Properties

Label 675.3.d.i.674.1
Level $675$
Weight $3$
Character 675.674
Analytic conductor $18.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(674,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.674"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,0,-2,0,0,0,-12,0,0,0,0,0,0,0,-10,12,0,-76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 674.1
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 675.674
Dual form 675.3.d.i.674.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.381966 q^{2} -3.85410 q^{4} -3.70820i q^{7} -3.00000 q^{8} -8.18034i q^{11} +7.70820i q^{13} -1.41641i q^{14} +14.2705 q^{16} +11.9443 q^{17} -5.58359 q^{19} -3.12461i q^{22} -28.4164 q^{23} +2.94427i q^{26} +14.2918i q^{28} +56.0689i q^{29} -31.2492 q^{31} +17.4508 q^{32} +4.56231 q^{34} +53.4164i q^{37} -2.13274 q^{38} +60.7639i q^{41} -71.3738i q^{43} +31.5279i q^{44} -10.8541 q^{46} -46.1378 q^{47} +35.2492 q^{49} -29.7082i q^{52} -73.3607 q^{53} +11.1246i q^{56} +21.4164i q^{58} +90.7639i q^{59} +19.0000 q^{61} -11.9361 q^{62} -50.4164 q^{64} -0.334369i q^{67} -46.0344 q^{68} +81.2624i q^{71} +50.7902i q^{73} +20.4033i q^{74} +21.5197 q^{76} -30.3344 q^{77} +48.1672 q^{79} +23.2098i q^{82} -62.6656 q^{83} -27.2624i q^{86} +24.5410i q^{88} +69.7082i q^{89} +28.5836 q^{91} +109.520 q^{92} -17.6231 q^{94} -159.416i q^{97} +13.4640 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} - 2 q^{4} - 12 q^{8} - 10 q^{16} + 12 q^{17} - 76 q^{19} - 60 q^{23} + 36 q^{31} - 42 q^{32} - 22 q^{34} - 174 q^{38} - 30 q^{46} + 48 q^{47} - 20 q^{49} - 204 q^{53} + 76 q^{61} + 234 q^{62}+ \cdots - 210 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.381966 0.190983 0.0954915 0.995430i \(-0.469558\pi\)
0.0954915 + 0.995430i \(0.469558\pi\)
\(3\) 0 0
\(4\) −3.85410 −0.963525
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.70820i − 0.529743i −0.964284 0.264872i \(-0.914670\pi\)
0.964284 0.264872i \(-0.0853296\pi\)
\(8\) −3.00000 −0.375000
\(9\) 0 0
\(10\) 0 0
\(11\) − 8.18034i − 0.743667i −0.928299 0.371834i \(-0.878729\pi\)
0.928299 0.371834i \(-0.121271\pi\)
\(12\) 0 0
\(13\) 7.70820i 0.592939i 0.955042 + 0.296469i \(0.0958093\pi\)
−0.955042 + 0.296469i \(0.904191\pi\)
\(14\) − 1.41641i − 0.101172i
\(15\) 0 0
\(16\) 14.2705 0.891907
\(17\) 11.9443 0.702604 0.351302 0.936262i \(-0.385739\pi\)
0.351302 + 0.936262i \(0.385739\pi\)
\(18\) 0 0
\(19\) −5.58359 −0.293873 −0.146937 0.989146i \(-0.546941\pi\)
−0.146937 + 0.989146i \(0.546941\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 3.12461i − 0.142028i
\(23\) −28.4164 −1.23550 −0.617748 0.786376i \(-0.711955\pi\)
−0.617748 + 0.786376i \(0.711955\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.94427i 0.113241i
\(27\) 0 0
\(28\) 14.2918i 0.510421i
\(29\) 56.0689i 1.93341i 0.255894 + 0.966705i \(0.417630\pi\)
−0.255894 + 0.966705i \(0.582370\pi\)
\(30\) 0 0
\(31\) −31.2492 −1.00804 −0.504020 0.863692i \(-0.668146\pi\)
−0.504020 + 0.863692i \(0.668146\pi\)
\(32\) 17.4508 0.545339
\(33\) 0 0
\(34\) 4.56231 0.134185
\(35\) 0 0
\(36\) 0 0
\(37\) 53.4164i 1.44369i 0.692056 + 0.721843i \(0.256705\pi\)
−0.692056 + 0.721843i \(0.743295\pi\)
\(38\) −2.13274 −0.0561248
\(39\) 0 0
\(40\) 0 0
\(41\) 60.7639i 1.48205i 0.671479 + 0.741024i \(0.265659\pi\)
−0.671479 + 0.741024i \(0.734341\pi\)
\(42\) 0 0
\(43\) − 71.3738i − 1.65986i −0.557870 0.829928i \(-0.688381\pi\)
0.557870 0.829928i \(-0.311619\pi\)
\(44\) 31.5279i 0.716542i
\(45\) 0 0
\(46\) −10.8541 −0.235959
\(47\) −46.1378 −0.981655 −0.490827 0.871257i \(-0.663305\pi\)
−0.490827 + 0.871257i \(0.663305\pi\)
\(48\) 0 0
\(49\) 35.2492 0.719372
\(50\) 0 0
\(51\) 0 0
\(52\) − 29.7082i − 0.571312i
\(53\) −73.3607 −1.38416 −0.692082 0.721819i \(-0.743306\pi\)
−0.692082 + 0.721819i \(0.743306\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 11.1246i 0.198654i
\(57\) 0 0
\(58\) 21.4164i 0.369248i
\(59\) 90.7639i 1.53837i 0.639025 + 0.769186i \(0.279338\pi\)
−0.639025 + 0.769186i \(0.720662\pi\)
\(60\) 0 0
\(61\) 19.0000 0.311475 0.155738 0.987798i \(-0.450225\pi\)
0.155738 + 0.987798i \(0.450225\pi\)
\(62\) −11.9361 −0.192518
\(63\) 0 0
\(64\) −50.4164 −0.787756
\(65\) 0 0
\(66\) 0 0
\(67\) − 0.334369i − 0.00499058i −0.999997 0.00249529i \(-0.999206\pi\)
0.999997 0.00249529i \(-0.000794276\pi\)
\(68\) −46.0344 −0.676977
\(69\) 0 0
\(70\) 0 0
\(71\) 81.2624i 1.14454i 0.820065 + 0.572270i \(0.193937\pi\)
−0.820065 + 0.572270i \(0.806063\pi\)
\(72\) 0 0
\(73\) 50.7902i 0.695757i 0.937540 + 0.347878i \(0.113098\pi\)
