Properties

Label 405.3.i.c.26.2
Level $405$
Weight $3$
Character 405.26
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(26,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-2,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.2
Root \(0.535233 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 405.26
Dual form 405.3.i.c.296.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.330792 - 0.190983i) q^{2} +(-1.92705 - 3.33775i) q^{4} +(-1.93649 + 1.11803i) q^{5} +(-1.85410 + 3.21140i) q^{7} +3.00000i q^{8} +0.854102 q^{10} +(7.08438 + 4.09017i) q^{11} +(-3.85410 - 6.67550i) q^{13} +(1.22665 - 0.708204i) q^{14} +(-7.13525 + 12.3586i) q^{16} +11.9443i q^{17} +5.58359 q^{19} +(7.46344 + 4.30902i) q^{20} +(-1.56231 - 2.70599i) q^{22} +(24.6093 - 14.2082i) q^{23} +(2.50000 - 4.33013i) q^{25} +2.94427i q^{26} +14.2918 q^{28} +(48.5571 + 28.0344i) q^{29} +(15.6246 + 27.0626i) q^{31} +(15.1129 - 8.72542i) q^{32} +(2.28115 - 3.95107i) q^{34} -8.29180i q^{35} -53.4164 q^{37} +(-1.84701 - 1.06637i) q^{38} +(-3.35410 - 5.80948i) q^{40} +(52.6231 - 30.3820i) q^{41} +(35.6869 - 61.8116i) q^{43} -31.5279i q^{44} -10.8541 q^{46} +(39.9565 + 23.0689i) q^{47} +(17.6246 + 30.5267i) q^{49} +(-1.65396 + 0.954915i) q^{50} +(-14.8541 + 25.7281i) q^{52} +73.3607i q^{53} -18.2918 q^{55} +(-9.63420 - 5.56231i) q^{56} +(-10.7082 - 18.5472i) q^{58} +(-78.6039 + 45.3820i) q^{59} +(-9.50000 + 16.4545i) q^{61} -11.9361i q^{62} +50.4164 q^{64} +(14.9269 + 8.61803i) q^{65} +(-0.167184 - 0.289572i) q^{67} +(39.8670 - 23.0172i) q^{68} +(-1.58359 + 2.74286i) q^{70} +81.2624i q^{71} +50.7902 q^{73} +(17.6697 + 10.2016i) q^{74} +(-10.7599 - 18.6366i) q^{76} +(-26.2703 + 15.1672i) q^{77} +(24.0836 - 41.7140i) q^{79} -31.9098i q^{80} -23.2098 q^{82} +(-54.2700 - 31.3328i) q^{83} +(-13.3541 - 23.1300i) q^{85} +(-23.6099 + 13.6312i) q^{86} +(-12.2705 + 21.2531i) q^{88} -69.7082i q^{89} +28.5836 q^{91} +(-94.8469 - 54.7599i) q^{92} +(-8.81153 - 15.2620i) q^{94} +(-10.8126 + 6.24265i) q^{95} +(-79.7082 + 138.059i) q^{97} -13.4640i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{4} + 12 q^{7} - 20 q^{10} - 4 q^{13} + 10 q^{16} + 152 q^{19} + 68 q^{22} + 20 q^{25} + 168 q^{28} - 36 q^{31} - 22 q^{34} - 320 q^{37} + 44 q^{43} - 60 q^{46} - 20 q^{49} - 92 q^{52} - 200 q^{55}+ \cdots - 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.330792 0.190983i −0.165396 0.0954915i 0.415017 0.909814i \(-0.363776\pi\)
−0.580413 + 0.814322i \(0.697109\pi\)
\(3\) 0 0
\(4\) −1.92705 3.33775i −0.481763 0.834438i
\(5\) −1.93649 + 1.11803i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) −1.85410 + 3.21140i −0.264872 + 0.458771i −0.967530 0.252756i \(-0.918663\pi\)
0.702658 + 0.711527i \(0.251996\pi\)
\(8\) 3.00000i 0.375000i
\(9\) 0 0
\(10\) 0.854102 0.0854102
\(11\) 7.08438 + 4.09017i 0.644035 + 0.371834i 0.786167 0.618014i \(-0.212063\pi\)
−0.142132 + 0.989848i \(0.545396\pi\)
\(12\) 0 0
\(13\) −3.85410 6.67550i −0.296469 0.513500i 0.678856 0.734271i \(-0.262476\pi\)
−0.975326 + 0.220771i \(0.929143\pi\)
\(14\) 1.22665 0.708204i 0.0876175 0.0505860i
\(15\) 0 0
\(16\) −7.13525 + 12.3586i −0.445953 + 0.772414i
\(17\) 11.9443i 0.702604i 0.936262 + 0.351302i \(0.114261\pi\)
−0.936262 + 0.351302i \(0.885739\pi\)
\(18\) 0 0
\(19\) 5.58359 0.293873 0.146937 0.989146i \(-0.453059\pi\)
0.146937 + 0.989146i \(0.453059\pi\)
\(20\) 7.46344 + 4.30902i 0.373172 + 0.215451i
\(21\) 0 0
\(22\) −1.56231 2.70599i −0.0710139 0.123000i
\(23\) 24.6093 14.2082i 1.06997 0.617748i 0.141797 0.989896i \(-0.454712\pi\)
0.928174 + 0.372148i \(0.121379\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.100000 0.173205i
\(26\) 2.94427i 0.113241i
\(27\) 0 0
\(28\) 14.2918 0.510421
\(29\) 48.5571 + 28.0344i 1.67438 + 0.966705i 0.965138 + 0.261742i \(0.0842969\pi\)
0.709244 + 0.704963i \(0.249036\pi\)
\(30\) 0 0
\(31\) 15.6246 + 27.0626i 0.504020 + 0.872988i 0.999989 + 0.00464783i \(0.00147945\pi\)
−0.495969 + 0.868340i \(0.665187\pi\)
\(32\) 15.1129 8.72542i 0.472277 0.272670i
\(33\) 0 0
\(34\) 2.28115 3.95107i 0.0670927 0.116208i
\(35\) 8.29180i 0.236908i
\(36\) 0 0
\(37\) −53.4164 −1.44369 −0.721843 0.692056i \(-0.756705\pi\)
−0.721843 + 0.692056i \(0.756705\pi\)
\(38\) −1.84701 1.06637i −0.0486055 0.0280624i
\(39\) 0 0
\(40\) −3.35410 5.80948i −0.0838525 0.145237i
\(41\) 52.6231 30.3820i 1.28349 0.741024i 0.306006 0.952030i \(-0.401007\pi\)
0.977485 + 0.211006i \(0.0676740\pi\)
\(42\) 0 0
\(43\) 35.6869 61.8116i 0.829928 1.43748i −0.0681655 0.997674i \(-0.521715\pi\)
0.898094 0.439804i \(-0.144952\pi\)
\(44\) 31.5279i 0.716542i
\(45\) 0 0
\(46\) −10.8541 −0.235959
\(47\) 39.9565 + 23.0689i 0.850138 + 0.490827i 0.860697 0.509117i \(-0.170028\pi\)
−0.0105595 + 0.999944i \(0.503361\pi\)
\(48\) 0 0
\(49\) 17.6246 + 30.5267i 0.359686 + 0.622994i
\(50\) −1.65396 + 0.954915i −0.0330792 + 0.0190983i
\(51\) 0 0
\(52\) −14.8541 + 25.7281i −0.285656 + 0.494770i
\(53\) 73.3607i 1.38416i 0.721819 + 0.692082i \(0.243306\pi\)
−0.721819 + 0.692082i \(0.756694\pi\)
\(54\) 0 0
\(55\) −18.2918 −0.332578
\(56\) −9.63420 5.56231i −0.172039 0.0993269i
\(57\) 0 0
\(58\) −10.7082 18.5472i −0.184624 0.319779i
\(59\) −78.6039 + 45.3820i −1.33227 + 0.769186i −0.985647 0.168819i \(-0.946005\pi\)
−0.346622 + 0.938005i \(0.612671\pi\)
\(60\) 0 0
\(61\) −9.50000 + 16.4545i −0.155738 + 0.269746i −0.933327 0.359026i \(-0.883109\pi\)
0.777590 + 0.628772i \(0.216442\pi\)
\(62\) 11.9361i 0.192518i
\(63\) 0 0
\(64\) 50.4164 0.787756
\(65\) 14.9269 + 8.61803i 0.229644 + 0.132585i
\(66\) 0 0
\(67\) −0.167184 0.289572i −0.00249529 0.00432196i 0.864775 0.502159i \(-0.167461\pi\)
−0.867270 + 0.497837i \(0.834128\pi\)
\(68\) 39.8670 23.0172i 0.586279 0.338489i
\(69\) 0 0
\(70\) −1.58359 + 2.74286i −0.0226227 + 0.0391837i
\(71\) 81.2624i 1.14454i 0.820065 + 0.572270i \(0.193937\pi\)
−0.820065 + 0.572270i \(0.806063\pi\)
