Properties

Label 42.6.a.f.1.1
Level $42$
Weight $6$
Character 42.1
Self dual yes
Analytic conductor $6.736$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(1,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.73612043215\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 42.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +24.0000 q^{5} +36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +24.0000 q^{5} +36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} +96.0000 q^{10} +66.0000 q^{11} +144.000 q^{12} +98.0000 q^{13} +196.000 q^{14} +216.000 q^{15} +256.000 q^{16} -216.000 q^{17} +324.000 q^{18} -340.000 q^{19} +384.000 q^{20} +441.000 q^{21} +264.000 q^{22} -1038.00 q^{23} +576.000 q^{24} -2549.00 q^{25} +392.000 q^{26} +729.000 q^{27} +784.000 q^{28} -2490.00 q^{29} +864.000 q^{30} -7048.00 q^{31} +1024.00 q^{32} +594.000 q^{33} -864.000 q^{34} +1176.00 q^{35} +1296.00 q^{36} -12238.0 q^{37} -1360.00 q^{38} +882.000 q^{39} +1536.00 q^{40} +6468.00 q^{41} +1764.00 q^{42} -15412.0 q^{43} +1056.00 q^{44} +1944.00 q^{45} -4152.00 q^{46} +20604.0 q^{47} +2304.00 q^{48} +2401.00 q^{49} -10196.0 q^{50} -1944.00 q^{51} +1568.00 q^{52} +32490.0 q^{53} +2916.00 q^{54} +1584.00 q^{55} +3136.00 q^{56} -3060.00 q^{57} -9960.00 q^{58} +34224.0 q^{59} +3456.00 q^{60} +35654.0 q^{61} -28192.0 q^{62} +3969.00 q^{63} +4096.00 q^{64} +2352.00 q^{65} +2376.00 q^{66} +12680.0 q^{67} -3456.00 q^{68} -9342.00 q^{69} +4704.00 q^{70} -42642.0 q^{71} +5184.00 q^{72} +33734.0 q^{73} -48952.0 q^{74} -22941.0 q^{75} -5440.00 q^{76} +3234.00 q^{77} +3528.00 q^{78} -85108.0 q^{79} +6144.00 q^{80} +6561.00 q^{81} +25872.0 q^{82} -106764. q^{83} +7056.00 q^{84} -5184.00 q^{85} -61648.0 q^{86} -22410.0 q^{87} +4224.00 q^{88} +34884.0 q^{89} +7776.00 q^{90} +4802.00 q^{91} -16608.0 q^{92} -63432.0 q^{93} +82416.0 q^{94} -8160.00 q^{95} +9216.00 q^{96} +18662.0 q^{97} +9604.00 q^{98} +5346.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 24.0000 0.429325 0.214663 0.976688i \(-0.431135\pi\)
0.214663 + 0.976688i \(0.431135\pi\)
\(6\) 36.0000 0.408248
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 96.0000 0.303579
\(11\) 66.0000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) 144.000 0.288675
\(13\) 98.0000 0.160830 0.0804151 0.996761i \(-0.474375\pi\)
0.0804151 + 0.996761i \(0.474375\pi\)
\(14\) 196.000 0.267261
\(15\) 216.000 0.247871
\(16\) 256.000 0.250000
\(17\) −216.000 −0.181272 −0.0906362 0.995884i \(-0.528890\pi\)
−0.0906362 + 0.995884i \(0.528890\pi\)
\(18\) 324.000 0.235702
\(19\) −340.000 −0.216070 −0.108035 0.994147i \(-0.534456\pi\)
−0.108035 + 0.994147i \(0.534456\pi\)
\(20\) 384.000 0.214663
\(21\) 441.000 0.218218
\(22\) 264.000 0.116291
\(23\) −1038.00 −0.409145 −0.204573 0.978851i \(-0.565580\pi\)
−0.204573 + 0.978851i \(0.565580\pi\)
\(24\) 576.000 0.204124
\(25\) −2549.00 −0.815680
\(26\) 392.000 0.113724
\(27\) 729.000 0.192450
\(28\) 784.000 0.188982
\(29\) −2490.00 −0.549800 −0.274900 0.961473i \(-0.588645\pi\)
−0.274900 + 0.961473i \(0.588645\pi\)
\(30\) 864.000 0.175271
\(31\) −7048.00 −1.31723 −0.658615 0.752480i \(-0.728857\pi\)
−0.658615 + 0.752480i \(0.728857\pi\)
\(32\) 1024.00 0.176777
\(33\) 594.000 0.0949514
\(34\) −864.000 −0.128179
\(35\) 1176.00 0.162270
\(36\) 1296.00 0.166667
\(37\) −12238.0 −1.46962 −0.734812 0.678271i \(-0.762730\pi\)
−0.734812 + 0.678271i \(0.762730\pi\)
\(38\) −1360.00 −0.152785
\(39\) 882.000 0.0928554
\(40\) 1536.00 0.151789
\(41\) 6468.00 0.600911 0.300456 0.953796i \(-0.402861\pi\)
0.300456 + 0.953796i \(0.402861\pi\)
\(42\) 1764.00 0.154303
\(43\) −15412.0 −1.27112 −0.635562 0.772050i \(-0.719232\pi\)
−0.635562 + 0.772050i \(0.719232\pi\)
\(44\) 1056.00 0.0822304
\(45\) 1944.00 0.143108
\(46\) −4152.00 −0.289310
\(47\) 20604.0 1.36053 0.680263 0.732968i \(-0.261866\pi\)
0.680263 + 0.732968i \(0.261866\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) −10196.0 −0.576773
\(51\) −1944.00 −0.104658
\(52\) 1568.00 0.0804151
\(53\) 32490.0 1.58877 0.794383 0.607417i \(-0.207794\pi\)
0.794383 + 0.607417i \(0.207794\pi\)
\(54\) 2916.00 0.136083
\(55\) 1584.00 0.0706071
\(56\) 3136.00 0.133631
\(57\) −3060.00 −0.124748
\(58\) −9960.00 −0.388767
\(59\) 34224.0 1.27997 0.639986 0.768386i \(-0.278940\pi\)
0.639986 + 0.768386i \(0.278940\pi\)
\(60\) 3456.00 0.123935
\(61\) 35654.0 1.22683 0.613414 0.789762i \(-0.289796\pi\)
0.613414 + 0.789762i \(0.289796\pi\)
\(62\) −28192.0 −0.931422
\(63\) 3969.00 0.125988
\(64\) 4096.00 0.125000
\(65\) 2352.00 0.0690484
\(66\) 2376.00 0.0671408
\(67\) 12680.0 0.345090 0.172545 0.985002i \(-0.444801\pi\)
0.172545 + 0.985002i \(0.444801\pi\)
\(68\) −3456.00 −0.0906362
\(69\) −9342.00 −0.236220
\(70\) 4704.00 0.114742
\(71\) −42642.0 −1.00390 −0.501951 0.864896i \(-0.667384\pi\)
−0.501951 + 0.864896i \(0.667384\pi\)
\(72\) 5184.00 0.117851
\(73\) 33734.0 0.740902 0.370451 0.928852i \(-0.379203\pi\)
0.370451 + 0.928852i \(0.379203\pi\)
\(74\) −48952.0 −1.03918
\(75\) −22941.0 −0.470933
\(76\) −5440.00 −0.108035
\(77\) 3234.00 0.0621603
\(78\) 3528.00 0.0656587
\(79\) −85108.0 −1.53427 −0.767137 0.641484i \(-0.778319\pi\)
−0.767137 + 0.641484i \(0.778319\pi\)
\(80\) 6144.00 0.107331
\(81\) 6561.00 0.111111
\(82\) 25872.0 0.424908