−0.937540 + 0.347878i \(0.886902\pi\)
\(74\) 20.4033i 0.275720i
\(75\) 0 0
\(76\) 21.5197 0.283154
\(77\) −30.3344 −0.393953
\(78\) 0 0
\(79\) 48.1672 0.609711 0.304856 0.952399i \(-0.401392\pi\)
0.304856 + 0.952399i \(0.401392\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 23.2098i 0.283046i
\(83\) −62.6656 −0.755008 −0.377504 0.926008i \(-0.623217\pi\)
−0.377504 + 0.926008i \(0.623217\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 27.2624i − 0.317004i
\(87\) 0 0
\(88\) 24.5410i 0.278875i
\(89\) 69.7082i 0.783238i 0.920127 + 0.391619i \(0.128085\pi\)
−0.920127 + 0.391619i \(0.871915\pi\)
\(90\) 0 0
\(91\) 28.5836 0.314105
\(92\) 109.520 1.19043
\(93\) 0 0
\(94\) −17.6231 −0.187479
\(95\) 0 0
\(96\) 0 0
\(97\) − 159.416i − 1.64347i −0.569871 0.821734i \(-0.693007\pi\)
0.569871 0.821734i \(-0.306993\pi\)
\(98\) 13.4640 0.137388
\(99\) 0 0
\(100\) 0 0
\(101\) 24.0000i 0.237624i 0.992917 + 0.118812i \(0.0379085\pi\)
−0.992917 + 0.118812i \(0.962091\pi\)
\(102\) 0 0
\(103\) − 25.1672i − 0.244342i −0.992509 0.122171i \(-0.961014\pi\)
0.992509 0.122171i \(-0.0389856\pi\)
\(104\) − 23.1246i − 0.222352i
\(105\) 0 0
\(106\) −28.0213 −0.264352
\(107\) 47.6656 0.445473 0.222737 0.974879i \(-0.428501\pi\)
0.222737 + 0.974879i \(0.428501\pi\)
\(108\) 0 0
\(109\) −164.915 −1.51298 −0.756490 0.654005i \(-0.773087\pi\)
−0.756490 + 0.654005i \(0.773087\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 52.9180i − 0.472482i
\(113\) 68.3870 0.605195 0.302597 0.953118i \(-0.402146\pi\)
0.302597 + 0.953118i \(0.402146\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 216.095i − 1.86289i
\(117\) 0 0
\(118\) 34.6687i 0.293803i
\(119\) − 44.2918i − 0.372200i
\(120\) 0 0
\(121\) 54.0820 0.446959
\(122\) 7.25735 0.0594865
\(123\) 0 0
\(124\) 120.438 0.971272
\(125\) 0 0
\(126\) 0 0
\(127\) 200.748i 1.58069i 0.612662 + 0.790345i \(0.290099\pi\)
−0.612662 + 0.790345i \(0.709901\pi\)
\(128\) −89.0608 −0.695787
\(129\) 0 0
\(130\) 0 0
\(131\) − 8.16408i − 0.0623212i −0.999514 0.0311606i \(-0.990080\pi\)
0.999514 0.0311606i \(-0.00992033\pi\)
\(132\) 0 0
\(133\) 20.7051i 0.155677i
\(134\) − 0.127717i 0 0.000953115i
\(135\) 0 0
\(136\) −35.8328 −0.263477
\(137\) 50.3313 0.367381 0.183691 0.982984i \(-0.441196\pi\)
0.183691 + 0.982984i \(0.441196\pi\)
\(138\) 0 0
\(139\) 126.498 0.910061 0.455030 0.890476i \(-0.349628\pi\)
0.455030 + 0.890476i \(0.349628\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 31.0395i 0.218588i
\(143\) 63.0557 0.440949
\(144\) 0 0
\(145\) 0 0
\(146\) 19.4001i 0.132878i
\(147\) 0 0
\(148\) − 205.872i − 1.39103i
\(149\) 15.8197i 0.106172i 0.998590 + 0.0530861i \(0.0169058\pi\)
−0.998590 + 0.0530861i \(0.983094\pi\)
\(150\) 0 0
\(151\) −138.997 −0.920509 −0.460255 0.887787i \(-0.652242\pi\)
−0.460255 + 0.887787i \(0.652242\pi\)
\(152\) 16.7508 0.110202
\(153\) 0 0
\(154\) −11.5867 −0.0752383
\(155\) 0 0
\(156\) 0 0
\(157\) − 190.705i − 1.21468i −0.794441 0.607341i \(-0.792236\pi\)
0.794441 0.607341i \(-0.207764\pi\)
\(158\) 18.3982 0.116444
\(159\) 0 0
\(160\) 0 0
\(161\) 105.374i 0.654496i
\(162\) 0 0
\(163\) − 36.8328i − 0.225968i −0.993597 0.112984i \(-0.963959\pi\)
0.993597 0.112984i \(-0.0360409\pi\)
\(164\) − 234.190i − 1.42799i
\(165\) 0 0
\(166\) −23.9361 −0.144194
\(167\) −258.580 −1.54839 −0.774193 0.632950i \(-0.781844\pi\)
−0.774193 + 0.632950i \(0.781844\pi\)
\(168\) 0 0
\(169\) 109.584 0.648424
\(170\) 0 0
\(171\) 0 0
\(172\) 275.082i 1.59931i
\(173\) 182.331 1.05394 0.526969 0.849885i \(-0.323328\pi\)
0.526969 + 0.849885i \(0.323328\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 116.738i − 0.663282i
\(177\) 0 0
\(178\) 26.6262i 0.149585i
\(179\) − 256.774i − 1.43449i −0.696820 0.717246i \(-0.745402\pi\)
0.696820 0.717246i \(-0.254598\pi\)
\(180\) 0 0
\(181\) 180.082 0.994928 0.497464 0.867485i \(-0.334265\pi\)
0.497464 + 0.867485i \(0.334265\pi\)
\(182\) 10.9180 0.0599888
\(183\) 0 0
\(184\) 85.2492 0.463311
\(185\) 0 0
\(186\) 0 0
\(187\) − 97.7082i − 0.522504i
\(188\) 177.820 0.945849
\(189\) 0 0
\(190\) 0 0
\(191\) 128.387i 0.672183i 0.941829 + 0.336092i \(0.109105\pi\)
−0.941829 + 0.336092i \(0.890895\pi\)
\(192\) 0 0
\(193\) 64.2918i 0.333118i 0.986031 + 0.166559i \(0.0532656\pi\)
−0.986031 + 0.166559i \(0.946734\pi\)
\(194\) − 60.8916i − 0.313874i
\(195\) 0 0
\(196\) −135.854 −0.693133
\(197\) −217.997 −1.10658 −0.553292 0.832988i \(-0.686628\pi\)
−0.553292 + 0.832988i \(0.686628\pi\)
\(198\) 0 0
