Properties

Label 405.3.d.b.404.20
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.20
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.b.404.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.28392 q^{2} +1.21631 q^{4} +(1.08806 + 4.88018i) q^{5} +3.44650i q^{7} -6.35774 q^{8} +(2.48505 + 11.1459i) q^{10} +4.50165i q^{11} +11.8431i q^{13} +7.87153i q^{14} -19.3858 q^{16} -23.3048 q^{17} +11.0739 q^{19} +(1.32342 + 5.93579i) q^{20} +10.2814i q^{22} +29.8365 q^{23} +(-22.6322 + 10.6199i) q^{25} +27.0487i q^{26} +4.19199i q^{28} +35.6319i q^{29} +30.3031 q^{31} -18.8448 q^{32} -53.2264 q^{34} +(-16.8195 + 3.75000i) q^{35} +5.11748i q^{37} +25.2919 q^{38} +(-6.91761 - 31.0269i) q^{40} +22.6476i q^{41} -67.9633i q^{43} +5.47538i q^{44} +68.1442 q^{46} -46.2467 q^{47} +37.1217 q^{49} +(-51.6903 + 24.2550i) q^{50} +14.4048i q^{52} +68.0017 q^{53} +(-21.9688 + 4.89807i) q^{55} -21.9119i q^{56} +81.3806i q^{58} +34.5832i q^{59} +17.3633 q^{61} +69.2099 q^{62} +34.5033 q^{64} +(-57.7963 + 12.8860i) q^{65} -98.2875i q^{67} -28.3458 q^{68} +(-38.4145 + 8.56471i) q^{70} +134.669i q^{71} -134.962i q^{73} +11.6879i q^{74} +13.4693 q^{76} -15.5149 q^{77} +49.3738 q^{79} +(-21.0930 - 94.6062i) q^{80} +51.7254i q^{82} +28.6837 q^{83} +(-25.3571 - 113.732i) q^{85} -155.223i q^{86} -28.6203i q^{88} -65.9204i q^{89} -40.8171 q^{91} +36.2903 q^{92} -105.624 q^{94} +(12.0491 + 54.0426i) q^{95} -71.7451i q^{97} +84.7830 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} + 12 q^{10} + 96 q^{16} + 48 q^{25} + 144 q^{34} + 72 q^{40} - 168 q^{46} - 288 q^{49} - 132 q^{55} - 360 q^{61} - 72 q^{64} - 156 q^{70} + 48 q^{76} - 480 q^{79} - 456 q^{85} - 48 q^{91}+ \cdots + 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.28392 1.14196 0.570981 0.820963i \(-0.306563\pi\)
0.570981 + 0.820963i \(0.306563\pi\)
\(3\) 0 0
\(4\) 1.21631 0.304077
\(5\) 1.08806 + 4.88018i 0.217612 + 0.976035i
\(6\) 0 0
\(7\) 3.44650i 0.492357i 0.969225 + 0.246178i \(0.0791749\pi\)
−0.969225 + 0.246178i \(0.920825\pi\)
\(8\) −6.35774 −0.794718
\(9\) 0 0
\(10\) 2.48505 + 11.1459i 0.248505 + 1.11459i
\(11\) 4.50165i 0.409241i 0.978841 + 0.204620i \(0.0655960\pi\)
−0.978841 + 0.204620i \(0.934404\pi\)
\(12\) 0 0
\(13\) 11.8431i 0.911005i 0.890234 + 0.455503i \(0.150540\pi\)
−0.890234 + 0.455503i \(0.849460\pi\)
\(14\) 7.87153i 0.562252i
\(15\) 0 0
\(16\) −19.3858 −1.21161
\(17\) −23.3048 −1.37087 −0.685436 0.728133i \(-0.740388\pi\)
−0.685436 + 0.728133i \(0.740388\pi\)
\(18\) 0 0
\(19\) 11.0739 0.582837 0.291419 0.956596i \(-0.405873\pi\)
0.291419 + 0.956596i \(0.405873\pi\)
