Properties

Label 2160.3.l.g.161.1
Level $2160$
Weight $3$
Character 2160.161
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2160,3,Mod(161,2160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2160.161"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2160, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 2160.161
Dual form 2160.3.l.g.161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{5} -3.70820 q^{7} +8.18034i q^{11} +7.70820 q^{13} +11.9443i q^{17} -5.58359 q^{19} -28.4164i q^{23} -5.00000 q^{25} -56.0689i q^{29} +31.2492 q^{31} +8.29180i q^{35} -53.4164 q^{37} +60.7639i q^{41} +71.3738 q^{43} +46.1378i q^{47} -35.2492 q^{49} +73.3607i q^{53} +18.2918 q^{55} +90.7639i q^{59} +19.0000 q^{61} -17.2361i q^{65} -0.334369 q^{67} -81.2624i q^{71} +50.7902 q^{73} -30.3344i q^{77} +48.1672 q^{79} -62.6656i q^{83} +26.7082 q^{85} -69.7082i q^{89} -28.5836 q^{91} +12.4853i q^{95} +159.416 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} + 4 q^{13} - 76 q^{19} - 20 q^{25} - 36 q^{31} - 160 q^{37} + 44 q^{43} + 20 q^{49} + 100 q^{55} + 76 q^{61} - 216 q^{67} - 92 q^{73} + 300 q^{79} + 80 q^{85} - 168 q^{91} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.23607i − 0.447214i
\(6\) 0 0
\(7\) −3.70820 −0.529743 −0.264872 0.964284i \(-0.585330\pi\)
−0.264872 + 0.964284i \(0.585330\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.18034i 0.743667i 0.928299 + 0.371834i \(0.121271\pi\)
−0.928299 + 0.371834i \(0.878729\pi\)
\(12\) 0 0
\(13\) 7.70820 0.592939 0.296469 0.955042i \(-0.404191\pi\)
0.296469 + 0.955042i \(0.404191\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.9443i 0.702604i 0.936262 + 0.351302i \(0.114261\pi\)
−0.936262 + 0.351302i \(0.885739\pi\)
\(18\) 0 0
\(19\) −5.58359 −0.293873 −0.146937 0.989146i \(-0.546941\pi\)
−0.146937 + 0.989146i \(0.546941\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 28.4164i − 1.23550i −0.786376 0.617748i \(-0.788045\pi\)
0.786376 0.617748i \(-0.211955\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 56.0689i − 1.93341i −0.255894 0.966705i \(-0.582370\pi\)
0.255894 0.966705i \(-0.417630\pi\)
\(30\) 0 0
\(31\) 31.2492 1.00804 0.504020 0.863692i \(-0.331854\pi\)
0.504020 + 0.863692i \(0.331854\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.29180i 0.236908i
\(36\) 0 0
\(37\) −53.4164 −1.44369 −0.721843 0.692056i \(-0.756705\pi\)
−0.721843 + 0.692056i \(0.756705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 60.7639i 1.48205i 0.671479 + 0.741024i \(0.265659\pi\)
−0.671479 + 0.741024i \(0.734341\pi\)
\(42\) 0 0
\(43\) 71.3738 1.65986 0.829928 0.557870i \(-0.188381\pi\)
0.829928 + 0.557870i \(0.188381\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 46.1378i 0.981655i 0.871257 + 0.490827i \(0.163305\pi\)
−0.871257 + 0.490827i \(0.836695\pi\)
\(48\) 0 0
\(49\) −35.2492 −0.719372
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 73.3607i 1.38416i 0.721819 + 0.692082i \(0.243306\pi\)
−0.721819 + 0.692082i \(0.756694\pi\)
\(54\) 0 0
\(55\) 18.2918 0.332578
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 90.7639i 1.53837i 0.639025 + 0.769186i \(0.279338\pi\)
−0.639025 + 0.769186i \(0.720662\pi\)
\(60\) 0 0
\(61\) 19.0000 0.311475 0.155738 0.987798i \(-0.450225\pi\)
0.155738 + 0.987798i \(0.450225\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 17.2361i − 0.265170i
\(66\) 0 0
\(67\) −0.334369 −0.00499058 −0.00249529 0.999997i \(-0.500794\pi\)
−0.00249529 + 0.999997i \(0.500794\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 81.2624i − 1.14454i −0.820065 0.572270i \(-0.806063\pi\)
0.820065 0.572270i \(-0.193937\pi\)
\(72\) 0 0
\(73\) 50.7902 0.695757 0.347878 0.937540i \(-0.386902\pi\)
0.347878 + 0.937540i \(0.386902\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 30.3344i − 0.393953i
\(78\) 0 0
\(79\) 48.1672 0.609711 0.304856 0.952399i \(-0.401392\pi\)
0.304856 + 0.952399i \(0.401392\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 62.6656i − 0.755008i −0.926008 0.377504i \(-0.876783\pi\)
0.926008 0.377504i \(-0.123217\pi\)
\(84\) 0 0