\(199\) −320.249 −1.60929 −0.804646 0.593754i \(-0.797645\pi\)
−0.804646 + 0.593754i \(0.797645\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 9.16718i 0.0453821i
\(203\) 207.915 1.02421
\(204\) 0 0
\(205\) 0 0
\(206\) − 9.61301i − 0.0466651i
\(207\) 0 0
\(208\) 110.000i 0.528846i
\(209\) 45.6757i 0.218544i
\(210\) 0 0
\(211\) −63.8328 −0.302525 −0.151263 0.988494i \(-0.548334\pi\)
−0.151263 + 0.988494i \(0.548334\pi\)
\(212\) 282.740 1.33368
\(213\) 0 0
\(214\) 18.2067 0.0850778
\(215\) 0 0
\(216\) 0 0
\(217\) 115.878i 0.534002i
\(218\) −62.9919 −0.288954
\(219\) 0 0
\(220\) 0 0
\(221\) 92.0689i 0.416601i
\(222\) 0 0
\(223\) − 8.24922i − 0.0369920i −0.999829 0.0184960i \(-0.994112\pi\)
0.999829 0.0184960i \(-0.00588780\pi\)
\(224\) − 64.7113i − 0.288890i
\(225\) 0 0
\(226\) 26.1215 0.115582
\(227\) −339.525 −1.49570 −0.747852 0.663866i \(-0.768915\pi\)
−0.747852 + 0.663866i \(0.768915\pi\)
\(228\) 0 0
\(229\) −202.495 −0.884259 −0.442130 0.896951i \(-0.645777\pi\)
−0.442130 + 0.896951i \(0.645777\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 168.207i − 0.725029i
\(233\) −19.0820 −0.0818972 −0.0409486 0.999161i \(-0.513038\pi\)
−0.0409486 + 0.999161i \(0.513038\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 349.813i − 1.48226i
\(237\) 0 0
\(238\) − 16.9180i − 0.0710839i
\(239\) − 272.610i − 1.14063i −0.821427 0.570314i \(-0.806822\pi\)
0.821427 0.570314i \(-0.193178\pi\)
\(240\) 0 0
\(241\) 232.580 0.965064 0.482532 0.875878i \(-0.339717\pi\)
0.482532 + 0.875878i \(0.339717\pi\)
\(242\) 20.6575 0.0853616
\(243\) 0 0
\(244\) −73.2279 −0.300114
\(245\) 0 0
\(246\) 0 0
\(247\) − 43.0395i − 0.174249i
\(248\) 93.7477 0.378015
\(249\) 0 0
\(250\) 0 0
\(251\) 14.4195i 0.0574483i 0.999587 + 0.0287241i \(0.00914443\pi\)
−0.999587 + 0.0287241i \(0.990856\pi\)
\(252\) 0 0
\(253\) 232.456i 0.918798i
\(254\) 76.6788i 0.301885i
\(255\) 0 0
\(256\) 167.647 0.654873
\(257\) 165.748 0.644933 0.322466 0.946581i \(-0.395488\pi\)
0.322466 + 0.946581i \(0.395488\pi\)
\(258\) 0 0
\(259\) 198.079 0.764784
\(260\) 0 0
\(261\) 0 0
\(262\) − 3.11840i − 0.0119023i
\(263\) 520.026 1.97729 0.988643 0.150282i \(-0.0480182\pi\)
0.988643 + 0.150282i \(0.0480182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 7.90864i 0.0297317i
\(267\) 0 0
\(268\) 1.28869i 0.00480855i
\(269\) − 87.3576i − 0.324749i −0.986729 0.162375i \(-0.948085\pi\)
0.986729 0.162375i \(-0.0519153\pi\)
\(270\) 0 0
\(271\) 35.5836 0.131305 0.0656524 0.997843i \(-0.479087\pi\)
0.0656524 + 0.997843i \(0.479087\pi\)
\(272\) 170.451 0.626658
\(273\) 0 0
\(274\) 19.2248 0.0701636
\(275\) 0 0
\(276\) 0 0
\(277\) − 147.374i − 0.532036i −0.963968 0.266018i \(-0.914292\pi\)
0.963968 0.266018i \(-0.0857080\pi\)
\(278\) 48.3181 0.173806
\(279\) 0 0
\(280\) 0 0
\(281\) − 190.869i − 0.679250i −0.940561 0.339625i \(-0.889700\pi\)
0.940561 0.339625i \(-0.110300\pi\)
\(282\) 0 0
\(283\) 117.708i 0.415930i 0.978136 + 0.207965i \(0.0666840\pi\)
−0.978136 + 0.207965i \(0.933316\pi\)
\(284\) − 313.193i − 1.10279i
\(285\) 0 0
\(286\) 24.0851 0.0842138
\(287\) 225.325 0.785105
\(288\) 0 0
\(289\) −146.334 −0.506347
\(290\) 0 0
\(291\) 0 0
\(292\) − 195.751i − 0.670379i
\(293\) −413.243 −1.41039 −0.705193 0.709016i \(-0.749140\pi\)
−0.705193 + 0.709016i \(0.749140\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 160.249i − 0.541383i
\(297\) 0 0
\(298\) 6.04257i 0.0202771i
\(299\) − 219.039i − 0.732573i
\(300\) 0 0
\(301\) −264.669 −0.879298
\(302\) −53.0921 −0.175802
\(303\) 0 0
\(304\) −79.6807 −0.262108
\(305\) 0 0
\(306\) 0 0
\(307\) 458.158i 1.49237i 0.665738 + 0.746185i \(0.268117\pi\)
−0.665738 + 0.746185i \(0.731883\pi\)
\(308\) 116.912 0.379584
\(309\) 0 0
\(310\) 0 0
\(311\) − 118.043i − 0.379558i −0.981827 0.189779i \(-0.939223\pi\)
0.981827 0.189779i \(-0.0607772\pi\)
\(312\) 0 0
\(313\) − 412.827i − 1.31893i −0.751733 0.659467i \(-0.770782\pi\)
0.751733 0.659467i \(-0.229218\pi\)
\(314\) − 72.8429i − 0.231984i
\(315\) 0 0
\(316\) −185.641 −0.587472
\(317\) −269.944 −0.851559 −0.425780 0.904827i \(-0.640000\pi\)
−0.425780 + 0.904827i \(0.640000\pi\)
\(318\) 0 0
\(319\) 458.663 1.43781
\(320\) 0 0
\(321\) 0 0
\(322\) 40.2492i 0.124998i
\(323\) −66.6919 −0.206477
\(324\) 0 0
\(325\) 0 0
\(326\) − 14.0689i − 0.0431561i
\(327\) 0 0
\(328\) − 182.292i − 0.555768i
\(329\) 171.088i 0.520025i
\(330\) 0 0
\(331\) 9.91486 0.0299542 0.0149771 0.999888i \(-0.495232\pi\)
0.0149771 + 0.999888i \(0.495232\pi\)
\(332\) 241.520 0.727469
\(333\) 0 0