\(72\) 0 0
\(73\) 50.7902 0.695757 0.347878 0.937540i \(-0.386902\pi\)
0.347878 + 0.937540i \(0.386902\pi\)
\(74\) 17.6697 + 10.2016i 0.238780 + 0.137860i
\(75\) 0 0
\(76\) −10.7599 18.6366i −0.141577 0.245219i
\(77\) −26.2703 + 15.1672i −0.341173 + 0.196976i
\(78\) 0 0
\(79\) 24.0836 41.7140i 0.304856 0.528025i −0.672374 0.740212i \(-0.734725\pi\)
0.977229 + 0.212187i \(0.0680585\pi\)
\(80\) 31.9098i 0.398873i
\(81\) 0 0
\(82\) −23.2098 −0.283046
\(83\) −54.2700 31.3328i −0.653856 0.377504i 0.136076 0.990698i \(-0.456551\pi\)
−0.789932 + 0.613195i \(0.789884\pi\)
\(84\) 0 0
\(85\) −13.3541 23.1300i −0.157107 0.272117i
\(86\) −23.6099 + 13.6312i −0.274534 + 0.158502i
\(87\) 0 0
\(88\) −12.2705 + 21.2531i −0.139438 + 0.241513i
\(89\) 69.7082i 0.783238i −0.920127 0.391619i \(-0.871915\pi\)
0.920127 0.391619i \(-0.128085\pi\)
\(90\) 0 0
\(91\) 28.5836 0.314105
\(92\) −94.8469 54.7599i −1.03094 0.595216i
\(93\) 0 0
\(94\) −8.81153 15.2620i −0.0937397 0.162362i
\(95\) −10.8126 + 6.24265i −0.113817 + 0.0657121i
\(96\) 0 0
\(97\) −79.7082 + 138.059i −0.821734 + 1.42329i 0.0826559 + 0.996578i \(0.473660\pi\)
−0.904390 + 0.426707i \(0.859674\pi\)
\(98\) 13.4640i 0.137388i
\(99\) 0 0
\(100\) −19.2705 −0.192705
\(101\) −20.7846 12.0000i −0.205788 0.118812i 0.393564 0.919297i \(-0.371242\pi\)
−0.599352 + 0.800485i \(0.704575\pi\)
\(102\) 0 0
\(103\) 12.5836 + 21.7954i 0.122171 + 0.211606i 0.920623 0.390452i \(-0.127681\pi\)
−0.798453 + 0.602058i \(0.794348\pi\)
\(104\) 20.0265 11.5623i 0.192563 0.111176i
\(105\) 0 0
\(106\) 14.0106 24.2671i 0.132176 0.228935i
\(107\) 47.6656i 0.445473i 0.974879 + 0.222737i \(0.0714990\pi\)
−0.974879 + 0.222737i \(0.928501\pi\)
\(108\) 0 0
\(109\) 164.915 1.51298 0.756490 0.654005i \(-0.226913\pi\)
0.756490 + 0.654005i \(0.226913\pi\)
\(110\) 6.05078 + 3.49342i 0.0550071 + 0.0317584i
\(111\) 0 0
\(112\) −26.4590 45.8283i −0.236241 0.409181i
\(113\) −59.2249 + 34.1935i −0.524114 + 0.302597i −0.738616 0.674126i \(-0.764520\pi\)
0.214502 + 0.976723i \(0.431187\pi\)
\(114\) 0 0
\(115\) −31.7705 + 55.0281i −0.276265 + 0.478506i
\(116\) 216.095i 1.86289i
\(117\) 0 0
\(118\) 34.6687 0.293803
\(119\) −38.3578 22.1459i −0.322335 0.186100i
\(120\) 0 0
\(121\) −27.0410 46.8364i −0.223480 0.387078i
\(122\) 6.28505 3.62868i 0.0515168 0.0297433i
\(123\) 0 0
\(124\) 60.2188 104.302i 0.485636 0.841146i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) −200.748 −1.58069 −0.790345 0.612662i \(-0.790099\pi\)
−0.790345 + 0.612662i \(0.790099\pi\)
\(128\) −77.1289 44.5304i −0.602569 0.347894i
\(129\) 0 0
\(130\) −3.29180 5.70156i −0.0253215 0.0438581i
\(131\) −7.07030 + 4.08204i −0.0539718 + 0.0311606i −0.526743 0.850025i \(-0.676587\pi\)
0.472771 + 0.881185i \(0.343254\pi\)
\(132\) 0 0
\(133\) −10.3525 + 17.9311i −0.0778387 + 0.134821i
\(134\) 0.127717i 0.000953115i
\(135\) 0 0
\(136\) −35.8328 −0.263477
\(137\) −43.5882 25.1656i −0.318162 0.183691i 0.332411 0.943135i \(-0.392138\pi\)
−0.650573 + 0.759444i \(0.725471\pi\)
\(138\) 0 0
\(139\) 63.2492 + 109.551i 0.455030 + 0.788136i 0.998690 0.0511701i \(-0.0162951\pi\)
−0.543660 + 0.839306i \(0.682962\pi\)
\(140\) −27.6759 + 15.9787i −0.197685 + 0.114134i
\(141\) 0 0
\(142\) 15.5197 26.8810i 0.109294 0.189303i
\(143\) 63.0557i 0.440949i
\(144\) 0 0
\(145\) −125.374 −0.864647
\(146\) −16.8010 9.70007i −0.115075 0.0664389i
\(147\) 0 0
\(148\) 102.936 + 178.291i 0.695514 + 1.20467i
\(149\) −13.7002 + 7.90983i −0.0919478 + 0.0530861i −0.545269 0.838261i \(-0.683572\pi\)
0.453321 + 0.891347i \(0.350239\pi\)
\(150\) 0 0
\(151\) 69.4984 120.375i 0.460255 0.797184i −0.538719 0.842486i \(-0.681091\pi\)
0.998973 + 0.0453013i \(0.0144248\pi\)
\(152\) 16.7508i 0.110202i
\(153\) 0 0
\(154\) 11.5867 0.0752383
\(155\) −60.5139 34.9377i −0.390412 0.225404i
\(156\) 0 0
\(157\) −95.3525 165.155i −0.607341 1.05195i −0.991677 0.128752i \(-0.958903\pi\)
0.384336 0.923193i \(-0.374431\pi\)
\(158\) −15.9333 + 9.19911i −0.100844 + 0.0582222i
\(159\) 0 0
\(160\) −19.5106 + 33.7934i −0.121942 + 0.211209i
\(161\) 105.374i 0.654496i
\(162\) 0 0
\(163\) −36.8328 −0.225968 −0.112984 0.993597i \(-0.536041\pi\)
−0.112984 + 0.993597i \(0.536041\pi\)
\(164\) −202.815 117.095i −1.23668 0.713995i
\(165\) 0 0
\(166\) 11.9681 + 20.7293i 0.0720968 + 0.124875i
\(167\) −223.937 + 129.290i −1.34094 + 0.774193i −0.986946 0.161054i \(-0.948511\pi\)
−0.353996 + 0.935247i \(0.615177\pi\)
\(168\) 0 0
\(169\) 54.7918 94.9022i 0.324212 0.561551i
\(170\) 10.2016i 0.0600096i
\(171\) 0 0
\(172\) −275.082 −1.59931
\(173\) 157.904 + 91.1656i 0.912737 + 0.526969i 0.881311 0.472537i \(-0.156662\pi\)
0.0314263 + 0.999506i \(0.489995\pi\)
\(174\) 0 0
\(175\) 9.27051 + 16.0570i 0.0529743 + 0.0917543i
\(176\) −101.098 + 58.3688i −0.574419 + 0.331641i
\(177\) 0 0
\(178\) −13.3131 + 23.0589i −0.0747926 + 0.129545i
\(179\) 256.774i 1.43449i 0.696820 + 0.717246i \(0.254598\pi\)
−0.696820 + 0.717246i \(0.745402\pi\)
\(180\) 0 0
\(181\) 180.082 0.994928 0.497464 0.867485i \(-0.334265\pi\)
0.497464 + 0.867485i \(0.334265\pi\)
\(182\) −9.45523 5.45898i −0.0519518 0.0299944i
\(183\) 0 0
\(184\) 42.6246 + 73.8280i 0.231655 + 0.401239i
\(185\) 103.440 59.7214i 0.559137 0.322818i
\(186\) 0 0
\(187\) −48.8541 + 84.6178i −0.261252 + 0.452502i
\(188\) 177.820i 0.945849i
\(189\) 0 0
\(190\) 4.76896 0.0250998
\(191\) −111.186 64.1935i −0.582128 0.336092i 0.179851 0.983694i \(-0.442439\pi\)
−0.761979 + 0.647602i \(0.775772\pi\)
\(192\) 0 0
\(193\) −32.1459 55.6783i −0.166559 0.288489i 0.770649 0.637260i \(-0.219932\pi\)
−0.937208 + 0.348771i \(0.886599\pi\)
\(194\) 52.7337 30.4458i 0.271823 0.156937i
\(195\) 0 0
\(196\) 67.9271 117.653i 0.346567 0.600271i
\(197\) 217.997i 1.10658i −0.832988 0.553292i \(-0.813372\pi\)
0.832988 0.553292i \(-0.186628\pi\)
\(198\) 0 0
\(199\) 320.249 1.60929 0.804646 0.593754i \(-0.202355\pi\)