\(85\) 26.7082 0.314214
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 69.7082i − 0.783238i −0.920127 0.391619i \(-0.871915\pi\)
0.920127 0.391619i \(-0.128085\pi\)
\(90\) 0 0
\(91\) −28.5836 −0.314105
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.4853i 0.131424i
\(96\) 0 0
\(97\) 159.416 1.64347 0.821734 0.569871i \(-0.193007\pi\)
0.821734 + 0.569871i \(0.193007\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 24.0000i 0.237624i 0.992917 + 0.118812i \(0.0379085\pi\)
−0.992917 + 0.118812i \(0.962091\pi\)
\(102\) 0 0
\(103\) 25.1672 0.244342 0.122171 0.992509i \(-0.461014\pi\)
0.122171 + 0.992509i \(0.461014\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 47.6656i − 0.445473i −0.974879 0.222737i \(-0.928501\pi\)
0.974879 0.222737i \(-0.0714990\pi\)
\(108\) 0 0
\(109\) 164.915 1.51298 0.756490 0.654005i \(-0.226913\pi\)
0.756490 + 0.654005i \(0.226913\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 68.3870i − 0.605195i −0.953118 0.302597i \(-0.902146\pi\)
0.953118 0.302597i \(-0.0978537\pi\)
\(114\) 0 0
\(115\) −63.5410 −0.552531
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 44.2918i − 0.372200i
\(120\) 0 0
\(121\) 54.0820 0.446959
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 200.748 1.58069 0.790345 0.612662i \(-0.209901\pi\)
0.790345 + 0.612662i \(0.209901\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.16408i 0.0623212i 0.999514 + 0.0311606i \(0.00992033\pi\)
−0.999514 + 0.0311606i \(0.990080\pi\)
\(132\) 0 0
\(133\) 20.7051 0.155677
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 50.3313i 0.367381i 0.982984 + 0.183691i \(0.0588045\pi\)
−0.982984 + 0.183691i \(0.941196\pi\)
\(138\) 0 0
\(139\) 126.498 0.910061 0.455030 0.890476i \(-0.349628\pi\)
0.455030 + 0.890476i \(0.349628\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 63.0557i 0.440949i
\(144\) 0 0
\(145\) −125.374 −0.864647
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 15.8197i − 0.106172i −0.998590 0.0530861i \(-0.983094\pi\)
0.998590 0.0530861i \(-0.0169058\pi\)
\(150\) 0 0
\(151\) 138.997 0.920509 0.460255 0.887787i \(-0.347758\pi\)
0.460255 + 0.887787i \(0.347758\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 69.8754i − 0.450809i
\(156\) 0 0
\(157\) 190.705 1.21468 0.607341 0.794441i \(-0.292236\pi\)
0.607341 + 0.794441i \(0.292236\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 105.374i 0.654496i
\(162\) 0 0
\(163\) 36.8328 0.225968 0.112984 0.993597i \(-0.463959\pi\)
0.112984 + 0.993597i \(0.463959\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 258.580i 1.54839i 0.632950 + 0.774193i \(0.281844\pi\)
−0.632950 + 0.774193i \(0.718156\pi\)
\(168\) 0 0
\(169\) −109.584 −0.648424
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 182.331i − 1.05394i −0.849885 0.526969i \(-0.823328\pi\)
0.849885 0.526969i \(-0.176672\pi\)
\(174\) 0 0
\(175\) 18.5410 0.105949
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 256.774i − 1.43449i −0.696820 0.717246i \(-0.745402\pi\)
0.696820 0.717246i \(-0.254598\pi\)
\(180\) 0 0
\(181\) 180.082 0.994928 0.497464 0.867485i \(-0.334265\pi\)
0.497464 + 0.867485i \(0.334265\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 119.443i 0.645636i
\(186\) 0 0
\(187\) −97.7082 −0.522504
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 128.387i − 0.672183i −0.941829 0.336092i \(-0.890895\pi\)
0.941829 0.336092i \(-0.109105\pi\)
\(192\) 0 0
\(193\) 64.2918 0.333118 0.166559 0.986031i \(-0.446734\pi\)
0.166559 + 0.986031i \(0.446734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 217.997i − 1.10658i −0.832988 0.553292i \(-0.813372\pi\)
0.832988 0.553292i \(-0.186628\pi\)
\(198\) 0 0
\(199\) −320.249 −1.60929 −0.804646 0.593754i \(-0.797645\pi\)
−0.804646 + 0.593754i \(0.797645\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 207.915i 1.02421i
\(204\) 0 0
\(205\) 135.872 0.662792
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 45.6757i − 0.218544i
\(210\) 0 0
\(211\) 63.8328 0.302525 0.151263 0.988494i \(-0.451666\pi\)
0.151263 + 0.988494i \(0.451666\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 159.597i − 0.742310i