\(334\) −98.7690 −0.295715
\(335\) 0 0
\(336\) 0 0
\(337\) 436.450i 1.29510i 0.762022 + 0.647551i \(0.224207\pi\)
−0.762022 + 0.647551i \(0.775793\pi\)
\(338\) 41.8572 0.123838
\(339\) 0 0
\(340\) 0 0
\(341\) 255.629i 0.749646i
\(342\) 0 0
\(343\) − 312.413i − 0.910826i
\(344\) 214.122i 0.622446i
\(345\) 0 0
\(346\) 69.6443 0.201284
\(347\) −25.3839 −0.0731524 −0.0365762 0.999331i \(-0.511645\pi\)
−0.0365762 + 0.999331i \(0.511645\pi\)
\(348\) 0 0
\(349\) 72.0820 0.206539 0.103269 0.994653i \(-0.467070\pi\)
0.103269 + 0.994653i \(0.467070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 142.754i − 0.405551i
\(353\) −392.164 −1.11095 −0.555473 0.831534i \(-0.687463\pi\)
−0.555473 + 0.831534i \(0.687463\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 268.663i − 0.754670i
\(357\) 0 0
\(358\) − 98.0789i − 0.273964i
\(359\) 399.994i 1.11419i 0.830449 + 0.557094i \(0.188084\pi\)
−0.830449 + 0.557094i \(0.811916\pi\)
\(360\) 0 0
\(361\) −329.823 −0.913639
\(362\) 68.7852 0.190014
\(363\) 0 0
\(364\) −110.164 −0.302649
\(365\) 0 0
\(366\) 0 0
\(367\) − 206.371i − 0.562318i −0.959661 0.281159i \(-0.909281\pi\)
0.959661 0.281159i \(-0.0907188\pi\)
\(368\) −405.517 −1.10195
\(369\) 0 0
\(370\) 0 0
\(371\) 272.036i 0.733252i
\(372\) 0 0
\(373\) 354.833i 0.951294i 0.879636 + 0.475647i \(0.157786\pi\)
−0.879636 + 0.475647i \(0.842214\pi\)
\(374\) − 37.3212i − 0.0997893i
\(375\) 0 0
\(376\) 138.413 0.368120
\(377\) −432.190 −1.14639
\(378\) 0 0
\(379\) 423.997 1.11873 0.559363 0.828923i \(-0.311046\pi\)
0.559363 + 0.828923i \(0.311046\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 49.0395i 0.128376i
\(383\) 207.158 0.540882 0.270441 0.962737i \(-0.412830\pi\)
0.270441 + 0.962737i \(0.412830\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.5573i 0.0636199i
\(387\) 0 0
\(388\) 614.407i 1.58352i
\(389\) 439.957i 1.13100i 0.824750 + 0.565498i \(0.191316\pi\)
−0.824750 + 0.565498i \(0.808684\pi\)
\(390\) 0 0
\(391\) −339.413 −0.868065
\(392\) −105.748 −0.269764
\(393\) 0 0
\(394\) −83.2674 −0.211339
\(395\) 0 0
\(396\) 0 0
\(397\) − 453.872i − 1.14326i −0.820513 0.571628i \(-0.806312\pi\)
0.820513 0.571628i \(-0.193688\pi\)
\(398\) −122.324 −0.307348
\(399\) 0 0
\(400\) 0 0
\(401\) 556.407i 1.38755i 0.720192 + 0.693774i \(0.244054\pi\)
−0.720192 + 0.693774i \(0.755946\pi\)
\(402\) 0 0
\(403\) − 240.875i − 0.597706i
\(404\) − 92.4984i − 0.228957i
\(405\) 0 0
\(406\) 79.4164 0.195607
\(407\) 436.964 1.07362
\(408\) 0 0
\(409\) −75.6625 −0.184994 −0.0924970 0.995713i \(-0.529485\pi\)
−0.0924970 + 0.995713i \(0.529485\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 96.9969i 0.235429i
\(413\) 336.571 0.814942
\(414\) 0 0
\(415\) 0 0
\(416\) 134.515i 0.323353i
\(417\) 0 0
\(418\) 17.4466i 0.0417382i
\(419\) 521.060i 1.24358i 0.783184 + 0.621789i \(0.213594\pi\)
−0.783184 + 0.621789i \(0.786406\pi\)
\(420\) 0 0
\(421\) 114.745 0.272552 0.136276 0.990671i \(-0.456487\pi\)
0.136276 + 0.990671i \(0.456487\pi\)
\(422\) −24.3820 −0.0577772
\(423\) 0 0
\(424\) 220.082 0.519061
\(425\) 0 0
\(426\) 0 0
\(427\) − 70.4559i − 0.165002i
\(428\) −183.708 −0.429225
\(429\) 0 0
\(430\) 0 0
\(431\) 233.204i 0.541076i 0.962709 + 0.270538i \(0.0872015\pi\)
−0.962709 + 0.270538i \(0.912799\pi\)
\(432\) 0 0
\(433\) − 501.702i − 1.15867i −0.815091 0.579333i \(-0.803313\pi\)
0.815091 0.579333i \(-0.196687\pi\)
\(434\) 44.2616i 0.101985i
\(435\) 0 0
\(436\) 635.599 1.45780
\(437\) 158.666 0.363079
\(438\) 0 0
\(439\) −365.997 −0.833706 −0.416853 0.908974i \(-0.636867\pi\)
−0.416853 + 0.908974i \(0.636867\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 35.1672i 0.0795638i
\(443\) −632.902 −1.42867 −0.714337 0.699802i \(-0.753272\pi\)
−0.714337 + 0.699802i \(0.753272\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 3.15092i − 0.00706485i
\(447\) 0 0
\(448\) 186.954i 0.417309i
\(449\) 796.344i 1.77360i 0.462158 + 0.886798i \(0.347075\pi\)
−0.462158 + 0.886798i \(0.652925\pi\)
\(450\) 0 0
\(451\) 497.070 1.10215
\(452\) −263.570 −0.583120
\(453\) 0 0
\(454\) −129.687 −0.285654
\(455\) 0 0
\(456\) 0 0
\(457\) 202.577i 0.443277i 0.975129 + 0.221638i \(0.0711404\pi\)
−0.975129 + 0.221638i \(0.928860\pi\)
\(458\) −77.3463 −0.168878
\(459\) 0 0
\(460\) 0 0
\(461\) 727.909i 1.57898i 0.613765 + 0.789489i \(0.289654\pi\)
−0.613765 + 0.789489i \(0.710346\pi\)
\(462\) 0 0
\(463\) 493.003i 1.06480i 0.846492 + 0.532401i \(0.178710\pi\)
−0.846492 + 0.532401i \(0.821290\pi\)
\(464\) 800.132i 1.72442i
\(465\) 0 0