0.804646 + 0.593754i \(0.202355\pi\)
\(200\) 12.9904 + 7.50000i 0.0649519 + 0.0375000i
\(201\) 0 0
\(202\) 4.58359 + 7.93901i 0.0226911 + 0.0393021i
\(203\) −180.060 + 103.957i −0.886993 + 0.512106i
\(204\) 0 0
\(205\) −67.9361 + 117.669i −0.331396 + 0.573994i
\(206\) 9.61301i 0.0466651i
\(207\) 0 0
\(208\) 110.000 0.528846
\(209\) 39.5563 + 22.8378i 0.189265 + 0.109272i
\(210\) 0 0
\(211\) 31.9164 + 55.2808i 0.151263 + 0.261995i 0.931692 0.363250i \(-0.118333\pi\)
−0.780429 + 0.625244i \(0.784999\pi\)
\(212\) 244.860 141.370i 1.15500 0.666839i
\(213\) 0 0
\(214\) 9.10333 15.7674i 0.0425389 0.0736795i
\(215\) 159.597i 0.742310i
\(216\) 0 0
\(217\) −115.878 −0.534002
\(218\) −54.5526 31.4959i −0.250241 0.144477i
\(219\) 0 0
\(220\) 35.2492 + 61.0534i 0.160224 + 0.277516i
\(221\) 79.7340 46.0344i 0.360787 0.208301i
\(222\) 0 0
\(223\) 4.12461 7.14404i 0.0184960 0.0320360i −0.856629 0.515932i \(-0.827446\pi\)
0.875125 + 0.483896i \(0.160779\pi\)
\(224\) 64.7113i 0.288890i
\(225\) 0 0
\(226\) 26.1215 0.115582
\(227\) 294.037 + 169.762i 1.29532 + 0.747852i 0.979592 0.200999i \(-0.0644186\pi\)
0.315726 + 0.948850i \(0.397752\pi\)
\(228\) 0 0
\(229\) −101.248 175.366i −0.442130 0.765791i 0.555718 0.831371i \(-0.312444\pi\)
−0.997847 + 0.0655802i \(0.979110\pi\)
\(230\) 21.0189 12.1353i 0.0913864 0.0527620i
\(231\) 0 0
\(232\) −84.1033 + 145.671i −0.362514 + 0.627893i
\(233\) 19.0820i 0.0818972i 0.999161 + 0.0409486i \(0.0130380\pi\)
−0.999161 + 0.0409486i \(0.986962\pi\)
\(234\) 0 0
\(235\) −103.167 −0.439009
\(236\) 302.947 + 174.907i 1.28368 + 0.741130i
\(237\) 0 0
\(238\) 8.45898 + 14.6514i 0.0355419 + 0.0615604i
\(239\) 236.087 136.305i 0.987812 0.570314i 0.0831925 0.996533i \(-0.473488\pi\)
0.904620 + 0.426220i \(0.140155\pi\)
\(240\) 0 0
\(241\) −116.290 + 201.421i −0.482532 + 0.835770i −0.999799 0.0200541i \(-0.993616\pi\)
0.517267 + 0.855824i \(0.326950\pi\)
\(242\) 20.6575i 0.0853616i
\(243\) 0 0
\(244\) 73.2279 0.300114
\(245\) −68.2598 39.4098i −0.278612 0.160856i
\(246\) 0 0
\(247\) −21.5197 37.2733i −0.0871244 0.150904i
\(248\) −81.1879 + 46.8738i −0.327370 + 0.189007i
\(249\) 0 0
\(250\) 2.13525 3.69837i 0.00854102 0.0147935i
\(251\) 14.4195i 0.0574483i 0.999587 + 0.0287241i \(0.00914443\pi\)
−0.999587 + 0.0287241i \(0.990856\pi\)
\(252\) 0 0
\(253\) 232.456 0.918798
\(254\) 66.4058 + 38.3394i 0.261440 + 0.150942i
\(255\) 0 0
\(256\) −83.8237 145.187i −0.327436 0.567137i
\(257\) 143.542 82.8738i 0.558528 0.322466i −0.194026 0.980996i \(-0.562155\pi\)
0.752554 + 0.658530i \(0.228821\pi\)
\(258\) 0 0
\(259\) 99.0395 171.541i 0.382392 0.662322i
\(260\) 66.4296i 0.255498i
\(261\) 0 0
\(262\) 3.11840 0.0119023
\(263\) 450.356 + 260.013i 1.71238 + 0.988643i 0.931331 + 0.364174i \(0.118649\pi\)
0.781049 + 0.624470i \(0.214685\pi\)
\(264\) 0 0
\(265\) −82.0197 142.062i −0.309508 0.536084i
\(266\) 6.84909 3.95432i 0.0257484 0.0148659i
\(267\) 0 0
\(268\) −0.644345 + 1.11604i −0.00240427 + 0.00416432i
\(269\) 87.3576i 0.324749i 0.986729 + 0.162375i \(0.0519153\pi\)
−0.986729 + 0.162375i \(0.948085\pi\)
\(270\) 0 0
\(271\) 35.5836 0.131305 0.0656524 0.997843i \(-0.479087\pi\)
0.0656524 + 0.997843i \(0.479087\pi\)
\(272\) −147.615 85.2254i −0.542701 0.313329i
\(273\) 0 0
\(274\) 9.61242 + 16.6492i 0.0350818 + 0.0607635i
\(275\) 35.4219 20.4508i 0.128807 0.0743667i
\(276\) 0 0
\(277\) −73.6869 + 127.629i −0.266018 + 0.460756i −0.967830 0.251606i \(-0.919041\pi\)
0.701812 + 0.712362i \(0.252375\pi\)
\(278\) 48.3181i 0.173806i
\(279\) 0 0
\(280\) 24.8754 0.0888407
\(281\) 165.298 + 95.4346i 0.588248 + 0.339625i 0.764404 0.644737i \(-0.223033\pi\)
−0.176157 + 0.984362i \(0.556367\pi\)
\(282\) 0 0
\(283\) −58.8541 101.938i −0.207965 0.360206i 0.743108 0.669171i \(-0.233351\pi\)
−0.951073 + 0.308965i \(0.900017\pi\)
\(284\) 271.234 156.597i 0.955048 0.551397i
\(285\) 0 0
\(286\) −12.0426 + 20.8583i −0.0421069 + 0.0729313i
\(287\) 225.325i 0.785105i
\(288\) 0 0
\(289\) 146.334 0.506347
\(290\) 41.4727 + 23.9443i 0.143009 + 0.0825665i
\(291\) 0 0
\(292\) −97.8754 169.525i −0.335190 0.580566i
\(293\) 357.879 206.622i 1.22143 0.705193i 0.256207 0.966622i \(-0.417527\pi\)
0.965223 + 0.261429i \(0.0841937\pi\)
\(294\) 0 0
\(295\) 101.477 175.764i 0.343990 0.595809i
\(296\) 160.249i 0.541383i
\(297\) 0 0
\(298\) 6.04257 0.0202771
\(299\) −189.694 109.520i −0.634427 0.366287i
\(300\) 0 0
\(301\) 132.334 + 229.210i 0.439649 + 0.761495i
\(302\) −45.9791 + 26.5460i −0.152249 + 0.0879008i
\(303\) 0 0
\(304\) −39.8404 + 69.0055i −0.131054 + 0.226992i
\(305\) 42.4853i 0.139296i
\(306\) 0 0
\(307\) −458.158 −1.49237 −0.746185 0.665738i \(-0.768117\pi\)
−0.746185 + 0.665738i \(0.768117\pi\)
\(308\) 101.249 + 58.4559i 0.328729 + 0.189792i
\(309\) 0 0
\(310\) 13.3450 + 23.1142i 0.0430484 + 0.0745621i
\(311\) −102.228 + 59.0213i −0.328707 + 0.189779i −0.655267 0.755397i \(-0.727444\pi\)
0.326560 + 0.945176i \(0.394111\pi\)
\(312\) 0 0
\(313\) 206.413 357.518i 0.659467 1.14223i −0.321286 0.946982i \(-0.604115\pi\)
0.980754 0.195249i \(-0.0625515\pi\)
\(314\) 72.8429i 0.231984i
\(315\) 0 0
\(316\) −185.641 −0.587472
\(317\) 233.779 + 134.972i 0.737472 + 0.425780i 0.821149 0.570713i \(-0.193333\pi\)
−0.0836775 + 0.996493i \(0.526667\pi\)
\(318\) 0 0
\(319\) 229.331 + 397.213i 0.718907 + 1.24518i
\(320\) −97.6310 + 56.3673i −0.305097 + 0.176148i
\(321\) 0 0
\(322\) 20.1246 34.8569i 0.0624988 0.108251i
\(323\) 66.6919i 0.206477i
\(324\) 0 0
\(325\) −38.5410 −0.118588
\(326\) 12.1840 + 7.03444i 0.0373743 + 0.0215780i
\(327\) 0 0
\(328\) 91.1459 + 157.869i 0.277884 + 0.481309i
\(329\) −148.167 + 85.5441i −0.450355 + 0.260013i
\(330\) 0 0
\(331\) −4.95743 + 8.58652i −0.0149771 + 0.0259411i −0.873417 0.486973i \(-0.838101\pi\)
0.858440 + 0.512914i \(0.171434\pi\)
\(332\) 241.520i 0.727469i
\(333\) 0 0
\(334\) 98.7690 0.295715