\(83\) −106764. −1.70110 −0.850550 0.525895i \(-0.823730\pi\)
−0.850550 + 0.525895i \(0.823730\pi\)
\(84\) 7056.00 0.109109
\(85\) −5184.00 −0.0778247
\(86\) −61648.0 −0.898820
\(87\) −22410.0 −0.317427
\(88\) 4224.00 0.0581456
\(89\) 34884.0 0.466822 0.233411 0.972378i \(-0.425011\pi\)
0.233411 + 0.972378i \(0.425011\pi\)
\(90\) 7776.00 0.101193
\(91\) 4802.00 0.0607881
\(92\) −16608.0 −0.204573
\(93\) −63432.0 −0.760503
\(94\) 82416.0 0.962037
\(95\) −8160.00 −0.0927644
\(96\) 9216.00 0.102062
\(97\) 18662.0 0.201386 0.100693 0.994918i \(-0.467894\pi\)
0.100693 + 0.994918i \(0.467894\pi\)
\(98\) 9604.00 0.101015
\(99\) 5346.00 0.0548202
\(100\) −40784.0 −0.407840
\(101\) 153084. 1.49323 0.746614 0.665257i \(-0.231678\pi\)
0.746614 + 0.665257i \(0.231678\pi\)
\(102\) −7776.00 −0.0740041
\(103\) 35864.0 0.333093 0.166547 0.986034i \(-0.446738\pi\)
0.166547 + 0.986034i \(0.446738\pi\)
\(104\) 6272.00 0.0568621
\(105\) 10584.0 0.0936864
\(106\) 129960. 1.12343
\(107\) −95454.0 −0.805999 −0.403000 0.915200i \(-0.632032\pi\)
−0.403000 + 0.915200i \(0.632032\pi\)
\(108\) 11664.0 0.0962250
\(109\) 212222. 1.71090 0.855449 0.517887i \(-0.173281\pi\)
0.855449 + 0.517887i \(0.173281\pi\)
\(110\) 6336.00 0.0499268
\(111\) −110142. −0.848488
\(112\) 12544.0 0.0944911
\(113\) 62106.0 0.457549 0.228774 0.973479i \(-0.426528\pi\)
0.228774 + 0.973479i \(0.426528\pi\)
\(114\) −12240.0 −0.0882103
\(115\) −24912.0 −0.175656
\(116\) −39840.0 −0.274900
\(117\) 7938.00 0.0536101
\(118\) 136896. 0.905077
\(119\) −10584.0 −0.0685145
\(120\) 13824.0 0.0876356
\(121\) −156695. −0.972953
\(122\) 142616. 0.867498
\(123\) 58212.0 0.346936
\(124\) −112768. −0.658615
\(125\) −136176. −0.779517
\(126\) 15876.0 0.0890871
\(127\) −53044.0 −0.291828 −0.145914 0.989297i \(-0.546612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(128\) 16384.0 0.0883883
\(129\) −138708. −0.733884
\(130\) 9408.00 0.0488246
\(131\) 69324.0 0.352944 0.176472 0.984306i \(-0.443532\pi\)
0.176472 + 0.984306i \(0.443532\pi\)
\(132\) 9504.00 0.0474757
\(133\) −16660.0 −0.0816669
\(134\) 50720.0 0.244015
\(135\) 17496.0 0.0826236
\(136\) −13824.0 −0.0640894
\(137\) 129846. 0.591054 0.295527 0.955334i \(-0.404505\pi\)
0.295527 + 0.955334i \(0.404505\pi\)
\(138\) −37368.0 −0.167033
\(139\) −104356. −0.458121 −0.229061 0.973412i \(-0.573565\pi\)
−0.229061 + 0.973412i \(0.573565\pi\)
\(140\) 18816.0 0.0811348
\(141\) 185436. 0.785500
\(142\) −170568. −0.709867
\(143\) 6468.00 0.0264503
\(144\) 20736.0 0.0833333
\(145\) −59760.0 −0.236043
\(146\) 134936. 0.523897
\(147\) 21609.0 0.0824786
\(148\) −195808. −0.734812
\(149\) 217194. 0.801461 0.400730 0.916196i \(-0.368756\pi\)
0.400730 + 0.916196i \(0.368756\pi\)
\(150\) −91764.0 −0.333000
\(151\) 221000. 0.788769 0.394385 0.918945i \(-0.370958\pi\)
0.394385 + 0.918945i \(0.370958\pi\)
\(152\) −21760.0 −0.0763924
\(153\) −17496.0 −0.0604241
\(154\) 12936.0 0.0439540
\(155\) −169152. −0.565520
\(156\) 14112.0 0.0464277
\(157\) −378370. −1.22509 −0.612544 0.790436i \(-0.709854\pi\)
−0.612544 + 0.790436i \(0.709854\pi\)
\(158\) −340432. −1.08489
\(159\) 292410. 0.917275
\(160\) 24576.0 0.0758947
\(161\) −50862.0 −0.154642
\(162\) 26244.0 0.0785674
\(163\) 104816. 0.309000 0.154500 0.987993i \(-0.450623\pi\)
0.154500 + 0.987993i \(0.450623\pi\)
\(164\) 103488. 0.300456
\(165\) 14256.0 0.0407650
\(166\) −427056. −1.20286
\(167\) −426972. −1.18470 −0.592350 0.805681i \(-0.701800\pi\)
−0.592350 + 0.805681i \(0.701800\pi\)
\(168\) 28224.0 0.0771517
\(169\) −361689. −0.974134
\(170\) −20736.0 −0.0550304
\(171\) −27540.0 −0.0720234
\(172\) −246592. −0.635562
\(173\) 331068. 0.841012 0.420506 0.907290i \(-0.361853\pi\)
0.420506 + 0.907290i \(0.361853\pi\)
\(174\) −89640.0 −0.224455
\(175\) −124901. −0.308298
\(176\) 16896.0 0.0411152
\(177\) 308016. 0.738993
\(178\) 139536. 0.330093
\(179\) −400194. −0.933551 −0.466775 0.884376i \(-0.654584\pi\)
−0.466775 + 0.884376i \(0.654584\pi\)
\(180\) 31104.0 0.0715542
\(181\) 588098. 1.33430 0.667150 0.744924i \(-0.267514\pi\)
0.667150 + 0.744924i \(0.267514\pi\)
\(182\) 19208.0 0.0429837
\(183\) 320886. 0.708309
\(184\) −66432.0 −0.144655
\(185\) −293712. −0.630946
\(186\) −253728. −0.537757
\(187\) −14256.0 −0.0298122
\(188\) 329664. 0.680263
\(189\) 35721.0 0.0727393
\(190\) −32640.0 −0.0655943
\(191\) 939342. 1.86312 0.931559 0.363590i \(-0.118449\pi\)
0.931559 + 0.363590i \(0.118449\pi\)
\(192\) 36864.0 0.0721688
\(193\) 338390. 0.653919 0.326960 0.945038i \(-0.393976\pi\)
0.326960 + 0.945038i \(0.393976\pi\)
\(194\) 74648.0 0.142401
\(195\) 21168.0 0.0398651
\(196\) 38416.0 0.0714286
\(197\) −237942. −0.436823 −0.218412 0.975857i \(-0.570088\pi\)
−0.218412 + 0.975857i \(0.570088\pi\)
\(198\) 21384.0 0.0387638
\(199\) 204464. 0.366003 0.183001 0.983113i \(-0.441419\pi\)
0.183001 + 0.983113i \(0.441419\pi\)
\(200\) −163136. −0.288386
\(201\) 114120. 0.199238
\(202\) 612336. 1.05587
\(203\) −122010. −0.207805
\(204\) −31104.0 −0.0523288
\(205\) 155232. 0.257986
\(206\) 143456. 0.235532
\(207\) −84078.0 −0.136382
\(208\) 25088.0 0.0402076
\(209\) −22440.0 −0.0355351
\(210\) 42336.0 0.0662463
\(211\) −348724. −0.539232 −0.269616 0.962968i \(-0.586897\pi\)
−0.269616 + 0.962968i \(0.586897\pi\)