\(466\) −7.28869 −0.0156410
\(467\) −453.190 −0.970429 −0.485215 0.874395i \(-0.661259\pi\)
−0.485215 + 0.874395i \(0.661259\pi\)
\(468\) 0 0
\(469\) −1.23991 −0.00264372
\(470\) 0 0
\(471\) 0 0
\(472\) − 272.292i − 0.576889i
\(473\) −583.862 −1.23438
\(474\) 0 0
\(475\) 0 0
\(476\) 170.705i 0.358624i
\(477\) 0 0
\(478\) − 104.128i − 0.217840i
\(479\) − 319.544i − 0.667107i −0.942731 0.333553i \(-0.891752\pi\)
0.942731 0.333553i \(-0.108248\pi\)
\(480\) 0 0
\(481\) −411.745 −0.856018
\(482\) 88.8378 0.184311
\(483\) 0 0
\(484\) −208.438 −0.430656
\(485\) 0 0
\(486\) 0 0
\(487\) − 792.869i − 1.62807i −0.580817 0.814034i \(-0.697267\pi\)
0.580817 0.814034i \(-0.302733\pi\)
\(488\) −57.0000 −0.116803
\(489\) 0 0
\(490\) 0 0
\(491\) − 369.437i − 0.752417i −0.926535 0.376208i \(-0.877228\pi\)
0.926535 0.376208i \(-0.122772\pi\)
\(492\) 0 0
\(493\) 669.702i 1.35842i
\(494\) − 16.4396i − 0.0332786i
\(495\) 0 0
\(496\) −445.942 −0.899077
\(497\) 301.337 0.606313
\(498\) 0 0
\(499\) −609.912 −1.22227 −0.611134 0.791527i \(-0.709286\pi\)
−0.611134 + 0.791527i \(0.709286\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 5.50776i 0.0109716i
\(503\) −305.308 −0.606974 −0.303487 0.952836i \(-0.598151\pi\)
−0.303487 + 0.952836i \(0.598151\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 88.7902i 0.175475i
\(507\) 0 0
\(508\) − 773.702i − 1.52304i
\(509\) 204.478i 0.401726i 0.979619 + 0.200863i \(0.0643745\pi\)
−0.979619 + 0.200863i \(0.935625\pi\)
\(510\) 0 0
\(511\) 188.341 0.368573
\(512\) 420.279 0.820857
\(513\) 0 0
\(514\) 63.3100 0.123171
\(515\) 0 0
\(516\) 0 0
\(517\) 377.423i 0.730024i
\(518\) 75.6594 0.146061
\(519\) 0 0
\(520\) 0 0
\(521\) − 590.227i − 1.13287i −0.824105 0.566436i \(-0.808322\pi\)
0.824105 0.566436i \(-0.191678\pi\)
\(522\) 0 0
\(523\) − 19.7933i − 0.0378458i −0.999821 0.0189229i \(-0.993976\pi\)
0.999821 0.0189229i \(-0.00602370\pi\)
\(524\) 31.4652i 0.0600481i
\(525\) 0 0
\(526\) 198.632 0.377628
\(527\) −373.249 −0.708253
\(528\) 0 0
\(529\) 278.492 0.526450
\(530\) 0 0
\(531\) 0 0
\(532\) − 79.7996i − 0.149999i
\(533\) −468.381 −0.878763
\(534\) 0 0
\(535\) 0 0
\(536\) 1.00311i 0.00187147i
\(537\) 0 0
\(538\) − 33.3676i − 0.0620216i
\(539\) − 288.351i − 0.534973i
\(540\) 0 0
\(541\) 428.164 0.791431 0.395715 0.918373i \(-0.370497\pi\)
0.395715 + 0.918373i \(0.370497\pi\)
\(542\) 13.5917 0.0250770
\(543\) 0 0
\(544\) 208.438 0.383158
\(545\) 0 0
\(546\) 0 0
\(547\) 982.705i 1.79654i 0.439448 + 0.898268i \(0.355174\pi\)
−0.439448 + 0.898268i \(0.644826\pi\)
\(548\) −193.982 −0.353981
\(549\) 0 0
\(550\) 0 0
\(551\) − 313.066i − 0.568177i
\(552\) 0 0
\(553\) − 178.614i − 0.322990i
\(554\) − 56.2918i − 0.101610i
\(555\) 0 0
\(556\) −487.538 −0.876867
\(557\) 310.839 0.558059 0.279030 0.960282i \(-0.409987\pi\)
0.279030 + 0.960282i \(0.409987\pi\)
\(558\) 0 0
\(559\) 550.164 0.984193
\(560\) 0 0
\(561\) 0 0
\(562\) − 72.9055i − 0.129725i
\(563\) 850.997 1.51154 0.755770 0.654837i \(-0.227263\pi\)
0.755770 + 0.654837i \(0.227263\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 44.9605i 0.0794356i
\(567\) 0 0
\(568\) − 243.787i − 0.429203i
\(569\) 292.377i 0.513843i 0.966432 + 0.256922i \(0.0827083\pi\)
−0.966432 + 0.256922i \(0.917292\pi\)
\(570\) 0 0
\(571\) −357.754 −0.626539 −0.313270 0.949664i \(-0.601424\pi\)
−0.313270 + 0.949664i \(0.601424\pi\)
\(572\) −243.023 −0.424866
\(573\) 0 0
\(574\) 86.0665 0.149942
\(575\) 0 0
\(576\) 0 0
\(577\) − 216.456i − 0.375140i −0.982251 0.187570i \(-0.939939\pi\)
0.982251 0.187570i \(-0.0600612\pi\)
\(578\) −55.8948 −0.0967037
\(579\) 0 0
\(580\) 0 0
\(581\) 232.377i 0.399960i
\(582\) 0 0
\(583\) 600.115i 1.02936i
\(584\) − 152.371i − 0.260909i
\(585\) 0 0
\(586\) −157.845 −0.269360
\(587\) 578.489 0.985501 0.492751 0.870171i \(-0.335992\pi\)
0.492751 + 0.870171i \(0.335992\pi\)
\(588\) 0 0
\(589\) 174.483 0.296236
\(590\) 0 0
\(591\) 0 0
\(592\) 762.279i 1.28763i
\(593\) −159.971 −0.269765 −0.134882 0.990862i \(-0.543066\pi\)
−0.134882 + 0.990862i \(0.543066\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 60.9706i − 0.102300i
\(597\) 0 0
\(598\) − 83.6656i − 0.139909i
\(599\) − 453.755i − 0.757520i −0.925495 0.378760i \(-0.876351\pi\)
0.925495 0.378760i \(-0.123649\pi\)
\(600\) 0 0
\(601\) −653.584 −1.08749 −0.543747 0.839249i \(-0.682995\pi\)
−0.543747 + 0.839249i \(0.682995\pi\)
\(602\) −101.094 −0.167931
\(603\) 0 0
\(604\) 535.708 0.886934
\(605\) 0 0
\(606\) 0 0
\(607\) 184.626i 0.304162i 0.988368 + 0.152081i \(0.0485974\pi\)