\(216\) 0 0
\(217\) −115.878 −0.534002
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 92.0689i 0.416601i
\(222\) 0 0
\(223\) 8.24922 0.0369920 0.0184960 0.999829i \(-0.494112\pi\)
0.0184960 + 0.999829i \(0.494112\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 339.525i 1.49570i 0.663866 + 0.747852i \(0.268915\pi\)
−0.663866 + 0.747852i \(0.731085\pi\)
\(228\) 0 0
\(229\) 202.495 0.884259 0.442130 0.896951i \(-0.354223\pi\)
0.442130 + 0.896951i \(0.354223\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.0820i 0.0818972i 0.999161 + 0.0409486i \(0.0130380\pi\)
−0.999161 + 0.0409486i \(0.986962\pi\)
\(234\) 0 0
\(235\) 103.167 0.439009
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 272.610i − 1.14063i −0.821427 0.570314i \(-0.806822\pi\)
0.821427 0.570314i \(-0.193178\pi\)
\(240\) 0 0
\(241\) 232.580 0.965064 0.482532 0.875878i \(-0.339717\pi\)
0.482532 + 0.875878i \(0.339717\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 78.8197i 0.321713i
\(246\) 0 0
\(247\) −43.0395 −0.174249
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 14.4195i − 0.0574483i −0.999587 0.0287241i \(-0.990856\pi\)
0.999587 0.0287241i \(-0.00914443\pi\)
\(252\) 0 0
\(253\) 232.456 0.918798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 165.748i 0.644933i 0.946581 + 0.322466i \(0.104512\pi\)
−0.946581 + 0.322466i \(0.895488\pi\)
\(258\) 0 0
\(259\) 198.079 0.764784
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 520.026i 1.97729i 0.150282 + 0.988643i \(0.451982\pi\)
−0.150282 + 0.988643i \(0.548018\pi\)
\(264\) 0 0
\(265\) 164.039 0.619017
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 87.3576i 0.324749i 0.986729 + 0.162375i \(0.0519153\pi\)
−0.986729 + 0.162375i \(0.948085\pi\)
\(270\) 0 0
\(271\) −35.5836 −0.131305 −0.0656524 0.997843i \(-0.520913\pi\)
−0.0656524 + 0.997843i \(0.520913\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 40.9017i − 0.148733i
\(276\) 0 0
\(277\) 147.374 0.532036 0.266018 0.963968i \(-0.414292\pi\)
0.266018 + 0.963968i \(0.414292\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 190.869i − 0.679250i −0.940561 0.339625i \(-0.889700\pi\)
0.940561 0.339625i \(-0.110300\pi\)
\(282\) 0 0
\(283\) −117.708 −0.415930 −0.207965 0.978136i \(-0.566684\pi\)
−0.207965 + 0.978136i \(0.566684\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 225.325i − 0.785105i
\(288\) 0 0
\(289\) 146.334 0.506347
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 413.243i 1.41039i 0.709016 + 0.705193i \(0.249140\pi\)
−0.709016 + 0.705193i \(0.750860\pi\)
\(294\) 0 0
\(295\) 202.954 0.687981
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 219.039i − 0.732573i
\(300\) 0 0
\(301\) −264.669 −0.879298
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 42.4853i − 0.139296i
\(306\) 0 0
\(307\) 458.158 1.49237 0.746185 0.665738i \(-0.231883\pi\)
0.746185 + 0.665738i \(0.231883\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 118.043i 0.379558i 0.981827 + 0.189779i \(0.0607772\pi\)
−0.981827 + 0.189779i \(0.939223\pi\)
\(312\) 0 0
\(313\) −412.827 −1.31893 −0.659467 0.751733i \(-0.729218\pi\)
−0.659467 + 0.751733i \(0.729218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 269.944i − 0.851559i −0.904827 0.425780i \(-0.860000\pi\)
0.904827 0.425780i \(-0.140000\pi\)
\(318\) 0 0
\(319\) 458.663 1.43781
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 66.6919i − 0.206477i
\(324\) 0 0
\(325\) −38.5410 −0.118588
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 171.088i − 0.520025i
\(330\) 0 0
\(331\) −9.91486 −0.0299542 −0.0149771 0.999888i \(-0.504768\pi\)
−0.0149771 + 0.999888i \(0.504768\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.747671i 0.00223185i
\(336\) 0 0
\(337\) −436.450 −1.29510 −0.647551 0.762022i \(-0.724207\pi\)
−0.647551 + 0.762022i \(0.724207\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 255.629i 0.749646i
\(342\) 0 0
\(343\) 312.413 0.910826
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 25.3839i 0.0731524i 0.999331 + 0.0365762i \(0.0116452\pi\)
