0
\(941\) 14.5688 25.2339i 0.474929 0.822600i −0.524659 0.851312i \(-0.675807\pi\)
0.999588 + 0.0287120i \(0.00914058\pi\)
\(942\) 0 0
\(943\) −2.59025 4.48644i −0.0843501 0.146099i
\(944\) 0 0
\(945\) 12.6235 28.0294i 0.410642 0.911797i
\(946\) 0 0
\(947\) 7.98578 + 13.8318i 0.259503 + 0.449472i 0.966109 0.258135i \(-0.0831079\pi\)
−0.706606 + 0.707607i \(0.749775\pi\)
\(948\) 0 0
\(949\) −0.176871 + 0.306349i −0.00574146 + 0.00994451i
\(950\) 0 0
\(951\) −6.36860 3.57156i −0.206516 0.115816i
\(952\) 0 0
\(953\) 24.9487 0.808167 0.404084 0.914722i \(-0.367590\pi\)
0.404084 + 0.914722i \(0.367590\pi\)
\(954\) 0 0
\(955\) 1.39741 + 53.4360i 0.0452191 + 1.72915i
\(956\) 0 0
\(957\) 0.229051 + 18.3300i 0.00740416 + 0.592525i
\(958\) 0 0
\(959\) 10.9220 + 5.78067i 0.352689 + 0.186668i
\(960\) 0 0
\(961\) −14.5934 25.2765i −0.470755 0.815371i
\(962\) 0 0
\(963\) 55.5822 1.38932i 1.79111 0.0447703i
\(964\) 0 0
\(965\) −16.0876 + 9.85770i −0.517877 + 0.317331i
\(966\) 0 0
\(967\) 7.93647i 0.255220i 0.991824 + 0.127610i \(0.0407305\pi\)
−0.991824 + 0.127610i \(0.959269\pi\)
\(968\) 0 0
\(969\) −49.8647 + 29.6263i −1.60189 + 0.951733i
\(970\) 0 0
\(971\) 17.5378 + 30.3763i 0.562814 + 0.974822i 0.997249 + 0.0741192i \(0.0236145\pi\)
−0.434436 + 0.900703i \(0.643052\pi\)
\(972\) 0 0
\(973\) 14.5760 0.536788i 0.467286 0.0172086i
\(974\) 0 0
\(975\) 17.9935 + 8.88827i 0.576253 + 0.284653i
\(976\) 0 0
\(977\) −1.56200 + 2.70546i −0.0499728 + 0.0865554i −0.889930 0.456098i \(-0.849247\pi\)
0.839957 + 0.542653i \(0.182580\pi\)
\(978\) 0 0
\(979\) 43.1646i 1.37955i
\(980\) 0 0
\(981\) 28.9464 + 47.3626i 0.924189 + 1.51217i
\(982\) 0 0
\(983\) 19.8301 + 11.4489i 0.632481 + 0.365163i 0.781712 0.623639i \(-0.214347\pi\)
−0.149231 + 0.988802i \(0.547680\pi\)
\(984\) 0 0
\(985\) 8.81226 16.2288i 0.280782 0.517093i
\(986\) 0 0
\(987\) 15.5454 + 7.98068i 0.494816 + 0.254028i
\(988\) 0 0
\(989\) 10.2067 5.89282i 0.324553 0.187381i
\(990\) 0 0
\(991\) −5.34209 + 9.25277i −0.169697 + 0.293924i −0.938313 0.345786i \(-0.887612\pi\)
0.768616 + 0.639710i \(0.220946\pi\)
\(992\) 0 0
\(993\) −36.2694 20.3402i −1.15098 0.645476i
\(994\) 0 0
\(995\) −19.6830 + 12.0608i −0.623994 + 0.382354i
\(996\) 0 0
\(997\) 25.1937 43.6367i 0.797892 1.38199i −0.123094 0.992395i \(-0.539282\pi\)
0.920986 0.389595i \(-0.127385\pi\)
\(998\) 0 0
\(999\) −7.77657 12.3740i −0.246040 0.391495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.3 yes 32
3.2 odd 2 inner 420.2.bn.a.269.8 yes 32
5.2 odd 4 2100.2.bi.n.101.11 32
5.3 odd 4 2100.2.bi.n.101.6 32
5.4 even 2 inner 420.2.bn.a.269.14 yes 32
7.3 odd 6 2940.2.f.a.1469.6 32
7.4 even 3 2940.2.f.a.1469.27 32
7.5 odd 6 inner 420.2.bn.a.89.9 yes 32
15.2 even 4 2100.2.bi.n.101.16 32
15.8 even 4 2100.2.bi.n.101.1 32
15.14 odd 2 inner 420.2.bn.a.269.9 yes 32
21.5 even 6 inner 420.2.bn.a.89.14 yes 32
21.11 odd 6 2940.2.f.a.1469.26 32
21.17 even 6 2940.2.f.a.1469.7 32
35.4 even 6 2940.2.f.a.1469.5 32
35.12 even 12 2100.2.bi.n.1601.16 32
35.19 odd 6 inner 420.2.bn.a.89.8 yes 32
35.24 odd 6 2940.2.f.a.1469.28 32
35.33 even 12 2100.2.bi.n.1601.1 32
105.47 odd 12 2100.2.bi.n.1601.11 32
105.59 even 6 2940.2.f.a.1469.25 32
105.68 odd 12 2100.2.bi.n.1601.6 32
105.74 odd 6 2940.2.f.a.1469.8 32
105.89 even 6 inner 420.2.bn.a.89.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.3 32 105.89 even 6 inner
420.2.bn.a.89.8 yes 32 35.19 odd 6 inner
420.2.bn.a.89.9 yes 32 7.5 odd 6 inner
420.2.bn.a.89.14 yes 32 21.5 even 6 inner
420.2.bn.a.269.3 yes 32 1.1 even 1 trivial
420.2.bn.a.269.8 yes 32 3.2 odd 2 inner
420.2.bn.a.269.9 yes 32 15.14 odd 2 inner
420.2.bn.a.269.14 yes 32 5.4 even 2 inner
2100.2.bi.n.101.1 32 15.8 even 4
2100.2.bi.n.101.6 32 5.3 odd 4
2100.2.bi.n.101.11 32 5.2 odd 4
2100.2.bi.n.101.16 32 15.2 even 4
2100.2.bi.n.1601.1 32 35.33 even 12
2100.2.bi.n.1601.6 32 105.68 odd 12
2100.2.bi.n.1601.11 32 105.47 odd 12
2100.2.bi.n.1601.16 32 35.12 even 12
2940.2.f.a.1469.5 32 35.4 even 6
2940.2.f.a.1469.6 32 7.3 odd 6
2940.2.f.a.1469.7 32 21.17 even 6
2940.2.f.a.1469.8 32 105.74 odd 6
2940.2.f.a.1469.25 32 105.59 even 6
2940.2.f.a.1469.26 32 21.11 odd 6
2940.2.f.a.1469.27 32 7.4 even 3
2940.2.f.a.1469.28 32 35.24 odd 6