−0.988368 + 0.152081i \(0.951403\pi\)
\(608\) −97.4384 −0.160261
\(609\) 0 0
\(610\) 0 0
\(611\) − 355.639i − 0.582061i
\(612\) 0 0
\(613\) − 903.416i − 1.47376i −0.676022 0.736881i \(-0.736298\pi\)
0.676022 0.736881i \(-0.263702\pi\)
\(614\) 175.001i 0.285017i
\(615\) 0 0
\(616\) 91.0031 0.147732
\(617\) 386.489 0.626401 0.313200 0.949687i \(-0.398599\pi\)
0.313200 + 0.949687i \(0.398599\pi\)
\(618\) 0 0
\(619\) −1165.90 −1.88353 −0.941763 0.336278i \(-0.890832\pi\)
−0.941763 + 0.336278i \(0.890832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 45.0883i − 0.0724891i
\(623\) 258.492 0.414915
\(624\) 0 0
\(625\) 0 0
\(626\) − 157.686i − 0.251894i
\(627\) 0 0
\(628\) 734.997i 1.17038i
\(629\) 638.020i 1.01434i
\(630\) 0 0
\(631\) 50.8297 0.0805542 0.0402771 0.999189i \(-0.487176\pi\)
0.0402771 + 0.999189i \(0.487176\pi\)
\(632\) −144.502 −0.228642
\(633\) 0 0
\(634\) −103.110 −0.162633
\(635\) 0 0
\(636\) 0 0
\(637\) 271.708i 0.426543i
\(638\) 175.193 0.274598
\(639\) 0 0
\(640\) 0 0
\(641\) − 548.754i − 0.856090i −0.903757 0.428045i \(-0.859202\pi\)
0.903757 0.428045i \(-0.140798\pi\)
\(642\) 0 0
\(643\) 526.711i 0.819147i 0.912277 + 0.409573i \(0.134322\pi\)
−0.912277 + 0.409573i \(0.865678\pi\)
\(644\) − 406.122i − 0.630623i
\(645\) 0 0
\(646\) −25.4741 −0.0394335
\(647\) 694.607 1.07358 0.536790 0.843716i \(-0.319637\pi\)
0.536790 + 0.843716i \(0.319637\pi\)
\(648\) 0 0
\(649\) 742.480 1.14404
\(650\) 0 0
\(651\) 0 0
\(652\) 141.957i 0.217726i
\(653\) −1122.29 −1.71867 −0.859336 0.511412i \(-0.829123\pi\)
−0.859336 + 0.511412i \(0.829123\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 867.132i 1.32185i
\(657\) 0 0
\(658\) 65.3499i 0.0993160i
\(659\) − 670.488i − 1.01743i −0.860934 0.508717i \(-0.830120\pi\)
0.860934 0.508717i \(-0.169880\pi\)
\(660\) 0 0
\(661\) 1088.15 1.64622 0.823110 0.567882i \(-0.192237\pi\)
0.823110 + 0.567882i \(0.192237\pi\)
\(662\) 3.78714 0.00572075
\(663\) 0 0
\(664\) 187.997 0.283128
\(665\) 0 0
\(666\) 0 0
\(667\) − 1593.28i − 2.38872i
\(668\) 996.596 1.49191
\(669\) 0 0
\(670\) 0 0
\(671\) − 155.426i − 0.231634i
\(672\) 0 0
\(673\) − 638.371i − 0.948545i −0.880378 0.474272i \(-0.842711\pi\)
0.880378 0.474272i \(-0.157289\pi\)
\(674\) 166.709i 0.247343i
\(675\) 0 0
\(676\) −422.346 −0.624773
\(677\) −798.158 −1.17896 −0.589481 0.807782i \(-0.700668\pi\)
−0.589481 + 0.807782i \(0.700668\pi\)
\(678\) 0 0
\(679\) −591.149 −0.870616
\(680\) 0 0
\(681\) 0 0
\(682\) 97.6417i 0.143170i
\(683\) 757.505 1.10908 0.554542 0.832156i \(-0.312893\pi\)
0.554542 + 0.832156i \(0.312893\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 119.331i − 0.173952i
\(687\) 0 0
\(688\) − 1018.54i − 1.48044i
\(689\) − 565.479i − 0.820724i
\(690\) 0 0
\(691\) 702.331 1.01640 0.508199 0.861240i \(-0.330311\pi\)
0.508199 + 0.861240i \(0.330311\pi\)
\(692\) −702.723 −1.01550
\(693\) 0 0
\(694\) −9.69578 −0.0139709
\(695\) 0 0
\(696\) 0 0
\(697\) 725.781i 1.04129i
\(698\) 27.5329 0.0394454
\(699\) 0 0
\(700\) 0 0
\(701\) − 406.616i − 0.580052i −0.957019 0.290026i \(-0.906336\pi\)
0.957019 0.290026i \(-0.0936639\pi\)
\(702\) 0 0
\(703\) − 298.255i − 0.424261i
\(704\) 412.423i 0.585829i
\(705\) 0 0
\(706\) −149.793 −0.212172
\(707\) 88.9969 0.125880
\(708\) 0 0
\(709\) −564.322 −0.795941 −0.397970 0.917398i \(-0.630285\pi\)
−0.397970 + 0.917398i \(0.630285\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 209.125i − 0.293714i
\(713\) 887.991 1.24543
\(714\) 0 0
\(715\) 0 0
\(716\) 989.633i 1.38217i
\(717\) 0 0
\(718\) 152.784i 0.212791i
\(719\) − 1340.07i − 1.86379i −0.362725 0.931896i \(-0.618154\pi\)
0.362725 0.931896i \(-0.381846\pi\)
\(720\) 0 0
\(721\) −93.3251 −0.129438
\(722\) −125.981 −0.174489
\(723\) 0 0
\(724\) −694.055 −0.958639
\(725\) 0 0
\(726\) 0 0
\(727\) − 130.991i − 0.180180i −0.995934 0.0900899i \(-0.971285\pi\)
0.995934 0.0900899i \(-0.0287154\pi\)
\(728\) −85.7508 −0.117790
\(729\) 0 0
\(730\) 0 0
\(731\) − 852.508i − 1.16622i
\(732\) 0 0
\(733\) 1414.48i 1.92971i 0.262777 + 0.964857i \(0.415362\pi\)
−0.262777 + 0.964857i \(0.584638\pi\)
\(734\) − 78.8266i − 0.107393i
\(735\) 0 0
\(736\) −495.890 −0.673764
\(737\) −2.73525 −0.00371133
\(738\) 0 0
\(739\) −10.5805 −0.0143173 −0.00715865 0.999974i \(-0.502279\pi\)
−0.00715865 + 0.999974i \(0.502279\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 103.909i 0.140039i
\(743\) 794.053 1.06871 0.534356 0.845260i \(-0.320554\pi\)