−0.999331 + 0.0365762i \(0.988355\pi\)
\(348\) 0 0
\(349\) −72.0820 −0.206539 −0.103269 0.994653i \(-0.532930\pi\)
−0.103269 + 0.994653i \(0.532930\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 392.164i 1.11095i 0.831534 + 0.555473i \(0.187463\pi\)
−0.831534 + 0.555473i \(0.812537\pi\)
\(354\) 0 0
\(355\) −181.708 −0.511854
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 399.994i 1.11419i 0.830449 + 0.557094i \(0.188084\pi\)
−0.830449 + 0.557094i \(0.811916\pi\)
\(360\) 0 0
\(361\) −329.823 −0.913639
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 113.570i − 0.311152i
\(366\) 0 0
\(367\) −206.371 −0.562318 −0.281159 0.959661i \(-0.590719\pi\)
−0.281159 + 0.959661i \(0.590719\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 272.036i − 0.733252i
\(372\) 0 0
\(373\) 354.833 0.951294 0.475647 0.879636i \(-0.342214\pi\)
0.475647 + 0.879636i \(0.342214\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 432.190i − 1.14639i
\(378\) 0 0
\(379\) 423.997 1.11873 0.559363 0.828923i \(-0.311046\pi\)
0.559363 + 0.828923i \(0.311046\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 207.158i 0.540882i 0.962737 + 0.270441i \(0.0871695\pi\)
−0.962737 + 0.270441i \(0.912830\pi\)
\(384\) 0 0
\(385\) −67.8297 −0.176181
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 439.957i − 1.13100i −0.824750 0.565498i \(-0.808684\pi\)
0.824750 0.565498i \(-0.191316\pi\)
\(390\) 0 0
\(391\) 339.413 0.868065
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 107.705i − 0.272671i
\(396\) 0 0
\(397\) 453.872 1.14326 0.571628 0.820513i \(-0.306312\pi\)
0.571628 + 0.820513i \(0.306312\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 556.407i 1.38755i 0.720192 + 0.693774i \(0.244054\pi\)
−0.720192 + 0.693774i \(0.755946\pi\)
\(402\) 0 0
\(403\) 240.875 0.597706
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 436.964i − 1.07362i
\(408\) 0 0
\(409\) 75.6625 0.184994 0.0924970 0.995713i \(-0.470515\pi\)
0.0924970 + 0.995713i \(0.470515\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 336.571i − 0.814942i
\(414\) 0 0
\(415\) −140.125 −0.337650
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 521.060i 1.24358i 0.783184 + 0.621789i \(0.213594\pi\)
−0.783184 + 0.621789i \(0.786406\pi\)
\(420\) 0 0
\(421\) 114.745 0.272552 0.136276 0.990671i \(-0.456487\pi\)
0.136276 + 0.990671i \(0.456487\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 59.7214i − 0.140521i
\(426\) 0 0
\(427\) −70.4559 −0.165002
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 233.204i − 0.541076i −0.962709 0.270538i \(-0.912799\pi\)
0.962709 0.270538i \(-0.0872015\pi\)
\(432\) 0 0
\(433\) −501.702 −1.15867 −0.579333 0.815091i \(-0.696687\pi\)
−0.579333 + 0.815091i \(0.696687\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 158.666i 0.363079i
\(438\) 0 0
\(439\) −365.997 −0.833706 −0.416853 0.908974i \(-0.636867\pi\)
−0.416853 + 0.908974i \(0.636867\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 632.902i − 1.42867i −0.699802 0.714337i \(-0.746728\pi\)
0.699802 0.714337i \(-0.253272\pi\)
\(444\) 0 0
\(445\) −155.872 −0.350275
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 796.344i − 1.77360i −0.462158 0.886798i \(-0.652925\pi\)
0.462158 0.886798i \(-0.347075\pi\)
\(450\) 0 0
\(451\) −497.070 −1.10215
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 63.9149i 0.140472i
\(456\) 0 0
\(457\) −202.577 −0.443277 −0.221638 0.975129i \(-0.571140\pi\)
−0.221638 + 0.975129i \(0.571140\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 727.909i 1.57898i 0.613765 + 0.789489i \(0.289654\pi\)
−0.613765 + 0.789489i \(0.710346\pi\)
\(462\) 0 0
\(463\) −493.003 −1.06480 −0.532401 0.846492i \(-0.678710\pi\)
−0.532401 + 0.846492i \(0.678710\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 453.190i 0.970429i 0.874395 + 0.485215i \(0.161259\pi\)
−0.874395 + 0.485215i \(0.838741\pi\)
\(468\) 0 0
\(469\) 1.23991 0.00264372
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 583.862i 1.23438i
\(474\) 0 0
\(475\) 27.9180 0.0587747