\(212\) 519840. 0.794383
\(213\) −383778. −0.579604
\(214\) −381816. −0.569928
\(215\) −369888. −0.545725
\(216\) 46656.0 0.0680414
\(217\) −345352. −0.497866
\(218\) 848888. 1.20979
\(219\) 303606. 0.427760
\(220\) 25344.0 0.0353036
\(221\) −21168.0 −0.0291541
\(222\) −440568. −0.599971
\(223\) 1.47006e6 1.97957 0.989787 0.142554i \(-0.0455316\pi\)
0.989787 + 0.142554i \(0.0455316\pi\)
\(224\) 50176.0 0.0668153
\(225\) −206469. −0.271893
\(226\) 248424. 0.323536
\(227\) −589560. −0.759387 −0.379694 0.925112i \(-0.623971\pi\)
−0.379694 + 0.925112i \(0.623971\pi\)
\(228\) −48960.0 −0.0623741
\(229\) −1.04534e6 −1.31725 −0.658627 0.752469i \(-0.728863\pi\)
−0.658627 + 0.752469i \(0.728863\pi\)
\(230\) −99648.0 −0.124208
\(231\) 29106.0 0.0358883
\(232\) −159360. −0.194383
\(233\) 651222. 0.785849 0.392925 0.919571i \(-0.371463\pi\)
0.392925 + 0.919571i \(0.371463\pi\)
\(234\) 31752.0 0.0379080
\(235\) 494496. 0.584108
\(236\) 547584. 0.639986
\(237\) −765972. −0.885813
\(238\) −42336.0 −0.0484471
\(239\) −513462. −0.581452 −0.290726 0.956806i \(-0.593897\pi\)
−0.290726 + 0.956806i \(0.593897\pi\)
\(240\) 55296.0 0.0619677
\(241\) −694714. −0.770484 −0.385242 0.922816i \(-0.625882\pi\)
−0.385242 + 0.922816i \(0.625882\pi\)
\(242\) −626780. −0.687981
\(243\) 59049.0 0.0641500
\(244\) 570464. 0.613414
\(245\) 57624.0 0.0613322
\(246\) 232848. 0.245321
\(247\) −33320.0 −0.0347506
\(248\) −451072. −0.465711
\(249\) −960876. −0.982130
\(250\) −544704. −0.551202
\(251\) −1.39608e6 −1.39870 −0.699352 0.714777i \(-0.746528\pi\)
−0.699352 + 0.714777i \(0.746528\pi\)
\(252\) 63504.0 0.0629941
\(253\) −68508.0 −0.0672884
\(254\) −212176. −0.206354
\(255\) −46656.0 −0.0449321
\(256\) 65536.0 0.0625000
\(257\) −1.00520e6 −0.949339 −0.474670 0.880164i \(-0.657432\pi\)
−0.474670 + 0.880164i \(0.657432\pi\)
\(258\) −554832. −0.518934
\(259\) −599662. −0.555466
\(260\) 37632.0 0.0345242
\(261\) −201690. −0.183267
\(262\) 277296. 0.249569
\(263\) 1.25301e6 1.11703 0.558515 0.829494i \(-0.311371\pi\)
0.558515 + 0.829494i \(0.311371\pi\)
\(264\) 38016.0 0.0335704
\(265\) 779760. 0.682097
\(266\) −66640.0 −0.0577472
\(267\) 313956. 0.269520
\(268\) 202880. 0.172545
\(269\) −1.76069e6 −1.48355 −0.741774 0.670650i \(-0.766015\pi\)
−0.741774 + 0.670650i \(0.766015\pi\)
\(270\) 69984.0 0.0584237
\(271\) 770528. 0.637331 0.318666 0.947867i \(-0.396765\pi\)
0.318666 + 0.947867i \(0.396765\pi\)
\(272\) −55296.0 −0.0453181
\(273\) 43218.0 0.0350960
\(274\) 519384. 0.417938
\(275\) −168234. −0.134147
\(276\) −149472. −0.118110
\(277\) 707738. 0.554208 0.277104 0.960840i \(-0.410625\pi\)
0.277104 + 0.960840i \(0.410625\pi\)
\(278\) −417424. −0.323941
\(279\) −570888. −0.439077
\(280\) 75264.0 0.0573710
\(281\) 2.30432e6 1.74091 0.870456 0.492247i \(-0.163824\pi\)
0.870456 + 0.492247i \(0.163824\pi\)
\(282\) 741744. 0.555432
\(283\) 1.60903e6 1.19426 0.597128 0.802146i \(-0.296308\pi\)
0.597128 + 0.802146i \(0.296308\pi\)
\(284\) −682272. −0.501951
\(285\) −73440.0 −0.0535575
\(286\) 25872.0 0.0187032
\(287\) 316932. 0.227123
\(288\) 82944.0 0.0589256
\(289\) −1.37320e6 −0.967140
\(290\) −239040. −0.166907
\(291\) 167958. 0.116270
\(292\) 539744. 0.370451
\(293\) 517020. 0.351834 0.175917 0.984405i \(-0.443711\pi\)
0.175917 + 0.984405i \(0.443711\pi\)
\(294\) 86436.0 0.0583212
\(295\) 821376. 0.549524
\(296\) −783232. −0.519590
\(297\) 48114.0 0.0316505
\(298\) 868776. 0.566718
\(299\) −101724. −0.0658030
\(300\) −367056. −0.235467
\(301\) −755188. −0.480440
\(302\) 884000. 0.557744
\(303\) 1.37776e6 0.862116
\(304\) −87040.0 −0.0540176
\(305\) 855696. 0.526708
\(306\) −69984.0 −0.0427263
\(307\) 1.35002e6 0.817512 0.408756 0.912644i \(-0.365963\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(308\) 51744.0 0.0310802
\(309\) 322776. 0.192311
\(310\) −676608. −0.399883
\(311\) 1.34538e6 0.788758 0.394379 0.918948i \(-0.370960\pi\)
0.394379 + 0.918948i \(0.370960\pi\)
\(312\) 56448.0 0.0328293
\(313\) 256154. 0.147788 0.0738942 0.997266i \(-0.476457\pi\)
0.0738942 + 0.997266i \(0.476457\pi\)
\(314\) −1.51348e6 −0.866269
\(315\) 95256.0 0.0540899
\(316\) −1.36173e6 −0.767137
\(317\) 1.84629e6 1.03193 0.515967 0.856609i \(-0.327433\pi\)
0.515967 + 0.856609i \(0.327433\pi\)
\(318\) 1.16964e6 0.648611
\(319\) −164340. −0.0904204
\(320\) 98304.0 0.0536656
\(321\) −859086. −0.465344
\(322\) −203448. −0.109349
\(323\) 73440.0 0.0391675
\(324\) 104976. 0.0555556
\(325\) −249802. −0.131186
\(326\) 419264. 0.218496
\(327\) 1.91000e6 0.987788
\(328\) 413952. 0.212454
\(329\) 1.00960e6 0.514231
\(330\) 57024.0 0.0288252
\(331\) −3.33238e6 −1.67180 −0.835900 0.548881i \(-0.815054\pi\)
−0.835900 + 0.548881i \(0.815054\pi\)
\(332\) −1.70822e6 −0.850550
\(333\) −991278. −0.489875
\(334\) −1.70789e6 −0.837709
\(335\) 304320. 0.148156
\(336\) 112896. 0.0545545
\(337\) −1.63481e6 −0.784136 −0.392068 0.919936i \(-0.628240\pi\)
−0.392068 + 0.919936i \(0.628240\pi\)
\(338\) −1.44676e6 −0.688816
\(339\) 558954. 0.264166
\(340\) −82944.0 −0.0389124
\(341\) −465168. −0.216633
\(342\) −110160. −0.0509282
\(343\) 117649. 0.0539949
\(344\) −986368. −0.449410
\(345\) −224208. −0.101415
\(346\) 1.32427e6 0.594685
\(347\) −841530. −0.375185 −0.187593 0.982247i \(-0.560068\pi\)