0.534356 + 0.845260i \(0.320554\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 135.534i 0.181681i
\(747\) 0 0
\(748\) 376.577i 0.503446i
\(749\) − 176.754i − 0.235986i
\(750\) 0 0
\(751\) −53.5109 −0.0712528 −0.0356264 0.999365i \(-0.511343\pi\)
−0.0356264 + 0.999365i \(0.511343\pi\)
\(752\) −658.409 −0.875544
\(753\) 0 0
\(754\) −165.082 −0.218942
\(755\) 0 0
\(756\) 0 0
\(757\) − 921.745i − 1.21763i −0.793313 0.608814i \(-0.791646\pi\)
0.793313 0.608814i \(-0.208354\pi\)
\(758\) 161.952 0.213658
\(759\) 0 0
\(760\) 0 0
\(761\) 578.115i 0.759678i 0.925053 + 0.379839i \(0.124021\pi\)
−0.925053 + 0.379839i \(0.875979\pi\)
\(762\) 0 0
\(763\) 611.538i 0.801491i
\(764\) − 494.817i − 0.647666i
\(765\) 0 0
\(766\) 79.1273 0.103299
\(767\) −699.627 −0.912160
\(768\) 0 0
\(769\) 651.656 0.847407 0.423704 0.905801i \(-0.360730\pi\)
0.423704 + 0.905801i \(0.360730\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 247.787i − 0.320968i
\(773\) −389.754 −0.504209 −0.252105 0.967700i \(-0.581123\pi\)
−0.252105 + 0.967700i \(0.581123\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 478.249i 0.616301i
\(777\) 0 0
\(778\) 168.049i 0.216001i
\(779\) − 339.281i − 0.435534i
\(780\) 0 0
\(781\) 664.754 0.851157
\(782\) −129.644 −0.165786
\(783\) 0 0
\(784\) 503.024 0.641613
\(785\) 0 0
\(786\) 0 0
\(787\) 36.4559i 0.0463226i 0.999732 + 0.0231613i \(0.00737313\pi\)
−0.999732 + 0.0231613i \(0.992627\pi\)
\(788\) 840.182 1.06622
\(789\) 0 0
\(790\) 0 0
\(791\) − 253.593i − 0.320598i
\(792\) 0 0
\(793\) 146.456i 0.184686i
\(794\) − 173.364i − 0.218342i
\(795\) 0 0
\(796\) 1234.27 1.55059
\(797\) 731.466 0.917774 0.458887 0.888495i \(-0.348248\pi\)
0.458887 + 0.888495i \(0.348248\pi\)
\(798\) 0 0
\(799\) −551.082 −0.689715
\(800\) 0 0
\(801\) 0 0
\(802\) 212.529i 0.264998i
\(803\) 415.481 0.517412
\(804\) 0 0
\(805\) 0 0
\(806\) − 92.0062i − 0.114152i
\(807\) 0 0
\(808\) − 72.0000i − 0.0891089i
\(809\) − 595.767i − 0.736424i −0.929742 0.368212i \(-0.879970\pi\)
0.929742 0.368212i \(-0.120030\pi\)
\(810\) 0 0
\(811\) 180.177 0.222166 0.111083 0.993811i \(-0.464568\pi\)
0.111083 + 0.993811i \(0.464568\pi\)
\(812\) −801.325 −0.986854
\(813\) 0 0
\(814\) 166.906 0.205044
\(815\) 0 0
\(816\) 0 0
\(817\) 398.522i 0.487787i
\(818\) −28.9005 −0.0353307
\(819\) 0 0
\(820\) 0 0
\(821\) 31.3375i 0.0381699i 0.999818 + 0.0190849i \(0.00607529\pi\)
−0.999818 + 0.0190849i \(0.993925\pi\)
\(822\) 0 0
\(823\) − 234.803i − 0.285301i −0.989773 0.142650i \(-0.954438\pi\)
0.989773 0.142650i \(-0.0455625\pi\)
\(824\) 75.5016i 0.0916281i
\(825\) 0 0
\(826\) 128.559 0.155640
\(827\) −47.8003 −0.0577996 −0.0288998 0.999582i \(-0.509200\pi\)
−0.0288998 + 0.999582i \(0.509200\pi\)
\(828\) 0 0
\(829\) 292.760 0.353148 0.176574 0.984287i \(-0.443498\pi\)
0.176574 + 0.984287i \(0.443498\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 388.620i − 0.467091i
\(833\) 421.026 0.505434
\(834\) 0 0
\(835\) 0 0
\(836\) − 176.039i − 0.210573i
\(837\) 0 0
\(838\) 199.027i 0.237502i
\(839\) − 494.387i − 0.589257i −0.955612 0.294629i \(-0.904804\pi\)
0.955612 0.294629i \(-0.0951960\pi\)
\(840\) 0 0
\(841\) −2302.72 −2.73807
\(842\) 43.8285 0.0520529
\(843\) 0 0
\(844\) 246.018 0.291491
\(845\) 0 0
\(846\) 0 0
\(847\) − 200.547i − 0.236774i
\(848\) −1046.89 −1.23455
\(849\) 0 0
\(850\) 0 0
\(851\) − 1517.90i − 1.78367i
\(852\) 0 0
\(853\) − 1151.65i − 1.35011i −0.737766 0.675057i \(-0.764119\pi\)
0.737766 0.675057i \(-0.235881\pi\)
\(854\) − 26.9117i − 0.0315126i
\(855\) 0 0
\(856\) −142.997 −0.167052
\(857\) 1098.02 1.28124 0.640620 0.767858i \(-0.278677\pi\)
0.640620 + 0.767858i \(0.278677\pi\)
\(858\) 0 0
\(859\) 290.757 0.338483 0.169242 0.985575i \(-0.445868\pi\)
0.169242 + 0.985575i \(0.445868\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 89.0758i 0.103336i
\(863\) 1069.28 1.23903 0.619514 0.784985i \(-0.287330\pi\)
0.619514 + 0.784985i \(0.287330\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 191.633i − 0.221285i
\(867\) 0 0
\(868\) − 446.608i − 0.514525i
\(869\) − 394.024i − 0.453422i
\(870\) 0 0
\(871\) 2.57738 0.00295911
\(872\) 494.745 0.567368
\(873\) 0 0
\(874\) 60.6049 0.0693420
\(875\) 0 0
\(876\) 0 0
\(877\) 160.043i 0.182489i 0.995829 + 0.0912443i \(0.0290844\pi\)
−0.995829 + 0.0912443i \(0.970916\pi\)
\(878\) −139.798 −0.159224
\(879\) 0 0
\(880\) 0 0
\(881\) − 712.502i − 0.808743i −0.914595 0.404371i \(-0.867490\pi\)
0.914595 0.404371i \(-0.132510\pi\)
\(882\) 0 0
\(883\) − 1244.12i − 1.40897i −0.709718 0.704486i \(-0.751178\pi\)