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 319.544i − 0.667107i −0.942731 0.333553i \(-0.891752\pi\)
0.942731 0.333553i \(-0.108248\pi\)
\(480\) 0 0
\(481\) −411.745 −0.856018
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 356.466i − 0.734981i
\(486\) 0 0
\(487\) −792.869 −1.62807 −0.814034 0.580817i \(-0.802733\pi\)
−0.814034 + 0.580817i \(0.802733\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 369.437i 0.752417i 0.926535 + 0.376208i \(0.122772\pi\)
−0.926535 + 0.376208i \(0.877228\pi\)
\(492\) 0 0
\(493\) 669.702 1.35842
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 301.337i 0.606313i
\(498\) 0 0
\(499\) −609.912 −1.22227 −0.611134 0.791527i \(-0.709286\pi\)
−0.611134 + 0.791527i \(0.709286\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 305.308i − 0.606974i −0.952836 0.303487i \(-0.901849\pi\)
0.952836 0.303487i \(-0.0981509\pi\)
\(504\) 0 0
\(505\) 53.6656 0.106269
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 204.478i − 0.401726i −0.979619 0.200863i \(-0.935625\pi\)
0.979619 0.200863i \(-0.0643745\pi\)
\(510\) 0 0
\(511\) −188.341 −0.368573
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 56.2755i − 0.109273i
\(516\) 0 0
\(517\) −377.423 −0.730024
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 590.227i − 1.13287i −0.824105 0.566436i \(-0.808322\pi\)
0.824105 0.566436i \(-0.191678\pi\)
\(522\) 0 0
\(523\) 19.7933 0.0378458 0.0189229 0.999821i \(-0.493976\pi\)
0.0189229 + 0.999821i \(0.493976\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 373.249i 0.708253i
\(528\) 0 0
\(529\) −278.492 −0.526450
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 468.381i 0.878763i
\(534\) 0 0
\(535\) −106.584 −0.199222
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 288.351i − 0.534973i
\(540\) 0 0
\(541\) 428.164 0.791431 0.395715 0.918373i \(-0.370497\pi\)
0.395715 + 0.918373i \(0.370497\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 368.761i − 0.676625i
\(546\) 0 0
\(547\) 982.705 1.79654 0.898268 0.439448i \(-0.144826\pi\)
0.898268 + 0.439448i \(0.144826\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 313.066i 0.568177i
\(552\) 0 0
\(553\) −178.614 −0.322990
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 310.839i 0.558059i 0.960282 + 0.279030i \(0.0900128\pi\)
−0.960282 + 0.279030i \(0.909987\pi\)
\(558\) 0 0
\(559\) 550.164 0.984193
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 850.997i 1.51154i 0.654837 + 0.755770i \(0.272737\pi\)
−0.654837 + 0.755770i \(0.727263\pi\)
\(564\) 0 0
\(565\) −152.918 −0.270651
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 292.377i − 0.513843i −0.966432 0.256922i \(-0.917292\pi\)
0.966432 0.256922i \(-0.0827083\pi\)
\(570\) 0 0
\(571\) 357.754 0.626539 0.313270 0.949664i \(-0.398576\pi\)
0.313270 + 0.949664i \(0.398576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 142.082i 0.247099i
\(576\) 0 0
\(577\) 216.456 0.375140 0.187570 0.982251i \(-0.439939\pi\)
0.187570 + 0.982251i \(0.439939\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 232.377i 0.399960i
\(582\) 0 0
\(583\) −600.115 −1.02936
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 578.489i − 0.985501i −0.870171 0.492751i \(-0.835992\pi\)
0.870171 0.492751i \(-0.164008\pi\)
\(588\) 0 0
\(589\) −174.483 −0.296236
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 159.971i 0.269765i 0.990862 + 0.134882i \(0.0430657\pi\)
−0.990862 + 0.134882i \(0.956934\pi\)
\(594\) 0 0
\(595\) −99.0395 −0.166453
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 453.755i − 0.757520i −0.925495 0.378760i \(-0.876351\pi\)
0.925495 0.378760i \(-0.123649\pi\)
\(600\) 0 0
\(601\) −653.584 −1.08749 −0.543747 0.839249i \(-0.682995\pi\)
−0.543747 + 0.839249i \(0.682995\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 120.931i − 0.199886i
\(606\) 0 0
\(607\) 184.626 0.304162 0.152081 0.988368i \(-0.451403\pi\)
0.152081 + 0.988368i \(0.451403\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 355.639i 0.582061i
\(612\) 0 0
\(613\) −903.416 −1.47376 −0.736881 0.676022i \(-0.763702\pi\)