−0.187593 + 0.982247i \(0.560068\pi\)
\(348\) −358560. −0.158713
\(349\) −977242. −0.429476 −0.214738 0.976672i \(-0.568890\pi\)
−0.214738 + 0.976672i \(0.568890\pi\)
\(350\) −499604. −0.218000
\(351\) 71442.0 0.0309518
\(352\) 67584.0 0.0290728
\(353\) 3.45857e6 1.47727 0.738634 0.674106i \(-0.235471\pi\)
0.738634 + 0.674106i \(0.235471\pi\)
\(354\) 1.23206e6 0.522547
\(355\) −1.02341e6 −0.431001
\(356\) 558144. 0.233411
\(357\) −95256.0 −0.0395569
\(358\) −1.60078e6 −0.660120
\(359\) −3.47301e6 −1.42223 −0.711115 0.703076i \(-0.751810\pi\)
−0.711115 + 0.703076i \(0.751810\pi\)
\(360\) 124416. 0.0505964
\(361\) −2.36050e6 −0.953314
\(362\) 2.35239e6 0.943492
\(363\) −1.41026e6 −0.561734
\(364\) 76832.0 0.0303941
\(365\) 809616. 0.318088
\(366\) 1.28354e6 0.500850
\(367\) 3.11994e6 1.20915 0.604575 0.796548i \(-0.293343\pi\)
0.604575 + 0.796548i \(0.293343\pi\)
\(368\) −265728. −0.102286
\(369\) 523908. 0.200304
\(370\) −1.17485e6 −0.446146
\(371\) 1.59201e6 0.600497
\(372\) −1.01491e6 −0.380252
\(373\) −2.01673e6 −0.750543 −0.375272 0.926915i \(-0.622451\pi\)
−0.375272 + 0.926915i \(0.622451\pi\)
\(374\) −57024.0 −0.0210804
\(375\) −1.22558e6 −0.450054
\(376\) 1.31866e6 0.481019
\(377\) −244020. −0.0884244
\(378\) 142884. 0.0514344
\(379\) −5.38083e6 −1.92420 −0.962102 0.272690i \(-0.912087\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(380\) −130560. −0.0463822
\(381\) −477396. −0.168487
\(382\) 3.75737e6 1.31742
\(383\) 807432. 0.281261 0.140630 0.990062i \(-0.455087\pi\)
0.140630 + 0.990062i \(0.455087\pi\)
\(384\) 147456. 0.0510310
\(385\) 77616.0 0.0266870
\(386\) 1.35356e6 0.462391
\(387\) −1.24837e6 −0.423708
\(388\) 298592. 0.100693
\(389\) 891390. 0.298671 0.149336 0.988787i \(-0.452286\pi\)
0.149336 + 0.988787i \(0.452286\pi\)
\(390\) 84672.0 0.0281889
\(391\) 224208. 0.0741667
\(392\) 153664. 0.0505076
\(393\) 623916. 0.203772
\(394\) −951768. −0.308881
\(395\) −2.04259e6 −0.658702
\(396\) 85536.0 0.0274101
\(397\) 1.12345e6 0.357749 0.178875 0.983872i \(-0.442754\pi\)
0.178875 + 0.983872i \(0.442754\pi\)
\(398\) 817856. 0.258803
\(399\) −149940. −0.0471504
\(400\) −652544. −0.203920
\(401\) 1.72037e6 0.534271 0.267136 0.963659i \(-0.413923\pi\)
0.267136 + 0.963659i \(0.413923\pi\)
\(402\) 456480. 0.140882
\(403\) −690704. −0.211850
\(404\) 2.44934e6 0.746614
\(405\) 157464. 0.0477028
\(406\) −488040. −0.146940
\(407\) −807708. −0.241695
\(408\) −124416. −0.0370021
\(409\) 77246.0 0.0228332 0.0114166 0.999935i \(-0.496366\pi\)
0.0114166 + 0.999935i \(0.496366\pi\)
\(410\) 620928. 0.182424
\(411\) 1.16861e6 0.341245
\(412\) 573824. 0.166547
\(413\) 1.67698e6 0.483784
\(414\) −336312. −0.0964365
\(415\) −2.56234e6 −0.730324
\(416\) 100352. 0.0284310
\(417\) −939204. −0.264496
\(418\) −89760.0 −0.0251271
\(419\) −5.20615e6 −1.44871 −0.724356 0.689427i \(-0.757863\pi\)
−0.724356 + 0.689427i \(0.757863\pi\)
\(420\) 169344. 0.0468432
\(421\) 1.71847e6 0.472539 0.236270 0.971688i \(-0.424075\pi\)
0.236270 + 0.971688i \(0.424075\pi\)
\(422\) −1.39490e6 −0.381295
\(423\) 1.66892e6 0.453509
\(424\) 2.07936e6 0.561714
\(425\) 550584. 0.147860
\(426\) −1.53511e6 −0.409842
\(427\) 1.74705e6 0.463697
\(428\) −1.52726e6 −0.403000
\(429\) 58212.0 0.0152711
\(430\) −1.47955e6 −0.385886
\(431\) −580626. −0.150558 −0.0752789 0.997163i \(-0.523985\pi\)
−0.0752789 + 0.997163i \(0.523985\pi\)
\(432\) 186624. 0.0481125
\(433\) 4.15087e6 1.06395 0.531973 0.846761i \(-0.321451\pi\)
0.531973 + 0.846761i \(0.321451\pi\)
\(434\) −1.38141e6 −0.352045
\(435\) −537840. −0.136279
\(436\) 3.39555e6 0.855449
\(437\) 352920. 0.0884042
\(438\) 1.21442e6 0.302472
\(439\) 3.88407e6 0.961891 0.480946 0.876750i \(-0.340293\pi\)
0.480946 + 0.876750i \(0.340293\pi\)
\(440\) 101376. 0.0249634
\(441\) 194481. 0.0476190
\(442\) −84672.0 −0.0206150
\(443\) −2.31499e6 −0.560453 −0.280226 0.959934i \(-0.590410\pi\)
−0.280226 + 0.959934i \(0.590410\pi\)
\(444\) −1.76227e6 −0.424244
\(445\) 837216. 0.200418
\(446\) 5.88022e6 1.39977
\(447\) 1.95475e6 0.462723
\(448\) 200704. 0.0472456
\(449\) −1.92281e6 −0.450113 −0.225056 0.974346i \(-0.572257\pi\)
−0.225056 + 0.974346i \(0.572257\pi\)
\(450\) −825876. −0.192258
\(451\) 426888. 0.0988263
\(452\) 993696. 0.228774
\(453\) 1.98900e6 0.455396
\(454\) −2.35824e6 −0.536968
\(455\) 115248. 0.0260979
\(456\) −195840. −0.0441051
\(457\) 6.86215e6 1.53699 0.768493 0.639858i \(-0.221007\pi\)
0.768493 + 0.639858i \(0.221007\pi\)
\(458\) −4.18137e6 −0.931440
\(459\) −157464. −0.0348859
\(460\) −398592. −0.0878282
\(461\) 2.97167e6 0.651250 0.325625 0.945499i \(-0.394425\pi\)
0.325625 + 0.945499i \(0.394425\pi\)
\(462\) 116424. 0.0253768
\(463\) 4.87423e6 1.05670 0.528352 0.849025i \(-0.322810\pi\)
0.528352 + 0.849025i \(0.322810\pi\)
\(464\) −637440. −0.137450
\(465\) −1.52237e6 −0.326503
\(466\) 2.60489e6 0.555679
\(467\) −8.17301e6 −1.73416 −0.867081 0.498167i \(-0.834007\pi\)
−0.867081 + 0.498167i \(0.834007\pi\)
\(468\) 127008. 0.0268050
\(469\) 621320. 0.130432
\(470\) 1.97798e6 0.413027
\(471\) −3.40533e6 −0.707305
\(472\) 2.19034e6 0.452539
\(473\) −1.01719e6 −0.209050
\(474\) −3.06389e6 −0.626364
\(475\) 866660. 0.176244
\(476\) −169344. −0.0342572
\(477\) 2.63169e6 0.529589
\(478\) −2.05385e6 −0.411148