0.709718 0.704486i \(-0.248822\pi\)
\(884\) − 354.843i − 0.401406i
\(885\) 0 0
\(886\) −241.747 −0.272852
\(887\) −429.827 −0.484585 −0.242292 0.970203i \(-0.577899\pi\)
−0.242292 + 0.970203i \(0.577899\pi\)
\(888\) 0 0
\(889\) 744.413 0.837360
\(890\) 0 0
\(891\) 0 0
\(892\) 31.7933i 0.0356428i
\(893\) 257.614 0.288482
\(894\) 0 0
\(895\) 0 0
\(896\) 330.255i 0.368589i
\(897\) 0 0
\(898\) 304.177i 0.338727i
\(899\) − 1752.11i − 1.94895i
\(900\) 0 0
\(901\) −876.240 −0.972519
\(902\) 189.864 0.210492
\(903\) 0 0
\(904\) −205.161 −0.226948
\(905\) 0 0
\(906\) 0 0
\(907\) 553.240i 0.609967i 0.952358 + 0.304983i \(0.0986509\pi\)
−0.952358 + 0.304983i \(0.901349\pi\)
\(908\) 1308.56 1.44115
\(909\) 0 0
\(910\) 0 0
\(911\) − 667.275i − 0.732464i −0.930524 0.366232i \(-0.880648\pi\)
0.930524 0.366232i \(-0.119352\pi\)
\(912\) 0 0
\(913\) 512.626i 0.561474i
\(914\) 77.3777i 0.0846583i
\(915\) 0 0
\(916\) 780.438 0.852006
\(917\) −30.2741 −0.0330143
\(918\) 0 0
\(919\) 338.000 0.367791 0.183896 0.982946i \(-0.441129\pi\)
0.183896 + 0.982946i \(0.441129\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 278.036i 0.301558i
\(923\) −626.387 −0.678642
\(924\) 0 0
\(925\) 0 0
\(926\) 188.310i 0.203359i
\(927\) 0 0
\(928\) 978.450i 1.05436i
\(929\) 216.829i 0.233400i 0.993167 + 0.116700i \(0.0372317\pi\)
−0.993167 + 0.116700i \(0.962768\pi\)
\(930\) 0 0
\(931\) −196.817 −0.211404
\(932\) 73.5441 0.0789100
\(933\) 0 0
\(934\) −173.103 −0.185335
\(935\) 0 0
\(936\) 0 0
\(937\) 851.647i 0.908908i 0.890770 + 0.454454i \(0.150166\pi\)
−0.890770 + 0.454454i \(0.849834\pi\)
\(938\) −0.473602 −0.000504906 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1073.42i − 1.14073i −0.821392 0.570363i \(-0.806802\pi\)
0.821392 0.570363i \(-0.193198\pi\)
\(942\) 0 0
\(943\) − 1726.69i − 1.83106i
\(944\) 1295.25i 1.37208i
\(945\) 0 0
\(946\) −223.016 −0.235746
\(947\) 1645.82 1.73793 0.868965 0.494873i \(-0.164785\pi\)
0.868965 + 0.494873i \(0.164785\pi\)
\(948\) 0 0
\(949\) −391.502 −0.412541
\(950\) 0 0
\(951\) 0 0
\(952\) 132.875i 0.139575i
\(953\) −1139.03 −1.19520 −0.597602 0.801793i \(-0.703880\pi\)
−0.597602 + 0.801793i \(0.703880\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1050.67i 1.09902i
\(957\) 0 0
\(958\) − 122.055i − 0.127406i
\(959\) − 186.639i − 0.194618i
\(960\) 0 0
\(961\) 15.5140 0.0161436
\(962\) −157.272 −0.163485
\(963\) 0 0
\(964\) −896.389 −0.929864
\(965\) 0 0
\(966\) 0 0
\(967\) 357.489i 0.369689i 0.982768 + 0.184844i \(0.0591781\pi\)
−0.982768 + 0.184844i \(0.940822\pi\)
\(968\) −162.246 −0.167610
\(969\) 0 0
\(970\) 0 0
\(971\) − 46.5836i − 0.0479749i −0.999712 0.0239874i \(-0.992364\pi\)
0.999712 0.0239874i \(-0.00763617\pi\)
\(972\) 0 0
\(973\) − 469.082i − 0.482099i
\(974\) − 302.849i − 0.310933i
\(975\) 0 0
\(976\) 271.140 0.277807
\(977\) 346.616 0.354776 0.177388 0.984141i \(-0.443235\pi\)
0.177388 + 0.984141i \(0.443235\pi\)
\(978\) 0 0
\(979\) 570.237 0.582469
\(980\) 0 0
\(981\) 0 0
\(982\) − 141.112i − 0.143699i
\(983\) 846.975 0.861623 0.430811 0.902442i \(-0.358227\pi\)
0.430811 + 0.902442i \(0.358227\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 255.803i 0.259435i
\(987\) 0 0
\(988\) 165.878i 0.167893i
\(989\) 2028.19i 2.05075i
\(990\) 0 0
\(991\) 1304.33 1.31617 0.658085 0.752943i \(-0.271367\pi\)
0.658085 + 0.752943i \(0.271367\pi\)
\(992\) −545.326 −0.549723
\(993\) 0 0
\(994\) 115.101 0.115795
\(995\) 0 0
\(996\) 0 0
\(997\) − 1835.77i − 1.84130i −0.390391 0.920649i \(-0.627660\pi\)
0.390391 0.920649i \(-0.372340\pi\)
\(998\) −232.966 −0.233432
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.d.i.674.1 4
3.2 odd 2 675.3.d.e.674.3 4
5.2 odd 4 135.3.c.c.26.3 yes 4
5.3 odd 4 675.3.c.p.26.2 4
5.4 even 2 675.3.d.e.674.4 4
15.2 even 4 135.3.c.c.26.2 4
15.8 even 4 675.3.c.p.26.3 4
15.14 odd 2 inner 675.3.d.i.674.2 4
20.7 even 4 2160.3.l.g.161.1 4
45.2 even 12 405.3.i.c.296.2 8
45.7 odd 12 405.3.i.c.296.3 8
45.22 odd 12 405.3.i.c.26.2 8
45.32 even 12 405.3.i.c.26.3 8
60.47 odd 4 2160.3.l.g.161.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.c.c.26.2 4 15.2 even 4
135.3.c.c.26.3 yes 4 5.2 odd 4
405.3.i.c.26.2 8 45.22 odd 12
405.3.i.c.26.3 8 45.32 even 12
405.3.i.c.296.2 8 45.2 even 12
405.3.i.c.296.3 8 45.7 odd 12
675.3.c.p.26.2 4 5.3 odd 4
675.3.c.p.26.3 4 15.8 even 4
675.3.d.e.674.3 4 3.2 odd 2
675.3.d.e.674.4 4 5.4 even 2
675.3.d.i.674.1 4 1.1 even 1 trivial
675.3.d.i.674.2 4 15.14 odd 2 inner
2160.3.l.g.161.1 4 20.7 even 4
2160.3.l.g.161.3 4 60.47 odd 4