−0.736881 + 0.676022i \(0.763702\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 386.489i 0.626401i 0.949687 + 0.313200i \(0.101401\pi\)
−0.949687 + 0.313200i \(0.898599\pi\)
\(618\) 0 0
\(619\) −1165.90 −1.88353 −0.941763 0.336278i \(-0.890832\pi\)
−0.941763 + 0.336278i \(0.890832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 258.492i 0.414915i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 638.020i − 1.01434i
\(630\) 0 0
\(631\) −50.8297 −0.0805542 −0.0402771 0.999189i \(-0.512824\pi\)
−0.0402771 + 0.999189i \(0.512824\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 448.885i − 0.706906i
\(636\) 0 0
\(637\) −271.708 −0.426543
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 548.754i − 0.856090i −0.903757 0.428045i \(-0.859202\pi\)
0.903757 0.428045i \(-0.140798\pi\)
\(642\) 0 0
\(643\) −526.711 −0.819147 −0.409573 0.912277i \(-0.634322\pi\)
−0.409573 + 0.912277i \(0.634322\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 694.607i − 1.07358i −0.843716 0.536790i \(-0.819637\pi\)
0.843716 0.536790i \(-0.180363\pi\)
\(648\) 0 0
\(649\) −742.480 −1.14404
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1122.29i 1.71867i 0.511412 + 0.859336i \(0.329123\pi\)
−0.511412 + 0.859336i \(0.670877\pi\)
\(654\) 0 0
\(655\) 18.2554 0.0278709
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 670.488i − 1.01743i −0.860934 0.508717i \(-0.830120\pi\)
0.860934 0.508717i \(-0.169880\pi\)
\(660\) 0 0
\(661\) 1088.15 1.64622 0.823110 0.567882i \(-0.192237\pi\)
0.823110 + 0.567882i \(0.192237\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 46.2980i − 0.0696211i
\(666\) 0 0
\(667\) −1593.28 −2.38872
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 155.426i 0.231634i
\(672\) 0 0
\(673\) −638.371 −0.948545 −0.474272 0.880378i \(-0.657289\pi\)
−0.474272 + 0.880378i \(0.657289\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 798.158i − 1.17896i −0.807782 0.589481i \(-0.799332\pi\)
0.807782 0.589481i \(-0.200668\pi\)
\(678\) 0 0
\(679\) −591.149 −0.870616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 757.505i 1.10908i 0.832156 + 0.554542i \(0.187107\pi\)
−0.832156 + 0.554542i \(0.812893\pi\)
\(684\) 0 0
\(685\) 112.544 0.164298
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 565.479i 0.820724i
\(690\) 0 0
\(691\) −702.331 −1.01640 −0.508199 0.861240i \(-0.669689\pi\)
−0.508199 + 0.861240i \(0.669689\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 282.859i − 0.406992i
\(696\) 0 0
\(697\) −725.781 −1.04129
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 406.616i − 0.580052i −0.957019 0.290026i \(-0.906336\pi\)
0.957019 0.290026i \(-0.0936639\pi\)
\(702\) 0 0
\(703\) 298.255 0.424261
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 88.9969i − 0.125880i
\(708\) 0 0
\(709\) 564.322 0.795941 0.397970 0.917398i \(-0.369715\pi\)
0.397970 + 0.917398i \(0.369715\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 887.991i − 1.24543i
\(714\) 0 0
\(715\) 140.997 0.197198
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 1340.07i − 1.86379i −0.362725 0.931896i \(-0.618154\pi\)
0.362725 0.931896i \(-0.381846\pi\)
\(720\) 0 0
\(721\) −93.3251 −0.129438
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 280.344i 0.386682i
\(726\) 0 0
\(727\) −130.991 −0.180180 −0.0900899 0.995934i \(-0.528715\pi\)
−0.0900899 + 0.995934i \(0.528715\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 852.508i 1.16622i
\(732\) 0 0
\(733\) 1414.48 1.92971 0.964857 0.262777i \(-0.0846383\pi\)
0.964857 + 0.262777i \(0.0846383\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.73525i − 0.00371133i
\(738\) 0 0
\(739\) −10.5805 −0.0143173 −0.00715865 0.999974i \(-0.502279\pi\)
−0.00715865 + 0.999974i \(0.502279\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 794.053i 1.06871i 0.845260 + 0.534356i \(0.179446\pi\)
−0.845260 + 0.534356i \(0.820554\pi\)
\(744\) 0 0
\(745\) −35.3738 −0.0474817
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 176.754i 0.235986i
\(750\) 0 0
\(751\) 53.5109 0.0712528 0.0356264 0.999365i \(-0.488657\pi\)