\(479\) 2.34397e6 0.466782 0.233391 0.972383i \(-0.425018\pi\)
0.233391 + 0.972383i \(0.425018\pi\)
\(480\) 221184. 0.0438178
\(481\) −1.19932e6 −0.236360
\(482\) −2.77886e6 −0.544814
\(483\) −457758. −0.0892829
\(484\) −2.50712e6 −0.486476
\(485\) 447888. 0.0864600
\(486\) 236196. 0.0453609
\(487\) 316928. 0.0605534 0.0302767 0.999542i \(-0.490361\pi\)
0.0302767 + 0.999542i \(0.490361\pi\)
\(488\) 2.28186e6 0.433749
\(489\) 943344. 0.178401
\(490\) 230496. 0.0433684
\(491\) −5.20041e6 −0.973495 −0.486748 0.873543i \(-0.661817\pi\)
−0.486748 + 0.873543i \(0.661817\pi\)
\(492\) 931392. 0.173468
\(493\) 537840. 0.0996634
\(494\) −133280. −0.0245724
\(495\) 128304. 0.0235357
\(496\) −1.80429e6 −0.329308
\(497\) −2.08946e6 −0.379440
\(498\) −3.84350e6 −0.694471
\(499\) −4.86773e6 −0.875135 −0.437568 0.899185i \(-0.644160\pi\)
−0.437568 + 0.899185i \(0.644160\pi\)
\(500\) −2.17882e6 −0.389758
\(501\) −3.84275e6 −0.683987
\(502\) −5.58432e6 −0.989034
\(503\) 426888. 0.0752305 0.0376153 0.999292i \(-0.488024\pi\)
0.0376153 + 0.999292i \(0.488024\pi\)
\(504\) 254016. 0.0445435
\(505\) 3.67402e6 0.641081
\(506\) −274032. −0.0475801
\(507\) −3.25520e6 −0.562416
\(508\) −848704. −0.145914
\(509\) −9.41621e6 −1.61095 −0.805474 0.592631i \(-0.798089\pi\)
−0.805474 + 0.592631i \(0.798089\pi\)
\(510\) −186624. −0.0317718
\(511\) 1.65297e6 0.280035
\(512\) 262144. 0.0441942
\(513\) −247860. −0.0415827
\(514\) −4.02082e6 −0.671284
\(515\) 860736. 0.143005
\(516\) −2.21933e6 −0.366942
\(517\) 1.35986e6 0.223753
\(518\) −2.39865e6 −0.392773
\(519\) 2.97961e6 0.485558
\(520\) 150528. 0.0244123
\(521\) 1.84039e6 0.297041 0.148520 0.988909i \(-0.452549\pi\)
0.148520 + 0.988909i \(0.452549\pi\)
\(522\) −806760. −0.129589
\(523\) −979108. −0.156522 −0.0782612 0.996933i \(-0.524937\pi\)
−0.0782612 + 0.996933i \(0.524937\pi\)
\(524\) 1.10918e6 0.176472
\(525\) −1.12411e6 −0.177996
\(526\) 5.01204e6 0.789860
\(527\) 1.52237e6 0.238777
\(528\) 152064. 0.0237379
\(529\) −5.35890e6 −0.832600
\(530\) 3.11904e6 0.482316
\(531\) 2.77214e6 0.426658
\(532\) −266560. −0.0408334
\(533\) 633864. 0.0966447
\(534\) 1.25582e6 0.190579
\(535\) −2.29090e6 −0.346036
\(536\) 811520. 0.122008
\(537\) −3.60175e6 −0.538986
\(538\) −7.04275e6 −1.04903
\(539\) 158466. 0.0234944
\(540\) 279936. 0.0413118
\(541\) 5.96117e6 0.875666 0.437833 0.899056i \(-0.355746\pi\)
0.437833 + 0.899056i \(0.355746\pi\)
\(542\) 3.08211e6 0.450661
\(543\) 5.29288e6 0.770358
\(544\) −221184. −0.0320447
\(545\) 5.09333e6 0.734531
\(546\) 172872. 0.0248166
\(547\) 8.73025e6 1.24755 0.623775 0.781604i \(-0.285598\pi\)
0.623775 + 0.781604i \(0.285598\pi\)
\(548\) 2.07754e6 0.295527
\(549\) 2.88797e6 0.408943
\(550\) −672936. −0.0948565
\(551\) 846600. 0.118795
\(552\) −597888. −0.0835165
\(553\) −4.17029e6 −0.579901
\(554\) 2.83095e6 0.391885
\(555\) −2.64341e6 −0.364277
\(556\) −1.66970e6 −0.229061
\(557\) −3.01066e6 −0.411172 −0.205586 0.978639i \(-0.565910\pi\)
−0.205586 + 0.978639i \(0.565910\pi\)
\(558\) −2.28355e6 −0.310474
\(559\) −1.51038e6 −0.204435
\(560\) 301056. 0.0405674
\(561\) −128304. −0.0172121
\(562\) 9.21727e6 1.23101
\(563\) 1.17573e7 1.56327 0.781637 0.623733i \(-0.214385\pi\)
0.781637 + 0.623733i \(0.214385\pi\)
\(564\) 2.96698e6 0.392750
\(565\) 1.49054e6 0.196437
\(566\) 6.43611e6 0.844467
\(567\) 321489. 0.0419961
\(568\) −2.72909e6 −0.354933
\(569\) 1.31578e7 1.70374 0.851870 0.523754i \(-0.175469\pi\)
0.851870 + 0.523754i \(0.175469\pi\)
\(570\) −293760. −0.0378709
\(571\) −1.03344e7 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(572\) 103488. 0.0132251
\(573\) 8.45408e6 1.07567
\(574\) 1.26773e6 0.160600
\(575\) 2.64586e6 0.333732
\(576\) 331776. 0.0416667
\(577\) −7.88133e6 −0.985508 −0.492754 0.870169i \(-0.664010\pi\)
−0.492754 + 0.870169i \(0.664010\pi\)
\(578\) −5.49280e6 −0.683872
\(579\) 3.04551e6 0.377541
\(580\) −956160. −0.118021
\(581\) −5.23144e6 −0.642955
\(582\) 671832. 0.0822154
\(583\) 2.14434e6 0.261290
\(584\) 2.15898e6 0.261948
\(585\) 190512. 0.0230161
\(586\) 2.06808e6 0.248784
\(587\) −554568. −0.0664293 −0.0332146 0.999448i \(-0.510574\pi\)
−0.0332146 + 0.999448i \(0.510574\pi\)
\(588\) 345744. 0.0412393
\(589\) 2.39632e6 0.284614
\(590\) 3.28550e6 0.388572
\(591\) −2.14148e6 −0.252200
\(592\) −3.13293e6 −0.367406
\(593\) −9.20369e6 −1.07479 −0.537397 0.843329i \(-0.680592\pi\)
−0.537397 + 0.843329i \(0.680592\pi\)
\(594\) 192456. 0.0223803
\(595\) −254016. −0.0294150
\(596\) 3.47510e6 0.400730
\(597\) 1.84018e6 0.211312
\(598\) −406896. −0.0465297
\(599\) 8.54295e6 0.972839 0.486419 0.873725i \(-0.338303\pi\)
0.486419 + 0.873725i \(0.338303\pi\)
\(600\) −1.46822e6 −0.166500
\(601\) −9.61555e6 −1.08590 −0.542948 0.839767i \(-0.682692\pi\)
−0.542948 + 0.839767i \(0.682692\pi\)
\(602\) −3.02075e6 −0.339722
\(603\) 1.02708e6 0.115030
\(604\) 3.53600e6 0.394385
\(605\) −3.76068e6 −0.417713
\(606\) 5.51102e6 0.609608
\(607\) 2.21264e6 0.243747 0.121873 0.992546i \(-0.461110\pi\)
0.121873 + 0.992546i \(0.461110\pi\)
\(608\) −348160. −0.0381962
\(609\) −1.09809e6 −0.119976
\(610\) 3.42278e6 0.372439
\(611\) 2.01919e6 0.218814
\(612\) −279936. −0.0302121
\(613\) −7.96215e6 −0.855814 −0.427907 0.903823i \(-0.640749\pi\)
−0.427907 + 0.903823i \(0.640749\pi\)