\(335\) 0.647502 + 0.373835i 0.00193284 + 0.00111593i
\(336\) 0 0
\(337\) 218.225 + 377.976i 0.647551 + 1.12159i 0.983706 + 0.179785i \(0.0575402\pi\)
−0.336154 + 0.941807i \(0.609126\pi\)
\(338\) −36.2494 + 20.9286i −0.107247 + 0.0619189i
\(339\) 0 0
\(340\) −51.4681 + 89.1453i −0.151377 + 0.262192i
\(341\) 255.629i 0.749646i
\(342\) 0 0
\(343\) −312.413 −0.910826
\(344\) 185.435 + 107.061i 0.539054 + 0.311223i
\(345\) 0 0
\(346\) −34.8222 60.3138i −0.100642 0.174317i
\(347\) −21.9831 + 12.6919i −0.0633518 + 0.0365762i −0.531341 0.847158i \(-0.678312\pi\)
0.467990 + 0.883734i \(0.344978\pi\)
\(348\) 0 0
\(349\) 36.0410 62.4249i 0.103269 0.178868i −0.809760 0.586761i \(-0.800403\pi\)
0.913030 + 0.407893i \(0.133736\pi\)
\(350\) 7.08204i 0.0202344i
\(351\) 0 0
\(352\) 142.754 0.405551
\(353\) −339.624 196.082i −0.962108 0.555473i −0.0652867 0.997867i \(-0.520796\pi\)
−0.896821 + 0.442393i \(0.854130\pi\)
\(354\) 0 0
\(355\) −90.8541 157.364i −0.255927 0.443279i
\(356\) −232.669 + 134.331i −0.653563 + 0.377335i
\(357\) 0 0
\(358\) 49.0395 84.9388i 0.136982 0.237259i
\(359\) 399.994i 1.11419i −0.830449 0.557094i \(-0.811916\pi\)
0.830449 0.557094i \(-0.188084\pi\)
\(360\) 0 0
\(361\) −329.823 −0.913639
\(362\) −59.5697 34.3926i −0.164557 0.0950072i
\(363\) 0 0
\(364\) −55.0820 95.4049i −0.151324 0.262101i
\(365\) −98.3549 + 56.7852i −0.269465 + 0.155576i
\(366\) 0 0
\(367\) −103.185 + 178.722i −0.281159 + 0.486982i −0.971670 0.236340i \(-0.924052\pi\)
0.690511 + 0.723321i \(0.257386\pi\)
\(368\) 405.517i 1.10195i
\(369\) 0 0
\(370\) −45.6231 −0.123306
\(371\) −235.590 136.018i −0.635015 0.366626i
\(372\) 0 0
\(373\) −177.416 307.294i −0.475647 0.823845i 0.523964 0.851741i \(-0.324453\pi\)
−0.999611 + 0.0278955i \(0.991119\pi\)
\(374\) 32.3211 18.6606i 0.0864201 0.0498947i
\(375\) 0 0
\(376\) −69.2067 + 119.869i −0.184060 + 0.318802i
\(377\) 432.190i 1.14639i
\(378\) 0 0
\(379\) −423.997 −1.11873 −0.559363 0.828923i \(-0.688954\pi\)
−0.559363 + 0.828923i \(0.688954\pi\)
\(380\) 41.6728 + 24.0598i 0.109665 + 0.0633152i
\(381\) 0 0
\(382\) 24.5197 + 42.4694i 0.0641878 + 0.111177i
\(383\) −179.404 + 103.579i −0.468418 + 0.270441i −0.715577 0.698534i \(-0.753836\pi\)
0.247159 + 0.968975i \(0.420503\pi\)
\(384\) 0 0
\(385\) 33.9149 58.7423i 0.0880905 0.152577i
\(386\) 24.5573i 0.0636199i
\(387\) 0 0
\(388\) 614.407 1.58352
\(389\) 381.014 + 219.979i 0.979471 + 0.565498i 0.902110 0.431505i \(-0.142017\pi\)
0.0773608 + 0.997003i \(0.475351\pi\)
\(390\) 0 0
\(391\) 169.707 + 293.941i 0.434032 + 0.751766i
\(392\) −91.5802 + 52.8738i −0.233623 + 0.134882i
\(393\) 0 0
\(394\) −41.6337 + 72.1117i −0.105669 + 0.183025i
\(395\) 107.705i 0.272671i
\(396\) 0 0
\(397\) 453.872 1.14326 0.571628 0.820513i \(-0.306312\pi\)
0.571628 + 0.820513i \(0.306312\pi\)
\(398\) −105.936 61.1622i −0.266171 0.153674i
\(399\) 0 0
\(400\) 35.6763 + 61.7931i 0.0891907 + 0.154483i
\(401\) 481.863 278.204i 1.20165 0.693774i 0.240730 0.970592i \(-0.422613\pi\)
0.960922 + 0.276818i \(0.0892798\pi\)
\(402\) 0 0
\(403\) 120.438 208.604i 0.298853 0.517628i
\(404\) 92.4984i 0.228957i
\(405\) 0 0
\(406\) 79.4164 0.195607
\(407\) −378.422 218.482i −0.929784 0.536811i
\(408\) 0 0
\(409\) −37.8313 65.5257i −0.0924970 0.160209i 0.816064 0.577961i \(-0.196152\pi\)
−0.908561 + 0.417752i \(0.862818\pi\)
\(410\) 44.9455 25.9493i 0.109623 0.0632910i
\(411\) 0 0
\(412\) 48.4984 84.0018i 0.117715 0.203888i
\(413\) 336.571i 0.814942i
\(414\) 0 0
\(415\) 140.125 0.337650
\(416\) −116.493 67.2574i −0.280032 0.161676i
\(417\) 0 0
\(418\) −8.72328 15.1092i −0.0208691 0.0361463i
\(419\) −451.251 + 260.530i −1.07697 + 0.621789i −0.930078 0.367363i \(-0.880261\pi\)
−0.146893 + 0.989152i \(0.546927\pi\)
\(420\) 0 0
\(421\) −57.3723 + 99.3717i −0.136276 + 0.236037i −0.926084 0.377317i \(-0.876847\pi\)
0.789808 + 0.613354i \(0.210180\pi\)
\(422\) 24.3820i 0.0577772i
\(423\) 0 0
\(424\) −220.082 −0.519061
\(425\) 51.7202 + 29.8607i 0.121695 + 0.0702604i
\(426\) 0 0
\(427\) −35.2279 61.0166i −0.0825010 0.142896i
\(428\) 159.096 91.8541i 0.371720 0.214612i
\(429\) 0 0
\(430\) 30.4803 52.7934i 0.0708843 0.122775i
\(431\) 233.204i 0.541076i 0.962709 + 0.270538i \(0.0872015\pi\)
−0.962709 + 0.270538i \(0.912799\pi\)
\(432\) 0 0
\(433\) −501.702 −1.15867 −0.579333 0.815091i \(-0.696687\pi\)
−0.579333 + 0.815091i \(0.696687\pi\)
\(434\) 38.3317 + 22.1308i 0.0883219 + 0.0509927i
\(435\) 0 0
\(436\) −317.799 550.445i −0.728898 1.26249i
\(437\) 137.408 79.3328i 0.314436 0.181540i
\(438\) 0 0
\(439\) −182.998 + 316.963i −0.416853 + 0.722010i −0.995621 0.0934817i \(-0.970200\pi\)
0.578768 + 0.815492i \(0.303534\pi\)
\(440\) 54.8754i 0.124717i
\(441\) 0 0
\(442\) −35.1672 −0.0795638
\(443\) −548.110 316.451i −1.23727 0.714337i −0.268733 0.963215i \(-0.586605\pi\)
−0.968535 + 0.248878i \(0.919938\pi\)
\(444\) 0 0
\(445\) 77.9361 + 134.989i 0.175137 + 0.303347i
\(446\) −2.72878 + 1.57546i −0.00611834 + 0.00353242i
\(447\) 0 0
\(448\) −93.4772 + 161.907i −0.208654 + 0.361400i
\(449\) 796.344i 1.77360i −0.462158 0.886798i \(-0.652925\pi\)
0.462158 0.886798i \(-0.347075\pi\)
\(450\) 0 0
\(451\) 497.070 1.10215
\(452\) 228.259 + 131.785i 0.504997 + 0.291560i
\(453\) 0 0
\(454\) −64.8435 112.312i −0.142827 0.247384i
\(455\) −55.3519 + 31.9574i −0.121653 + 0.0702361i
\(456\) 0 0
\(457\) 101.289 175.437i 0.221638 0.383889i −0.733667 0.679509i \(-0.762193\pi\)
0.955306 + 0.295620i \(0.0955263\pi\)
\(458\) 77.3463i 0.168878i
\(459\) 0 0
\(460\) 244.894 0.532377
\(461\) −630.387 363.954i −1.36743 0.789489i −0.376835 0.926280i \(-0.622988\pi\)
−0.990600 + 0.136792i \(0.956321\pi\)
\(462\) 0 0
\(463\) −246.502 426.953i −0.532401 0.922145i −0.999284 0.0378264i \(-0.987957\pi\)
0.466884 0.884319i \(-0.345377\pi\)
\(464\) −692.934 + 400.066i −1.49339 + 0.862211i
\(465\) 0 0
\(466\) 3.64435 6.31219i 0.00782048 0.0135455i