0.0356264 + 0.999365i \(0.488657\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 310.807i − 0.411664i
\(756\) 0 0
\(757\) 921.745 1.21763 0.608814 0.793313i \(-0.291646\pi\)
0.608814 + 0.793313i \(0.291646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 578.115i 0.759678i 0.925053 + 0.379839i \(0.124021\pi\)
−0.925053 + 0.379839i \(0.875979\pi\)
\(762\) 0 0
\(763\) −611.538 −0.801491
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 699.627i 0.912160i
\(768\) 0 0
\(769\) −651.656 −0.847407 −0.423704 0.905801i \(-0.639270\pi\)
−0.423704 + 0.905801i \(0.639270\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 389.754i 0.504209i 0.967700 + 0.252105i \(0.0811227\pi\)
−0.967700 + 0.252105i \(0.918877\pi\)
\(774\) 0 0
\(775\) −156.246 −0.201608
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 339.281i − 0.435534i
\(780\) 0 0
\(781\) 664.754 0.851157
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 426.430i − 0.543222i
\(786\) 0 0
\(787\) 36.4559 0.0463226 0.0231613 0.999732i \(-0.492627\pi\)
0.0231613 + 0.999732i \(0.492627\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 253.593i 0.320598i
\(792\) 0 0
\(793\) 146.456 0.184686
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 731.466i 0.917774i 0.888495 + 0.458887i \(0.151752\pi\)
−0.888495 + 0.458887i \(0.848248\pi\)
\(798\) 0 0
\(799\) −551.082 −0.689715
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 415.481i 0.517412i
\(804\) 0 0
\(805\) 235.623 0.292699
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 595.767i 0.736424i 0.929742 + 0.368212i \(0.120030\pi\)
−0.929742 + 0.368212i \(0.879970\pi\)
\(810\) 0 0
\(811\) −180.177 −0.222166 −0.111083 0.993811i \(-0.535432\pi\)
−0.111083 + 0.993811i \(0.535432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 82.3607i − 0.101056i
\(816\) 0 0
\(817\) −398.522 −0.487787
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.3375i 0.0381699i 0.999818 + 0.0190849i \(0.00607529\pi\)
−0.999818 + 0.0190849i \(0.993925\pi\)
\(822\) 0 0
\(823\) 234.803 0.285301 0.142650 0.989773i \(-0.454438\pi\)
0.142650 + 0.989773i \(0.454438\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 47.8003i 0.0577996i 0.999582 + 0.0288998i \(0.00920038\pi\)
−0.999582 + 0.0288998i \(0.990800\pi\)
\(828\) 0 0
\(829\) −292.760 −0.353148 −0.176574 0.984287i \(-0.556502\pi\)
−0.176574 + 0.984287i \(0.556502\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 421.026i − 0.505434i
\(834\) 0 0
\(835\) 578.204 0.692459
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 494.387i − 0.589257i −0.955612 0.294629i \(-0.904804\pi\)
0.955612 0.294629i \(-0.0951960\pi\)
\(840\) 0 0
\(841\) −2302.72 −2.73807
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 245.036i 0.289984i
\(846\) 0 0
\(847\) −200.547 −0.236774
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1517.90i 1.78367i
\(852\) 0 0
\(853\) −1151.65 −1.35011 −0.675057 0.737766i \(-0.735881\pi\)
−0.675057 + 0.737766i \(0.735881\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1098.02i 1.28124i 0.767858 + 0.640620i \(0.221323\pi\)
−0.767858 + 0.640620i \(0.778677\pi\)
\(858\) 0 0
\(859\) 290.757 0.338483 0.169242 0.985575i \(-0.445868\pi\)
0.169242 + 0.985575i \(0.445868\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1069.28i 1.23903i 0.784985 + 0.619514i \(0.212670\pi\)
−0.784985 + 0.619514i \(0.787330\pi\)
\(864\) 0 0
\(865\) −407.705 −0.471335
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 394.024i 0.453422i
\(870\) 0 0
\(871\) −2.57738 −0.00295911
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 41.4590i − 0.0473817i
\(876\) 0 0
\(877\) −160.043 −0.182489 −0.0912443 0.995829i \(-0.529084\pi\)
−0.0912443 + 0.995829i \(0.529084\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 712.502i − 0.808743i −0.914595 0.404371i \(-0.867490\pi\)
0.914595 0.404371i \(-0.132510\pi\)
\(882\) 0 0
\(883\) 1244.12 1.40897 0.704486 0.709718i \(-0.251178\pi\)
0.704486 + 0.709718i \(0.251178\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 429.827i 0.484585i 0.970203 + 0.242292i \(0.0778993\pi\)