\(614\) 5.40008e6 0.578068
\(615\) 1.39709e6 0.148948
\(616\) 206976. 0.0219770
\(617\) −1.37397e7 −1.45299 −0.726497 0.687170i \(-0.758853\pi\)
−0.726497 + 0.687170i \(0.758853\pi\)
\(618\) 1.29110e6 0.135985
\(619\) −8.70113e6 −0.912744 −0.456372 0.889789i \(-0.650851\pi\)
−0.456372 + 0.889789i \(0.650851\pi\)
\(620\) −2.70643e6 −0.282760
\(621\) −756702. −0.0787401
\(622\) 5.38152e6 0.557736
\(623\) 1.70932e6 0.176442
\(624\) 225792. 0.0232138
\(625\) 4.69740e6 0.481014
\(626\) 1.02462e6 0.104502
\(627\) −201960. −0.0205162
\(628\) −6.05392e6 −0.612544
\(629\) 2.64341e6 0.266402
\(630\) 381024. 0.0382473
\(631\) 445412. 0.0445337 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(632\) −5.44691e6 −0.542447
\(633\) −3.13852e6 −0.311326
\(634\) 7.38516e6 0.729687
\(635\) −1.27306e6 −0.125289
\(636\) 4.67856e6 0.458637
\(637\) 235298. 0.0229757
\(638\) −657360. −0.0639369
\(639\) −3.45400e6 −0.334634
\(640\) 393216. 0.0379473
\(641\) −8.00119e6 −0.769147 −0.384573 0.923094i \(-0.625651\pi\)
−0.384573 + 0.923094i \(0.625651\pi\)
\(642\) −3.43634e6 −0.329048
\(643\) −1.58402e7 −1.51090 −0.755448 0.655209i \(-0.772581\pi\)
−0.755448 + 0.655209i \(0.772581\pi\)
\(644\) −813792. −0.0773212
\(645\) −3.32899e6 −0.315075
\(646\) 293760. 0.0276956
\(647\) 1.30187e6 0.122266 0.0611331 0.998130i \(-0.480529\pi\)
0.0611331 + 0.998130i \(0.480529\pi\)
\(648\) 419904. 0.0392837
\(649\) 2.25878e6 0.210505
\(650\) −999208. −0.0927625
\(651\) −3.10817e6 −0.287443
\(652\) 1.67706e6 0.154500
\(653\) 7.34149e6 0.673753 0.336877 0.941549i \(-0.390629\pi\)
0.336877 + 0.941549i \(0.390629\pi\)
\(654\) 7.63999e6 0.698471
\(655\) 1.66378e6 0.151528
\(656\) 1.65581e6 0.150228
\(657\) 2.73245e6 0.246967
\(658\) 4.03838e6 0.363616
\(659\) −6.18934e6 −0.555176 −0.277588 0.960700i \(-0.589535\pi\)
−0.277588 + 0.960700i \(0.589535\pi\)
\(660\) 228096. 0.0203825
\(661\) −1.96690e7 −1.75097 −0.875484 0.483248i \(-0.839457\pi\)
−0.875484 + 0.483248i \(0.839457\pi\)
\(662\) −1.33295e7 −1.18214
\(663\) −190512. −0.0168321
\(664\) −6.83290e6 −0.601429
\(665\) −399840. −0.0350616
\(666\) −3.96511e6 −0.346394
\(667\) 2.58462e6 0.224948
\(668\) −6.83155e6 −0.592350
\(669\) 1.32305e7 1.14291
\(670\) 1.21728e6 0.104762
\(671\) 2.35316e6 0.201765
\(672\) 451584. 0.0385758
\(673\) 7.18259e6 0.611285 0.305642 0.952146i \(-0.401129\pi\)
0.305642 + 0.952146i \(0.401129\pi\)
\(674\) −6.53922e6 −0.554468
\(675\) −1.85822e6 −0.156978
\(676\) −5.78702e6 −0.487067
\(677\) −1.89192e7 −1.58647 −0.793234 0.608917i \(-0.791604\pi\)
−0.793234 + 0.608917i \(0.791604\pi\)
\(678\) 2.23582e6 0.186794
\(679\) 914438. 0.0761167
\(680\) −331776. −0.0275152
\(681\) −5.30604e6 −0.438432
\(682\) −1.86067e6 −0.153182
\(683\) 2.12204e7 1.74061 0.870306 0.492512i \(-0.163921\pi\)
0.870306 + 0.492512i \(0.163921\pi\)
\(684\) −440640. −0.0360117
\(685\) 3.11630e6 0.253754
\(686\) 470596. 0.0381802
\(687\) −9.40808e6 −0.760517
\(688\) −3.94547e6 −0.317781
\(689\) 3.18402e6 0.255522
\(690\) −896832. −0.0717114
\(691\) 1.63276e7 1.30085 0.650424 0.759571i \(-0.274591\pi\)
0.650424 + 0.759571i \(0.274591\pi\)
\(692\) 5.29709e6 0.420506
\(693\) 261954. 0.0207201
\(694\) −3.36612e6 −0.265296
\(695\) −2.50454e6 −0.196683
\(696\) −1.43424e6 −0.112227
\(697\) −1.39709e6 −0.108929
\(698\) −3.90897e6 −0.303685
\(699\) 5.86100e6 0.453710
\(700\) −1.99842e6 −0.154149
\(701\) −5.40470e6 −0.415409 −0.207705 0.978192i \(-0.566599\pi\)
−0.207705 + 0.978192i \(0.566599\pi\)
\(702\) 285768. 0.0218862
\(703\) 4.16092e6 0.317542
\(704\) 270336. 0.0205576
\(705\) 4.45046e6 0.337235
\(706\) 1.38343e7 1.04459
\(707\) 7.50112e6 0.564387
\(708\) 4.92826e6 0.369496
\(709\) 2.21195e7 1.65257 0.826284 0.563253i \(-0.190450\pi\)
0.826284 + 0.563253i \(0.190450\pi\)
\(710\) −4.09363e6 −0.304763
\(711\) −6.89375e6 −0.511424
\(712\) 2.23258e6 0.165046
\(713\) 7.31582e6 0.538939
\(714\) −381024. −0.0279709
\(715\) 155232. 0.0113558
\(716\) −6.40310e6 −0.466775
\(717\) −4.62116e6 −0.335701
\(718\) −1.38920e7 −1.00567
\(719\) 2.55819e7 1.84548 0.922742 0.385418i \(-0.125943\pi\)
0.922742 + 0.385418i \(0.125943\pi\)
\(720\) 497664. 0.0357771
\(721\) 1.75734e6 0.125897
\(722\) −9.44200e6 −0.674095
\(723\) −6.25243e6 −0.444839
\(724\) 9.40957e6 0.667150
\(725\) 6.34701e6 0.448460
\(726\) −5.64102e6 −0.397206
\(727\) −9.29438e6 −0.652205 −0.326103 0.945334i \(-0.605735\pi\)
−0.326103 + 0.945334i \(0.605735\pi\)
\(728\) 307328. 0.0214918
\(729\) 531441. 0.0370370
\(730\) 3.23846e6 0.224922
\(731\) 3.32899e6 0.230420
\(732\) 5.13418e6 0.354155
\(733\) 3.40699e6 0.234213 0.117107 0.993119i \(-0.462638\pi\)
0.117107 + 0.993119i \(0.462638\pi\)
\(734\) 1.24797e7 0.854999
\(735\) 518616. 0.0354101
\(736\) −1.06291e6 −0.0723274
\(737\) 836880. 0.0567537
\(738\) 2.09563e6 0.141636
\(739\) 2.18135e7 1.46932 0.734658 0.678438i \(-0.237343\pi\)
0.734658 + 0.678438i \(0.237343\pi\)
\(740\) −4.69939e6 −0.315473
\(741\) −299880. −0.0200633
\(742\) 6.36804e6 0.424616
\(743\) 3.79246e6 0.252028 0.126014 0.992028i \(-0.459782\pi\)
0.126014 + 0.992028i \(0.459782\pi\)
\(744\) −4.05965e6 −0.268878
\(745\) 5.21266e6 0.344087
\(746\) −8.06692e6 −0.530714
\(747\) −8.64788e6 −0.567033
\(748\) −228096. −0.0149061
\(749\) −4.67725e6 −0.304639