\(467\) 453.190i 0.970429i −0.874395 0.485215i \(-0.838741\pi\)
0.874395 0.485215i \(-0.161259\pi\)
\(468\) 0 0
\(469\) 1.23991 0.00264372
\(470\) 34.1269 + 19.7032i 0.0726104 + 0.0419217i
\(471\) 0 0
\(472\) −136.146 235.812i −0.288445 0.499601i
\(473\) 505.640 291.931i 1.06901 0.617191i
\(474\) 0 0
\(475\) 13.9590 24.1777i 0.0293873 0.0509003i
\(476\) 170.705i 0.358624i
\(477\) 0 0
\(478\) −104.128 −0.217840
\(479\) −276.733 159.772i −0.577731 0.333553i 0.182500 0.983206i \(-0.441581\pi\)
−0.760231 + 0.649653i \(0.774914\pi\)
\(480\) 0 0
\(481\) 205.872 + 356.581i 0.428009 + 0.741333i
\(482\) 76.9358 44.4189i 0.159618 0.0921554i
\(483\) 0 0
\(484\) −104.219 + 180.512i −0.215328 + 0.372959i
\(485\) 356.466i 0.734981i
\(486\) 0 0
\(487\) 792.869 1.62807 0.814034 0.580817i \(-0.197267\pi\)
0.814034 + 0.580817i \(0.197267\pi\)
\(488\) −49.3634 28.5000i −0.101155 0.0584016i
\(489\) 0 0
\(490\) 15.0532 + 26.0729i 0.0307208 + 0.0532101i
\(491\) −319.941 + 184.718i −0.651612 + 0.376208i −0.789073 0.614299i \(-0.789439\pi\)
0.137462 + 0.990507i \(0.456106\pi\)
\(492\) 0 0
\(493\) −334.851 + 579.979i −0.679211 + 1.17643i
\(494\) 16.4396i 0.0332786i
\(495\) 0 0
\(496\) −445.942 −0.899077
\(497\) −260.966 150.669i −0.525082 0.303156i
\(498\) 0 0
\(499\) −304.956 528.199i −0.611134 1.05852i −0.991050 0.133494i \(-0.957380\pi\)
0.379916 0.925021i \(-0.375953\pi\)
\(500\) 37.3172 21.5451i 0.0746344 0.0430902i
\(501\) 0 0
\(502\) 2.75388 4.76986i 0.00548582 0.00950172i
\(503\) 305.308i 0.606974i 0.952836 + 0.303487i \(0.0981509\pi\)
−0.952836 + 0.303487i \(0.901849\pi\)
\(504\) 0 0
\(505\) 53.6656 0.106269
\(506\) −76.8946 44.3951i −0.151966 0.0877374i
\(507\) 0 0
\(508\) 386.851 + 670.046i 0.761518 + 1.31899i
\(509\) −177.083 + 102.239i −0.347905 + 0.200863i −0.663762 0.747944i \(-0.731041\pi\)
0.315857 + 0.948807i \(0.397708\pi\)
\(510\) 0 0
\(511\) −94.1703 + 163.108i −0.184286 + 0.319193i
\(512\) 420.279i 0.820857i
\(513\) 0 0
\(514\) −63.3100 −0.123171
\(515\) −48.7360 28.1378i −0.0946331 0.0546364i
\(516\) 0 0
\(517\) 188.711 + 326.858i 0.365012 + 0.632220i
\(518\) −65.5230 + 37.8297i −0.126492 + 0.0730303i
\(519\) 0 0
\(520\) −25.8541 + 44.7806i −0.0497194 + 0.0861166i
\(521\) 590.227i 1.13287i −0.824105 0.566436i \(-0.808322\pi\)
0.824105 0.566436i \(-0.191678\pi\)
\(522\) 0 0
\(523\) −19.7933 −0.0378458 −0.0189229 0.999821i \(-0.506024\pi\)
−0.0189229 + 0.999821i \(0.506024\pi\)
\(524\) 27.2497 + 15.7326i 0.0520032 + 0.0300240i
\(525\) 0 0
\(526\) −99.3162 172.021i −0.188814 0.327036i
\(527\) −323.243 + 186.625i −0.613365 + 0.354126i
\(528\) 0 0
\(529\) 139.246 241.181i 0.263225 0.455919i
\(530\) 62.6575i 0.118222i
\(531\) 0 0
\(532\) 79.7996 0.149999
\(533\) −405.630 234.190i −0.761031 0.439382i
\(534\) 0 0
\(535\) −53.2918 92.3041i −0.0996108 0.172531i
\(536\) 0.868715 0.501553i 0.00162074 0.000935733i
\(537\) 0 0
\(538\) 16.6838 28.8972i 0.0310108 0.0537123i
\(539\) 288.351i 0.534973i
\(540\) 0 0
\(541\) 428.164 0.791431 0.395715 0.918373i \(-0.370497\pi\)
0.395715 + 0.918373i \(0.370497\pi\)
\(542\) −11.7708 6.79586i −0.0217173 0.0125385i
\(543\) 0 0
\(544\) 104.219 + 180.512i 0.191579 + 0.331824i
\(545\) −319.356 + 184.380i −0.585975 + 0.338313i
\(546\) 0 0
\(547\) 491.353 851.048i 0.898268 1.55585i 0.0685606 0.997647i \(-0.478159\pi\)
0.829707 0.558199i \(-0.188507\pi\)
\(548\) 193.982i 0.353981i
\(549\) 0 0
\(550\) −15.6231 −0.0284056
\(551\) 271.123 + 156.533i 0.492056 + 0.284089i
\(552\) 0 0
\(553\) 89.3069 + 154.684i 0.161495 + 0.279718i
\(554\) 48.7501 28.1459i 0.0879966 0.0508049i
\(555\) 0 0
\(556\) 243.769 422.220i 0.438433 0.759389i
\(557\) 310.839i 0.558059i 0.960282 + 0.279030i \(0.0900128\pi\)
−0.960282 + 0.279030i \(0.909987\pi\)
\(558\) 0 0
\(559\) −550.164 −0.984193
\(560\) 102.475 + 59.1641i 0.182991 + 0.105650i
\(561\) 0 0
\(562\) −36.4528 63.1380i −0.0648626 0.112345i
\(563\) −736.985 + 425.498i −1.30903 + 0.755770i −0.981935 0.189221i \(-0.939404\pi\)
−0.327097 + 0.944991i \(0.606070\pi\)
\(564\) 0 0
\(565\) 76.4590 132.431i 0.135326 0.234391i
\(566\) 44.9605i 0.0794356i
\(567\) 0 0
\(568\) −243.787 −0.429203
\(569\) 253.206 + 146.188i 0.445002 + 0.256922i 0.705717 0.708494i \(-0.250625\pi\)
−0.260715 + 0.965416i \(0.583958\pi\)
\(570\) 0 0
\(571\) 178.877 + 309.824i 0.313270 + 0.542599i 0.979068 0.203533i \(-0.0652423\pi\)
−0.665799 + 0.746132i \(0.731909\pi\)
\(572\) −210.464 + 121.512i −0.367945 + 0.212433i
\(573\) 0 0
\(574\) 43.0333 74.5358i 0.0749708 0.129853i
\(575\) 142.082i 0.247099i
\(576\) 0 0
\(577\) 216.456 0.375140 0.187570 0.982251i \(-0.439939\pi\)
0.187570 + 0.982251i \(0.439939\pi\)
\(578\) −48.4063 27.9474i −0.0837479 0.0483519i
\(579\) 0 0
\(580\) 241.602 + 418.467i 0.416555 + 0.721494i
\(581\) 201.244 116.188i 0.346376 0.199980i
\(582\) 0 0
\(583\) −300.058 + 519.715i −0.514679 + 0.891450i
\(584\) 152.371i 0.260909i
\(585\) 0 0
\(586\) −157.845 −0.269360
\(587\) −500.986 289.245i −0.853469 0.492751i 0.00835083 0.999965i \(-0.497342\pi\)
−0.861820 + 0.507215i \(0.830675\pi\)
\(588\) 0 0
\(589\) 87.2415 + 151.107i 0.148118 + 0.256548i
\(590\) −67.1357 + 38.7608i −0.113789 + 0.0656963i
\(591\) 0 0
\(592\) 381.140 660.153i 0.643817 1.11512i
\(593\) 159.971i 0.269765i 0.990862 + 0.134882i \(0.0430657\pi\)
−0.990862 + 0.134882i \(0.956934\pi\)
\(594\) 0 0
\(595\) 99.0395 0.166453
\(596\) 52.8021 + 30.4853i 0.0885941 + 0.0511498i
\(597\) 0 0
\(598\) 41.8328 + 72.4566i 0.0699545 + 0.121165i
\(599\) 392.963 226.877i 0.656032 0.378760i −0.134732 0.990882i \(-0.543017\pi\)
0.790763 + 0.612122i \(0.209684\pi\)
\(600\) 0 0
\(601\) 326.792 566.020i 0.543747 0.941797i −0.454938 0.890523i \(-0.650339\pi\)
0.998685 0.0512738i \(-0.0163281\pi\)
\(602\) 101.094i 0.167931i
\(603\) 0 0
\(604\) −535.708 −0.886934
\(605\) 104.729 + 60.4656i 0.173106 + 0.0999431i
\(606\) 0 0