−0.970203 + 0.242292i \(0.922101\pi\)
\(888\) 0 0
\(889\) −744.413 −0.837360
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 257.614i − 0.288482i
\(894\) 0 0
\(895\) −574.164 −0.641524
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 1752.11i − 1.94895i
\(900\) 0 0
\(901\) −876.240 −0.972519
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 402.676i − 0.444946i
\(906\) 0 0
\(907\) 553.240 0.609967 0.304983 0.952358i \(-0.401349\pi\)
0.304983 + 0.952358i \(0.401349\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 667.275i 0.732464i 0.930524 + 0.366232i \(0.119352\pi\)
−0.930524 + 0.366232i \(0.880648\pi\)
\(912\) 0 0
\(913\) 512.626 0.561474
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 30.2741i − 0.0330143i
\(918\) 0 0
\(919\) 338.000 0.367791 0.183896 0.982946i \(-0.441129\pi\)
0.183896 + 0.982946i \(0.441129\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 626.387i − 0.678642i
\(924\) 0 0
\(925\) 267.082 0.288737
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 216.829i − 0.233400i −0.993167 0.116700i \(-0.962768\pi\)
0.993167 0.116700i \(-0.0372317\pi\)
\(930\) 0 0
\(931\) 196.817 0.211404
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 218.482i 0.233671i
\(936\) 0 0
\(937\) −851.647 −0.908908 −0.454454 0.890770i \(-0.650166\pi\)
−0.454454 + 0.890770i \(0.650166\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1073.42i − 1.14073i −0.821392 0.570363i \(-0.806802\pi\)
0.821392 0.570363i \(-0.193198\pi\)
\(942\) 0 0
\(943\) 1726.69 1.83106
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1645.82i − 1.73793i −0.494873 0.868965i \(-0.664785\pi\)
0.494873 0.868965i \(-0.335215\pi\)
\(948\) 0 0
\(949\) 391.502 0.412541
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1139.03i 1.19520i 0.801793 + 0.597602i \(0.203880\pi\)
−0.801793 + 0.597602i \(0.796120\pi\)
\(954\) 0 0
\(955\) −287.082 −0.300609
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 186.639i − 0.194618i
\(960\) 0 0
\(961\) 15.5140 0.0161436
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 143.761i − 0.148975i
\(966\) 0 0
\(967\) 357.489 0.369689 0.184844 0.982768i \(-0.440822\pi\)
0.184844 + 0.982768i \(0.440822\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.5836i 0.0479749i 0.999712 + 0.0239874i \(0.00763617\pi\)
−0.999712 + 0.0239874i \(0.992364\pi\)
\(972\) 0 0
\(973\) −469.082 −0.482099
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 346.616i 0.354776i 0.984141 + 0.177388i \(0.0567647\pi\)
−0.984141 + 0.177388i \(0.943235\pi\)
\(978\) 0 0
\(979\) 570.237 0.582469
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 846.975i 0.861623i 0.902442 + 0.430811i \(0.141773\pi\)
−0.902442 + 0.430811i \(0.858227\pi\)
\(984\) 0 0
\(985\) −487.456 −0.494879
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 2028.19i − 2.05075i
\(990\) 0 0
\(991\) −1304.33 −1.31617 −0.658085 0.752943i \(-0.728633\pi\)
−0.658085 + 0.752943i \(0.728633\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 716.099i 0.719698i
\(996\) 0 0
\(997\) 1835.77 1.84130 0.920649 0.390391i \(-0.127660\pi\)
0.920649 + 0.390391i \(0.127660\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.l.g.161.1 4
3.2 odd 2 inner 2160.3.l.g.161.3 4
4.3 odd 2 135.3.c.c.26.3 yes 4
12.11 even 2 135.3.c.c.26.2 4
20.3 even 4 675.3.d.i.674.1 4
20.7 even 4 675.3.d.e.674.4 4
20.19 odd 2 675.3.c.p.26.2 4
36.7 odd 6 405.3.i.c.296.3 8
36.11 even 6 405.3.i.c.296.2 8
36.23 even 6 405.3.i.c.26.3 8
36.31 odd 6 405.3.i.c.26.2 8
60.23 odd 4 675.3.d.e.674.3 4
60.47 odd 4 675.3.d.i.674.2 4
60.59 even 2 675.3.c.p.26.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.c.c.26.2 4 12.11 even 2
135.3.c.c.26.3 yes 4 4.3 odd 2
405.3.i.c.26.2 8 36.31 odd 6
405.3.i.c.26.3 8 36.23 even 6
405.3.i.c.296.2 8 36.11 even 6
405.3.i.c.296.3 8 36.7 odd 6
675.3.c.p.26.2 4 20.19 odd 2
675.3.c.p.26.3 4 60.59 even 2
675.3.d.e.674.3 4 60.23 odd 4
675.3.d.e.674.4 4 20.7 even 4
675.3.d.i.674.1 4 20.3 even 4
675.3.d.i.674.2 4 60.47 odd 4
2160.3.l.g.161.1 4 1.1 even 1 trivial
2160.3.l.g.161.3 4 3.2 odd 2 inner