\(750\) −4.90234e6 −0.318236
\(751\) −2.01483e7 −1.30358 −0.651790 0.758400i \(-0.725982\pi\)
−0.651790 + 0.758400i \(0.725982\pi\)
\(752\) 5.27462e6 0.340132
\(753\) −1.25647e7 −0.807542
\(754\) −976080. −0.0625255
\(755\) 5.30400e6 0.338638
\(756\) 571536. 0.0363696
\(757\) 1.18427e7 0.751126 0.375563 0.926797i \(-0.377449\pi\)
0.375563 + 0.926797i \(0.377449\pi\)
\(758\) −2.15233e7 −1.36062
\(759\) −616572. −0.0388490
\(760\) −522240. −0.0327972
\(761\) 2.97791e6 0.186402 0.0932008 0.995647i \(-0.470290\pi\)
0.0932008 + 0.995647i \(0.470290\pi\)
\(762\) −1.90958e6 −0.119138
\(763\) 1.03989e7 0.646659
\(764\) 1.50295e7 0.931559
\(765\) −419904. −0.0259416
\(766\) 3.22973e6 0.198881
\(767\) 3.35395e6 0.205858
\(768\) 589824. 0.0360844
\(769\) −2.02441e7 −1.23447 −0.617237 0.786777i \(-0.711748\pi\)
−0.617237 + 0.786777i \(0.711748\pi\)
\(770\) 310464. 0.0188705
\(771\) −9.04684e6 −0.548101
\(772\) 5.41424e6 0.326960
\(773\) −7.37953e6 −0.444202 −0.222101 0.975024i \(-0.571291\pi\)
−0.222101 + 0.975024i \(0.571291\pi\)
\(774\) −4.99349e6 −0.299607
\(775\) 1.79654e7 1.07444
\(776\) 1.19437e6 0.0712006
\(777\) −5.39696e6 −0.320698
\(778\) 3.56556e6 0.211193
\(779\) −2.19912e6 −0.129839
\(780\) 338688. 0.0199326
\(781\) −2.81437e6 −0.165103
\(782\) 896832. 0.0524438
\(783\) −1.81521e6 −0.105809
\(784\) 614656. 0.0357143
\(785\) −9.08088e6 −0.525961
\(786\) 2.49566e6 0.144089
\(787\) 1.36289e7 0.784377 0.392188 0.919885i \(-0.371718\pi\)
0.392188 + 0.919885i \(0.371718\pi\)
\(788\) −3.80707e6 −0.218412
\(789\) 1.12771e7 0.644918
\(790\) −8.17037e6 −0.465773
\(791\) 3.04319e6 0.172937
\(792\) 342144. 0.0193819
\(793\) 3.49409e6 0.197311
\(794\) 4.49382e6 0.252967
\(795\) 7.01784e6 0.393809
\(796\) 3.27142e6 0.183001
\(797\) −1.49548e7 −0.833938 −0.416969 0.908921i \(-0.636908\pi\)
−0.416969 + 0.908921i \(0.636908\pi\)
\(798\) −599760. −0.0333404
\(799\) −4.45046e6 −0.246626
\(800\) −2.61018e6 −0.144193
\(801\) 2.82560e6 0.155607
\(802\) 6.88150e6 0.377787
\(803\) 2.22644e6 0.121849
\(804\) 1.82592e6 0.0996189
\(805\) −1.22069e6 −0.0663919
\(806\) −2.76282e6 −0.149801
\(807\) −1.58462e7 −0.856527
\(808\) 9.79738e6 0.527936
\(809\) 2.87242e7 1.54304 0.771519 0.636206i \(-0.219497\pi\)
0.771519 + 0.636206i \(0.219497\pi\)
\(810\) 629856. 0.0337310
\(811\) −1.52265e7 −0.812922 −0.406461 0.913668i \(-0.633237\pi\)
−0.406461 + 0.913668i \(0.633237\pi\)
\(812\) −1.95216e6 −0.103902
\(813\) 6.93475e6 0.367963
\(814\) −3.23083e6 −0.170904
\(815\) 2.51558e6 0.132661
\(816\) −497664. −0.0261644
\(817\) 5.24008e6 0.274652
\(818\) 308984. 0.0161455
\(819\) 388962. 0.0202627
\(820\) 2.48371e6 0.128993
\(821\) −3.31001e7 −1.71384 −0.856921 0.515447i \(-0.827626\pi\)
−0.856921 + 0.515447i \(0.827626\pi\)
\(822\) 4.67446e6 0.241297
\(823\) −1.35915e7 −0.699470 −0.349735 0.936849i \(-0.613728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(824\) 2.29530e6 0.117766
\(825\) −1.51411e6 −0.0774500
\(826\) 6.70790e6 0.342087
\(827\) 3.13936e6 0.159616 0.0798082 0.996810i \(-0.474569\pi\)
0.0798082 + 0.996810i \(0.474569\pi\)
\(828\) −1.34525e6 −0.0681909
\(829\) 1.27081e7 0.642234 0.321117 0.947040i \(-0.395942\pi\)
0.321117 + 0.947040i \(0.395942\pi\)
\(830\) −1.02493e7 −0.516417
\(831\) 6.36964e6 0.319972
\(832\) 401408. 0.0201038
\(833\) −518616. −0.0258960
\(834\) −3.75682e6 −0.187027
\(835\) −1.02473e7 −0.508621
\(836\) −359040. −0.0177675
\(837\) −5.13799e6 −0.253501
\(838\) −2.08246e7 −1.02439
\(839\) −2.98312e7 −1.46307 −0.731536 0.681803i \(-0.761196\pi\)
−0.731536 + 0.681803i \(0.761196\pi\)
\(840\) 677376. 0.0331231
\(841\) −1.43110e7 −0.697720
\(842\) 6.87390e6 0.334136
\(843\) 2.07389e7 1.00512
\(844\) −5.57958e6 −0.269616
\(845\) −8.68054e6 −0.418220
\(846\) 6.67570e6 0.320679
\(847\) −7.67806e6 −0.367742
\(848\) 8.31744e6 0.397192
\(849\) 1.44813e7 0.689504
\(850\) 2.20234e6 0.104553
\(851\) 1.27030e7 0.601290
\(852\) −6.14045e6 −0.289802
\(853\) −1.92215e7 −0.904515 −0.452257 0.891888i \(-0.649381\pi\)
−0.452257 + 0.891888i \(0.649381\pi\)
\(854\) 6.98818e6 0.327884
\(855\) −660960. −0.0309215
\(856\) −6.10906e6 −0.284964
\(857\) −2.65655e7 −1.23556 −0.617782 0.786349i \(-0.711969\pi\)
−0.617782 + 0.786349i \(0.711969\pi\)
\(858\) 232848. 0.0107983
\(859\) −9.16844e6 −0.423948 −0.211974 0.977275i \(-0.567989\pi\)
−0.211974 + 0.977275i \(0.567989\pi\)
\(860\) −5.91821e6 −0.272863
\(861\) 2.85239e6 0.131130
\(862\) −2.32250e6 −0.106460
\(863\) −2.92196e7 −1.33551 −0.667755 0.744381i \(-0.732745\pi\)
−0.667755 + 0.744381i \(0.732745\pi\)
\(864\) 746496. 0.0340207
\(865\) 7.94563e6 0.361067
\(866\) 1.66035e7 0.752324
\(867\) −1.23588e7 −0.558379
\(868\) −5.52563e6 −0.248933
\(869\) −5.61713e6 −0.252328
\(870\) −2.15136e6 −0.0963640
\(871\) 1.24264e6 0.0555009
\(872\) 1.35822e7 0.604894
\(873\) 1.51162e6 0.0671286
\(874\) 1.41168e6 0.0625112
\(875\) −6.67262e6 −0.294630
\(876\) 4.85770e6 0.213880
\(877\) 9.71286e6 0.426430 0.213215 0.977005i \(-0.431606\pi\)
0.213215 + 0.977005i \(0.431606\pi\)
\(878\) 1.55363e7 0.680160
\(879\) 4.65318e6 0.203132
\(880\) 405504. 0.0176518
\(881\) 1.65372e7 0.717833 0.358917 0.933370i \(-0.383146\pi\)
0.358917 + 0.933370i \(0.383146\pi\)
\(882\) 777924. 0.0336718
\(883\) −2.39487e7 −1.03367 −0.516833 0.856086i \(-0.672889\pi\)