\(607\) 92.3131 + 159.891i 0.152081 + 0.263412i 0.931992 0.362478i \(-0.118069\pi\)
−0.779911 + 0.625890i \(0.784736\pi\)
\(608\) 84.3842 48.7192i 0.138790 0.0801303i
\(609\) 0 0
\(610\) −8.11397 + 14.0538i −0.0133016 + 0.0230390i
\(611\) 355.639i 0.582061i
\(612\) 0 0
\(613\) −903.416 −1.47376 −0.736881 0.676022i \(-0.763702\pi\)
−0.736881 + 0.676022i \(0.763702\pi\)
\(614\) 151.555 + 87.5004i 0.246832 + 0.142509i
\(615\) 0 0
\(616\) −45.5016 78.8110i −0.0738662 0.127940i
\(617\) 334.709 193.245i 0.542479 0.313200i −0.203604 0.979053i \(-0.565266\pi\)
0.746083 + 0.665853i \(0.231932\pi\)
\(618\) 0 0
\(619\) −582.951 + 1009.70i −0.941763 + 1.63118i −0.179656 + 0.983729i \(0.557499\pi\)
−0.762106 + 0.647452i \(0.775835\pi\)
\(620\) 269.307i 0.434366i
\(621\) 0 0
\(622\) 45.0883 0.0724891
\(623\) 223.861 + 129.246i 0.359327 + 0.207458i
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.0200000 0.0346410i
\(626\) −136.560 + 78.8429i −0.218147 + 0.125947i
\(627\) 0 0
\(628\) −367.498 + 636.526i −0.585189 + 1.01358i
\(629\) 638.020i 1.01434i
\(630\) 0 0
\(631\) 50.8297 0.0805542 0.0402771 0.999189i \(-0.487176\pi\)
0.0402771 + 0.999189i \(0.487176\pi\)
\(632\) 125.142 + 72.2508i 0.198010 + 0.114321i
\(633\) 0 0
\(634\) −51.5548 89.2955i −0.0813167 0.140845i
\(635\) 388.746 224.443i 0.612199 0.353453i
\(636\) 0 0
\(637\) 135.854 235.306i 0.213272 0.369397i
\(638\) 175.193i 0.274598i
\(639\) 0 0
\(640\) 199.146 0.311165
\(641\) 475.235 + 274.377i 0.741396 + 0.428045i 0.822577 0.568654i \(-0.192536\pi\)
−0.0811807 + 0.996699i \(0.525869\pi\)
\(642\) 0 0
\(643\) −263.356 456.145i −0.409573 0.709402i 0.585269 0.810840i \(-0.300989\pi\)
−0.994842 + 0.101438i \(0.967656\pi\)
\(644\) 351.712 203.061i 0.546136 0.315312i
\(645\) 0 0
\(646\) 12.7370 22.0612i 0.0197168 0.0341504i
\(647\) 694.607i 1.07358i 0.843716 + 0.536790i \(0.180363\pi\)
−0.843716 + 0.536790i \(0.819637\pi\)
\(648\) 0 0
\(649\) −742.480 −1.14404
\(650\) 12.7491 + 7.36068i 0.0196140 + 0.0113241i
\(651\) 0 0
\(652\) 70.9787 + 122.939i 0.108863 + 0.188556i
\(653\) 971.934 561.146i 1.48841 0.859336i 0.488501 0.872563i \(-0.337544\pi\)
0.999913 + 0.0132277i \(0.00421063\pi\)
\(654\) 0 0
\(655\) 9.12772 15.8097i 0.0139354 0.0241369i
\(656\) 867.132i 1.32185i
\(657\) 0 0
\(658\) 65.3499 0.0993160
\(659\) −580.660 335.244i −0.881123 0.508717i −0.0100944 0.999949i \(-0.503213\pi\)
−0.871028 + 0.491233i \(0.836547\pi\)
\(660\) 0 0
\(661\) −544.076 942.367i −0.823110 1.42567i −0.903355 0.428893i \(-0.858904\pi\)
0.0802449 0.996775i \(-0.474430\pi\)
\(662\) 3.27976 1.89357i 0.00495432 0.00286038i
\(663\) 0 0
\(664\) 93.9984 162.810i 0.141564 0.245196i
\(665\) 46.2980i 0.0696211i
\(666\) 0 0
\(667\) 1593.28 2.38872
\(668\) 863.077 + 498.298i 1.29203 + 0.745955i
\(669\) 0 0
\(670\) −0.142792 0.247324i −0.000213123 0.000369140i
\(671\) −134.603 + 77.7132i −0.200601 + 0.115817i
\(672\) 0 0
\(673\) 319.185 552.845i 0.474272 0.821464i −0.525294 0.850921i \(-0.676044\pi\)
0.999566 + 0.0294571i \(0.00937783\pi\)
\(674\) 166.709i 0.247343i
\(675\) 0 0
\(676\) −422.346 −0.624773
\(677\) 691.225 + 399.079i 1.02101 + 0.589481i 0.914397 0.404819i \(-0.132665\pi\)
0.106615 + 0.994300i \(0.465999\pi\)
\(678\) 0 0
\(679\) −295.574 511.950i −0.435308 0.753976i
\(680\) 69.3899 40.0623i 0.102044 0.0589152i
\(681\) 0 0
\(682\) 48.8208 84.5602i 0.0715848 0.123989i
\(683\) 757.505i 1.10908i −0.832156 0.554542i \(-0.812893\pi\)
0.832156 0.554542i \(-0.187107\pi\)
\(684\) 0 0
\(685\) 112.544 0.164298
\(686\) 103.344 + 59.6656i 0.150647 + 0.0869761i
\(687\) 0 0
\(688\) 509.271 + 882.082i 0.740219 + 1.28210i
\(689\) 489.719 282.740i 0.710768 0.410362i
\(690\) 0 0
\(691\) −351.166 + 608.237i −0.508199 + 0.880227i 0.491756 + 0.870733i \(0.336355\pi\)
−0.999955 + 0.00949361i \(0.996978\pi\)
\(692\) 702.723i 1.01550i
\(693\) 0 0
\(694\) 9.69578 0.0139709
\(695\) −244.963 141.430i −0.352465 0.203496i
\(696\) 0 0
\(697\) 362.890 + 628.545i 0.520646 + 0.901786i
\(698\) −23.8442 + 13.7664i −0.0341607 + 0.0197227i
\(699\) 0 0
\(700\) 35.7295 61.8853i 0.0510421 0.0884076i
\(701\) 406.616i 0.580052i −0.957019 0.290026i \(-0.906336\pi\)
0.957019 0.290026i \(-0.0936639\pi\)
\(702\) 0 0
\(703\) −298.255 −0.424261
\(704\) 357.169 + 206.212i 0.507342 + 0.292914i
\(705\) 0 0
\(706\) 74.8967 + 129.725i 0.106086 + 0.183746i
\(707\) 77.0736 44.4984i 0.109015 0.0629398i
\(708\) 0 0
\(709\) −282.161 + 488.717i −0.397970 + 0.689305i −0.993475 0.114047i \(-0.963619\pi\)
0.595505 + 0.803352i \(0.296952\pi\)
\(710\) 69.4064i 0.0977554i
\(711\) 0 0
\(712\) 209.125 0.293714
\(713\) 769.022 + 443.995i 1.07857 + 0.622714i
\(714\) 0 0
\(715\) 70.4984 + 122.107i 0.0985992 + 0.170779i
\(716\) 857.047 494.817i 1.19699 0.691085i
\(717\) 0 0
\(718\) −76.3920 + 132.315i −0.106396 + 0.184283i
\(719\) 1340.07i 1.86379i 0.362725 + 0.931896i \(0.381846\pi\)
−0.362725 + 0.931896i \(0.618154\pi\)
\(720\) 0 0
\(721\) −93.3251 −0.129438
\(722\) 109.103 + 62.9907i 0.151112 + 0.0872447i
\(723\) 0 0
\(724\) −347.027 601.069i −0.479319 0.830206i
\(725\) 242.785 140.172i 0.334876 0.193341i
\(726\) 0 0
\(727\) −65.4953 + 113.441i −0.0900899 + 0.156040i −0.907549 0.419947i \(-0.862049\pi\)
0.817459 + 0.575987i \(0.195382\pi\)
\(728\) 85.7508i 0.117790i
\(729\) 0 0
\(730\) 43.3800 0.0594247
\(731\) 738.294 + 426.254i 1.00998 + 0.583111i
\(732\) 0 0
\(733\) −707.240 1224.98i −0.964857 1.67118i −0.710000 0.704202i \(-0.751305\pi\)
−0.254857 0.966979i \(-0.582028\pi\)
\(734\) 68.2658 39.4133i 0.0930052 0.0536966i
\(735\) 0 0
\(736\) 247.945 429.454i 0.336882 0.583497i
\(737\) 2.73525i 0.00371133i
\(738\) 0 0
\(739\) 10.5805 0.0143173 0.00715865 0.999974i \(-0.497721\pi\)
0.00715865 + 0.999974i \(0.497721\pi\)
\(740\) −398.670 230.172i −0.538743 0.311044i
\(741\) 0 0
\(742\) 51.9543 + 89.9875i 0.0700193 + 0.121277i
\(743\) −687.670 + 397.026i −0.925531 + 0.534356i −0.885395 0.464838i \(-0.846112\pi\)
−0.0401358 + 0.999194i \(0.512779\pi\)
\(744\) 0 0
\(745\) 17.6869 30.6346i 0.0237408 0.0411203i
\(746\) 135.534i 0.181681i
\(747\) 0 0
\(748\) 376.577 0.503446
\(749\) −153.073 88.3769i −0.204370 0.117993i
\(750\) 0 0
\(751\) 26.7554 + 46.3418i 0.0356264 + 0.0617068i 0.883289 0.468829i \(-0.155324\pi\)
−0.847662 + 0.530536i \(0.821991\pi\)
\(752\) −570.199 + 329.205i −0.758244 + 0.437772i
\(753\) 0 0
\(754\) −82.5410 + 142.965i −0.109471 + 0.189609i
\(755\) 310.807i 0.411664i
\(756\) 0 0
\(757\) 921.745 1.21763 0.608814 0.793313i \(-0.291646\pi\)
0.608814 + 0.793313i \(0.291646\pi\)
\(758\) 140.255 + 80.9762i 0.185033 + 0.106829i
\(759\) 0 0
\(760\) −18.7279 32.4377i −0.0246420 0.0426812i
\(761\) 500.663 289.058i 0.657901 0.379839i −0.133576 0.991039i \(-0.542646\pi\)
0.791477 + 0.611199i \(0.209313\pi\)
\(762\) 0 0
\(763\) −305.769 + 529.607i −0.400746 + 0.694112i
\(764\) 494.817i 0.647666i
\(765\) 0 0
\(766\) 79.1273 0.103299
\(767\) 605.895 + 349.813i 0.789954 + 0.456080i
\(768\) 0 0
\(769\) 325.828 + 564.351i 0.423704 + 0.733876i 0.996298 0.0859622i \(-0.0273964\pi\)
−0.572595 + 0.819839i \(0.694063\pi\)
\(770\) −22.4375 + 12.9543i −0.0291397 + 0.0168238i
\(771\) 0 0
\(772\) −123.894 + 214.590i −0.160484 + 0.277966i
\(773\) 389.754i 0.504209i 0.967700 + 0.252105i \(0.0811227\pi\)
−0.967700 + 0.252105i \(0.918877\pi\)
\(774\) 0 0
\(775\) 156.246 0.201608
\(776\) −414.176 239.125i −0.533732 0.308150i
\(777\) 0 0
\(778\) −84.0244 145.535i −0.108001 0.187062i
\(779\) 293.826 169.641i 0.377184 0.217767i
\(780\) 0 0
\(781\) −332.377 + 575.694i −0.425579 + 0.737124i
\(782\) 129.644i 0.165786i
\(783\) 0 0
\(784\) −503.024 −0.641613
\(785\) 369.299 + 213.215i 0.470444 + 0.271611i
\(786\) 0 0
\(787\) 18.2279 + 31.5717i 0.0231613 + 0.0401165i 0.877374 0.479808i \(-0.159294\pi\)
−0.854212 + 0.519924i \(0.825960\pi\)
\(788\) −727.619 + 420.091i −0.923375 + 0.533111i
\(789\) 0 0
\(790\) 20.5698 35.6280i 0.0260378 0.0450988i
\(791\) 253.593i 0.320598i
\(792\) 0 0
\(793\) 146.456 0.184686
\(794\) −150.137 86.6819i −0.189090 0.109171i
\(795\) 0 0
\(796\) −617.137 1068.91i −0.775297 1.34285i
\(797\) 633.468 365.733i 0.794816 0.458887i −0.0468395 0.998902i \(-0.514915\pi\)
0.841655 + 0.540015i \(0.181582\pi\)
\(798\) 0 0
\(799\) −275.541 + 477.251i −0.344857 + 0.597310i
\(800\) 87.2542i 0.109068i
\(801\) 0 0
\(802\) −212.529 −0.264998
\(803\) 359.817 + 207.741i 0.448092 + 0.258706i
\(804\) 0 0
\(805\) −117.812 204.056i −0.146350 0.253485i
\(806\) −79.6797 + 46.0031i −0.0988582 + 0.0570758i
\(807\) 0 0
\(808\) 36.0000 62.3538i 0.0445545 0.0771706i
\(809\) 595.767i 0.736424i 0.929742 + 0.368212i \(0.120030\pi\)
−0.929742 + 0.368212i \(0.879970\pi\)
\(810\) 0 0
\(811\) 180.177 0.222166 0.111083 0.993811i \(-0.464568\pi\)
0.111083 + 0.993811i \(0.464568\pi\)
\(812\) 693.968 + 400.663i 0.854640 + 0.493427i
\(813\) 0 0
\(814\) 83.4528 + 144.544i 0.102522 + 0.177573i
\(815\) 71.3264 41.1803i 0.0875171 0.0505280i
\(816\) 0 0
\(817\) 199.261 345.131i 0.243894 0.422436i
\(818\) 28.9005i 0.0353307i
\(819\) 0 0
\(820\) 523.666 0.638617
\(821\) −27.1390 15.6687i −0.0330561 0.0190849i 0.483381 0.875410i \(-0.339409\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(822\) 0 0
\(823\) 117.401 + 203.345i 0.142650 + 0.247078i 0.928494 0.371348i \(-0.121104\pi\)
−0.785843 + 0.618425i \(0.787771\pi\)
\(824\) −65.3863 + 37.7508i −0.0793523 + 0.0458140i
\(825\) 0 0
\(826\) −64.2794 + 111.335i −0.0778201 + 0.134788i
\(827\) 47.8003i 0.0577996i −0.999582 0.0288998i \(-0.990800\pi\)
0.999582 0.0288998i \(-0.00920038\pi\)
\(828\) 0 0
\(829\) −292.760 −0.353148 −0.176574 0.984287i \(-0.556502\pi\)
−0.176574 + 0.984287i \(0.556502\pi\)
\(830\) −46.3521 26.7614i −0.0558459 0.0322427i
\(831\) 0 0
\(832\) −194.310 336.555i −0.233546 0.404513i
\(833\) −364.619 + 210.513i −0.437718 + 0.252717i
\(834\) 0 0
\(835\) 289.102 500.739i 0.346230 0.599687i
\(836\) 176.039i 0.210573i
\(837\) 0 0
\(838\) 199.027 0.237502
\(839\) −428.152 247.193i −0.510312 0.294629i 0.222650 0.974898i \(-0.428529\pi\)
−0.732962 + 0.680270i \(0.761863\pi\)
\(840\) 0 0
\(841\) 1151.36 + 1994.21i 1.36904 + 2.37124i
\(842\) 37.9566 21.9143i 0.0450791 0.0260264i
\(843\) 0 0
\(844\) 123.009 213.058i 0.145745 0.252438i
\(845\) 245.036i 0.289984i
\(846\) 0 0
\(847\) 200.547 0.236774
\(848\) −906.637 523.447i −1.06915 0.617273i
\(849\) 0 0
\(850\) −11.4058 19.7554i −0.0134185 0.0232416i
\(851\) −1314.54 + 758.951i −1.54470 + 0.891835i
\(852\) 0 0
\(853\) 575.823 997.356i 0.675057 1.16923i −0.301395 0.953499i \(-0.597452\pi\)
0.976452 0.215734i \(-0.0692143\pi\)
\(854\) 26.9117i 0.0315126i
\(855\) 0 0
\(856\) −142.997 −0.167052
\(857\) −950.916 549.012i −1.10959 0.640620i −0.170865 0.985295i \(-0.554656\pi\)
−0.938722 + 0.344674i \(0.887989\pi\)
\(858\) 0 0
\(859\) 145.378 + 251.803i 0.169242 + 0.293135i 0.938153 0.346220i \(-0.112535\pi\)
−0.768912 + 0.639355i \(0.779202\pi\)
\(860\) 532.694 307.551i 0.619412 0.357618i
\(861\) 0 0
\(862\) 44.5379 77.1419i 0.0516681 0.0894918i
\(863\) 1069.28i 1.23903i −0.784985 0.619514i \(-0.787330\pi\)
0.784985 0.619514i \(-0.212670\pi\)
\(864\) 0 0
\(865\) −407.705 −0.471335
\(866\) 165.959 + 95.8166i 0.191639 + 0.110643i
\(867\) 0 0
\(868\) 223.304 + 386.773i 0.257262 + 0.445592i
\(869\) 341.235 197.012i 0.392675 0.226711i
\(870\) 0 0
\(871\) −1.28869 + 2.23208i −0.00147955 + 0.00256266i
\(872\) 494.745i 0.567368i
\(873\) 0 0
\(874\) −60.6049 −0.0693420
\(875\) −35.9045 20.7295i −0.0410337 0.0236908i
\(876\) 0 0
\(877\) 80.0213 + 138.601i 0.0912443 + 0.158040i 0.908035 0.418894i \(-0.137582\pi\)
−0.816791 + 0.576934i \(0.804249\pi\)
\(878\) 121.069 69.8992i 0.137892 0.0796118i
\(879\) 0 0
\(880\) 130.517 226.061i 0.148314 0.256888i
\(881\) 712.502i 0.808743i −0.914595 0.404371i \(-0.867490\pi\)