−0.516833 + 0.856086i \(0.672889\pi\)
\(884\) −338688. −0.0145770
\(885\) 7.39238e6 0.317268
\(886\) −9.25994e6 −0.396300
\(887\) −4.62846e6 −0.197527 −0.0987637 0.995111i \(-0.531489\pi\)
−0.0987637 + 0.995111i \(0.531489\pi\)
\(888\) −7.04909e6 −0.299986
\(889\) −2.59916e6 −0.110301
\(890\) 3.34886e6 0.141717
\(891\) 433026. 0.0182734
\(892\) 2.35209e7 0.989787
\(893\) −7.00536e6 −0.293969
\(894\) 7.81898e6 0.327195
\(895\) −9.60466e6 −0.400797
\(896\) 802816. 0.0334077
\(897\) −915516. −0.0379914
\(898\) −7.69126e6 −0.318278
\(899\) 1.75495e7 0.724212
\(900\) −3.30350e6 −0.135947
\(901\) −7.01784e6 −0.287999
\(902\) 1.70755e6 0.0698808
\(903\) −6.79669e6 −0.277382
\(904\) 3.97478e6 0.161768
\(905\) 1.41144e7 0.572848
\(906\) 7.95600e6 0.322014
\(907\) 2.06126e7 0.831983 0.415991 0.909369i \(-0.363435\pi\)
0.415991 + 0.909369i \(0.363435\pi\)
\(908\) −9.43296e6 −0.379694
\(909\) 1.23998e7 0.497743
\(910\) 460992. 0.0184540
\(911\) −3.46749e6 −0.138427 −0.0692133 0.997602i \(-0.522049\pi\)
−0.0692133 + 0.997602i \(0.522049\pi\)
\(912\) −783360. −0.0311870
\(913\) −7.04642e6 −0.279764
\(914\) 2.74486e7 1.08681
\(915\) 7.70126e6 0.304095
\(916\) −1.67255e7 −0.658627
\(917\) 3.39688e6 0.133400
\(918\) −629856. −0.0246680
\(919\) −3.61227e7 −1.41088 −0.705442 0.708767i \(-0.749252\pi\)
−0.705442 + 0.708767i \(0.749252\pi\)
\(920\) −1.59437e6 −0.0621039
\(921\) 1.21502e7 0.471991
\(922\) 1.18867e7 0.460504
\(923\) −4.17892e6 −0.161458
\(924\) 465696. 0.0179441
\(925\) 3.11947e7 1.19874
\(926\) 1.94969e7 0.747203
\(927\) 2.90498e6 0.111031
\(928\) −2.54976e6 −0.0971917
\(929\) 1.29366e7 0.491792 0.245896 0.969296i \(-0.420918\pi\)
0.245896 + 0.969296i \(0.420918\pi\)
\(930\) −6.08947e6 −0.230873
\(931\) −816340. −0.0308672
\(932\) 1.04196e7 0.392925
\(933\) 1.21084e7 0.455390
\(934\) −3.26920e7 −1.22624
\(935\) −342144. −0.0127991
\(936\) 508032. 0.0189540
\(937\) 5.01394e7 1.86565 0.932824 0.360332i \(-0.117336\pi\)
0.932824 + 0.360332i \(0.117336\pi\)
\(938\) 2.48528e6 0.0922292
\(939\) 2.30539e6 0.0853257
\(940\) 7.91194e6 0.292054
\(941\) −1.05568e7 −0.388651 −0.194325 0.980937i \(-0.562252\pi\)
−0.194325 + 0.980937i \(0.562252\pi\)
\(942\) −1.36213e7 −0.500140
\(943\) −6.71378e6 −0.245860
\(944\) 8.76134e6 0.319993
\(945\) 857304. 0.0312288
\(946\) −4.06877e6 −0.147821
\(947\) −3.14684e6 −0.114025 −0.0570124 0.998373i \(-0.518157\pi\)
−0.0570124 + 0.998373i \(0.518157\pi\)
\(948\) −1.22556e7 −0.442906
\(949\) 3.30593e6 0.119159
\(950\) 3.46664e6 0.124623
\(951\) 1.66166e7 0.595787
\(952\) −677376. −0.0242235
\(953\) 5.22829e7 1.86478 0.932389 0.361455i \(-0.117720\pi\)
0.932389 + 0.361455i \(0.117720\pi\)
\(954\) 1.05268e7 0.374476
\(955\) 2.25442e7 0.799883
\(956\) −8.21539e6 −0.290726
\(957\) −1.47906e6 −0.0522043
\(958\) 9.37589e6 0.330064
\(959\) 6.36245e6 0.223397
\(960\) 884736. 0.0309839
\(961\) 2.10452e7 0.735095
\(962\) −4.79730e6 −0.167132
\(963\) −7.73177e6 −0.268666
\(964\) −1.11154e7 −0.385242
\(965\) 8.12136e6 0.280744
\(966\) −1.83103e6 −0.0631325
\(967\) −2.48235e7 −0.853682 −0.426841 0.904327i \(-0.640374\pi\)
−0.426841 + 0.904327i \(0.640374\pi\)
\(968\) −1.00285e7 −0.343991
\(969\) 660960. 0.0226134
\(970\) 1.79155e6 0.0611364
\(971\) 1.33077e7 0.452956 0.226478 0.974016i \(-0.427279\pi\)
0.226478 + 0.974016i \(0.427279\pi\)
\(972\) 944784. 0.0320750
\(973\) −5.11344e6 −0.173154
\(974\) 1.26771e6 0.0428177
\(975\) −2.24822e6 −0.0757403
\(976\) 9.12742e6 0.306707
\(977\) 8.17705e6 0.274069 0.137035 0.990566i \(-0.456243\pi\)
0.137035 + 0.990566i \(0.456243\pi\)
\(978\) 3.77338e6 0.126149
\(979\) 2.30234e6 0.0767739
\(980\) 921984. 0.0306661
\(981\) 1.71900e7 0.570299
\(982\) −2.08016e7 −0.688365
\(983\) −1.32465e7 −0.437238 −0.218619 0.975810i \(-0.570155\pi\)
−0.218619 + 0.975810i \(0.570155\pi\)
\(984\) 3.72557e6 0.122661
\(985\) −5.71061e6 −0.187539
\(986\) 2.15136e6 0.0704727
\(987\) 9.08636e6 0.296891
\(988\) −533120. −0.0173753
\(989\) 1.59977e7 0.520075
\(990\) 513216. 0.0166423
\(991\) −1.48550e7 −0.480494 −0.240247 0.970712i \(-0.577228\pi\)
−0.240247 + 0.970712i \(0.577228\pi\)
\(992\) −7.21715e6 −0.232856
\(993\) −2.99914e7 −0.965215
\(994\) −8.35783e6 −0.268304
\(995\) 4.90714e6 0.157134
\(996\) −1.53740e7 −0.491065
\(997\) −3.33769e6 −0.106343 −0.0531714 0.998585i \(-0.516933\pi\)
−0.0531714 + 0.998585i \(0.516933\pi\)
\(998\) −1.94709e7 −0.618814
\(999\) −8.92150e6 −0.282829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.6.a.f.1.1 1
3.2 odd 2 126.6.a.b.1.1 1
4.3 odd 2 336.6.a.g.1.1 1
5.2 odd 4 1050.6.g.m.799.2 2
5.3 odd 4 1050.6.g.m.799.1 2
5.4 even 2 1050.6.a.a.1.1 1
7.2 even 3 294.6.e.b.67.1 2
7.3 odd 6 294.6.e.f.79.1 2
7.4 even 3 294.6.e.b.79.1 2
7.5 odd 6 294.6.e.f.67.1 2
7.6 odd 2 294.6.a.i.1.1 1
12.11 even 2 1008.6.a.k.1.1 1
21.20 even 2 882.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.f.1.1 1 1.1 even 1 trivial
126.6.a.b.1.1 1 3.2 odd 2
294.6.a.i.1.1 1 7.6 odd 2
294.6.e.b.67.1 2 7.2 even 3
294.6.e.b.79.1 2 7.4 even 3
294.6.e.f.67.1 2 7.5 odd 6
294.6.e.f.79.1 2 7.3 odd 6
336.6.a.g.1.1 1 4.3 odd 2
882.6.a.i.1.1 1 21.20 even 2
1008.6.a.k.1.1 1 12.11 even 2
1050.6.a.a.1.1 1 5.4 even 2
1050.6.g.m.799.1 2 5.3 odd 4
1050.6.g.m.799.2 2 5.2 odd 4