0.914595 0.404371i \(-0.132510\pi\)
\(882\) 0 0
\(883\) −1244.12 −1.40897 −0.704486 0.709718i \(-0.748822\pi\)
−0.704486 + 0.709718i \(0.748822\pi\)
\(884\) −307.303 177.421i −0.347628 0.200703i
\(885\) 0 0
\(886\) 120.874 + 209.359i 0.136426 + 0.236297i
\(887\) −372.241 + 214.913i −0.419663 + 0.242292i −0.694933 0.719075i \(-0.744566\pi\)
0.275270 + 0.961367i \(0.411233\pi\)
\(888\) 0 0
\(889\) 372.207 644.681i 0.418680 0.725175i
\(890\) 59.5379i 0.0668965i
\(891\) 0 0
\(892\) −31.7933 −0.0356428
\(893\) 223.101 + 128.807i 0.249833 + 0.144241i
\(894\) 0 0
\(895\) −287.082 497.241i −0.320762 0.555576i
\(896\) 286.010 165.128i 0.319207 0.184294i
\(897\) 0 0
\(898\) −152.088 + 263.425i −0.169363 + 0.293346i
\(899\) 1752.11i 1.94895i
\(900\) 0 0
\(901\) −876.240 −0.972519
\(902\) −164.427 94.9318i −0.182291 0.105246i
\(903\) 0 0
\(904\) −102.580 177.675i −0.113474 0.196543i
\(905\) −348.727 + 201.338i −0.385334 + 0.222473i
\(906\) 0 0
\(907\) 276.620 479.120i 0.304983 0.528247i −0.672274 0.740302i \(-0.734682\pi\)
0.977258 + 0.212055i \(0.0680157\pi\)
\(908\) 1308.56i 1.44115i
\(909\) 0 0
\(910\) 24.4133 0.0268278
\(911\) 577.877 + 333.637i 0.634333 + 0.366232i 0.782428 0.622741i \(-0.213981\pi\)
−0.148096 + 0.988973i \(0.547314\pi\)
\(912\) 0 0
\(913\) −256.313 443.947i −0.280737 0.486251i
\(914\) −67.0110 + 38.6888i −0.0733162 + 0.0423291i
\(915\) 0 0
\(916\) −390.219 + 675.879i −0.426003 + 0.737859i
\(917\) 30.2741i 0.0330143i
\(918\) 0 0
\(919\) −338.000 −0.367791 −0.183896 0.982946i \(-0.558871\pi\)
−0.183896 + 0.982946i \(0.558871\pi\)
\(920\) −165.084 95.3115i −0.179440 0.103599i
\(921\) 0 0
\(922\) 139.018 + 240.787i 0.150779 + 0.261157i
\(923\) 542.467 313.193i 0.587722 0.339321i
\(924\) 0 0
\(925\) −133.541 + 231.300i −0.144369 + 0.250054i
\(926\) 188.310i 0.203359i
\(927\) 0 0
\(928\) 978.450 1.05436
\(929\) 187.779 + 108.414i 0.202131 + 0.116700i 0.597649 0.801758i \(-0.296102\pi\)
−0.395518 + 0.918458i \(0.629435\pi\)
\(930\) 0 0
\(931\) 98.4086 + 170.449i 0.105702 + 0.183081i
\(932\) 63.6911 36.7721i 0.0683381 0.0394550i
\(933\) 0 0
\(934\) −86.5517 + 149.912i −0.0926677 + 0.160505i
\(935\) 218.482i 0.233671i
\(936\) 0 0
\(937\) −851.647 −0.908908 −0.454454 0.890770i \(-0.650166\pi\)
−0.454454 + 0.890770i \(0.650166\pi\)
\(938\) −0.410152 0.236801i −0.000437262 0.000252453i
\(939\) 0 0
\(940\) 198.808 + 344.346i 0.211498 + 0.366326i
\(941\) −929.613 + 536.712i −0.987899 + 0.570363i −0.904645 0.426165i \(-0.859864\pi\)
−0.0832531 + 0.996528i \(0.526531\pi\)
\(942\) 0 0
\(943\) 863.346 1495.36i 0.915532 1.58575i
\(944\) 1295.25i 1.37208i
\(945\) 0 0
\(946\) −223.016 −0.235746
\(947\) −1425.32 822.910i −1.50509 0.868965i −0.999983 0.00591016i \(-0.998119\pi\)
−0.505110 0.863055i \(-0.668548\pi\)
\(948\) 0 0
\(949\) −195.751 339.050i −0.206271 0.357271i
\(950\) −9.23505 + 5.33186i −0.00972110 + 0.00561248i
\(951\) 0 0
\(952\) 66.4377 115.073i 0.0697875 0.120875i
\(953\) 1139.03i 1.19520i 0.801793 + 0.597602i \(0.203880\pi\)
−0.801793 + 0.597602i \(0.796120\pi\)
\(954\) 0 0
\(955\) 287.082 0.300609
\(956\) −909.904 525.333i −0.951782 0.549512i
\(957\) 0 0
\(958\) 61.0275 + 105.703i 0.0637030 + 0.110337i
\(959\) 161.634 93.3193i 0.168544 0.0973090i
\(960\) 0 0
\(961\) −7.75699 + 13.4355i −0.00807179 + 0.0139807i
\(962\) 157.272i 0.163485i
\(963\) 0 0
\(964\) 896.389 0.929864
\(965\) 124.501 + 71.8804i 0.129016 + 0.0744875i
\(966\) 0 0
\(967\) 178.745 + 309.595i 0.184844 + 0.320160i 0.943524 0.331304i \(-0.107489\pi\)
−0.758680 + 0.651464i \(0.774155\pi\)
\(968\) 140.509 81.1231i 0.145154 0.0838048i
\(969\) 0 0
\(970\) −68.0789 + 117.916i −0.0701845 + 0.121563i
\(971\) 46.5836i 0.0479749i −0.999712 0.0239874i \(-0.992364\pi\)
0.999712 0.0239874i \(-0.00763617\pi\)
\(972\) 0 0
\(973\) −469.082 −0.482099
\(974\) −262.275 151.425i −0.269276 0.155467i
\(975\) 0 0
\(976\) −135.570 234.814i −0.138904 0.240588i
\(977\) 300.178 173.308i 0.307245 0.177388i −0.338448 0.940985i \(-0.609902\pi\)
0.645693 + 0.763597i \(0.276569\pi\)
\(978\) 0 0
\(979\) 285.118 493.840i 0.291234 0.504433i
\(980\) 303.779i 0.309979i
\(981\) 0 0
\(982\) 141.112 0.143699
\(983\) 733.502 + 423.488i 0.746187 + 0.430811i 0.824315 0.566132i \(-0.191561\pi\)
−0.0781274 + 0.996943i \(0.524894\pi\)
\(984\) 0 0
\(985\) 243.728 + 422.149i 0.247440 + 0.428578i
\(986\) 221.532 127.902i 0.224678 0.129718i
\(987\) 0 0
\(988\) −82.9392 + 143.655i −0.0839466 + 0.145400i
\(989\) 2028.19i 2.05075i
\(990\) 0 0
\(991\) 1304.33 1.31617 0.658085 0.752943i \(-0.271367\pi\)
0.658085 + 0.752943i \(0.271367\pi\)
\(992\) 472.266 + 272.663i 0.476074 + 0.274862i
\(993\) 0 0
\(994\) 57.5503 + 99.6801i 0.0578977 + 0.100282i
\(995\) −620.160 + 358.050i −0.623276 + 0.359849i
\(996\) 0 0
\(997\) −917.887 + 1589.83i −0.920649 + 1.59461i −0.122236 + 0.992501i \(0.539007\pi\)
−0.798413 + 0.602110i \(0.794327\pi\)
\(998\) 232.966i 0.233432i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.i.c.26.2 8
3.2 odd 2 inner 405.3.i.c.26.3 8
9.2 odd 6 135.3.c.c.26.2 4
9.4 even 3 inner 405.3.i.c.296.3 8
9.5 odd 6 inner 405.3.i.c.296.2 8
9.7 even 3 135.3.c.c.26.3 yes 4
36.7 odd 6 2160.3.l.g.161.1 4
36.11 even 6 2160.3.l.g.161.3 4
45.2 even 12 675.3.d.i.674.2 4
45.7 odd 12 675.3.d.e.674.4 4
45.29 odd 6 675.3.c.p.26.3 4
45.34 even 6 675.3.c.p.26.2 4
45.38 even 12 675.3.d.e.674.3 4
45.43 odd 12 675.3.d.i.674.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.c.c.26.2 4 9.2 odd 6
135.3.c.c.26.3 yes 4 9.7 even 3
405.3.i.c.26.2 8 1.1 even 1 trivial
405.3.i.c.26.3 8 3.2 odd 2 inner
405.3.i.c.296.2 8 9.5 odd 6 inner
405.3.i.c.296.3 8 9.4 even 3 inner
675.3.c.p.26.2 4 45.34 even 6
675.3.c.p.26.3 4 45.29 odd 6
675.3.d.e.674.3 4 45.38 even 12
675.3.d.e.674.4 4 45.7 odd 12
675.3.d.i.674.1 4 45.43 odd 12
675.3.d.i.674.2 4 45.2 even 12
2160.3.l.g.161.1 4 36.7 odd 6
2160.3.l.g.161.3 4 36.11 even 6