\(20\) 1.32342 + 5.93579i 0.0661708 + 0.296789i
\(21\) 0 0
\(22\) 10.2814i 0.467337i
\(23\) 29.8365 1.29724 0.648619 0.761113i \(-0.275347\pi\)
0.648619 + 0.761113i \(0.275347\pi\)
\(24\) 0 0
\(25\) −22.6322 + 10.6199i −0.905290 + 0.424794i
\(26\) 27.0487i 1.04033i
\(27\) 0 0
\(28\) 4.19199i 0.149714i
\(29\) 35.6319i 1.22869i 0.789039 + 0.614343i \(0.210579\pi\)
−0.789039 + 0.614343i \(0.789421\pi\)
\(30\) 0 0
\(31\) 30.3031 0.977519 0.488759 0.872419i \(-0.337450\pi\)
0.488759 + 0.872419i \(0.337450\pi\)
\(32\) −18.8448 −0.588899
\(33\) 0 0
\(34\) −53.2264 −1.56548
\(35\) −16.8195 + 3.75000i −0.480557 + 0.107143i
\(36\) 0 0
\(37\) 5.11748i 0.138310i 0.997606 + 0.0691552i \(0.0220304\pi\)
−0.997606 + 0.0691552i \(0.977970\pi\)
\(38\) 25.2919 0.665578
\(39\) 0 0
\(40\) −6.91761 31.0269i −0.172940 0.775673i
\(41\) 22.6476i 0.552381i 0.961103 + 0.276190i \(0.0890720\pi\)
−0.961103 + 0.276190i \(0.910928\pi\)
\(42\) 0 0
\(43\) 67.9633i 1.58054i −0.612758 0.790270i \(-0.709940\pi\)
0.612758 0.790270i \(-0.290060\pi\)
\(44\) 5.47538i 0.124441i
\(45\) 0 0
\(46\) 68.1442 1.48140
\(47\) −46.2467 −0.983973 −0.491986 0.870603i \(-0.663729\pi\)
−0.491986 + 0.870603i \(0.663729\pi\)
\(48\) 0 0
\(49\) 37.1217 0.757585
\(50\) −51.6903 + 24.2550i −1.03381 + 0.485099i
\(51\) 0 0
\(52\) 14.4048i 0.277015i
\(53\) 68.0017 1.28305 0.641525 0.767102i \(-0.278302\pi\)
0.641525 + 0.767102i \(0.278302\pi\)
\(54\) 0 0
\(55\) −21.9688 + 4.89807i −0.399434 + 0.0890558i
\(56\) 21.9119i 0.391285i
\(57\) 0 0
\(58\) 81.3806i 1.40311i
\(59\) 34.5832i 0.586156i 0.956089 + 0.293078i \(0.0946795\pi\)
−0.956089 + 0.293078i \(0.905320\pi\)
\(60\) 0 0
\(61\) 17.3633 0.284644 0.142322 0.989820i \(-0.454543\pi\)
0.142322 + 0.989820i \(0.454543\pi\)
\(62\) 69.2099 1.11629
\(63\) 0 0
\(64\) 34.5033 0.539114
\(65\) −57.7963 + 12.8860i −0.889173 + 0.198246i
\(66\) 0 0
\(67\) 98.2875i 1.46698i −0.679701 0.733489i \(-0.737891\pi\)
0.679701 0.733489i \(-0.262109\pi\)
\(68\) −28.3458 −0.416850
\(69\) 0 0
\(70\) −38.4145 + 8.56471i −0.548778 + 0.122353i
\(71\) 134.669i 1.89674i 0.317164 + 0.948371i \(0.397269\pi\)
−0.317164 + 0.948371i \(0.602731\pi\)
\(72\) 0 0
\(73\) 134.962i 1.84879i −0.381436 0.924395i \(-0.624570\pi\)
0.381436 0.924395i \(-0.375430\pi\)
\(74\) 11.6879i 0.157945i
\(75\) 0 0
\(76\) 13.4693 0.177227
\(77\) −15.5149 −0.201492
\(78\) 0 0
\(79\) 49.3738 0.624985 0.312492 0.949920i \(-0.398836\pi\)
0.312492 + 0.949920i \(0.398836\pi\)
\(80\) −21.0930 94.6062i −0.263662 1.18258i
\(81\) 0 0
\(82\) 51.7254i 0.630798i
\(83\) 28.6837 0.345586 0.172793 0.984958i \(-0.444721\pi\)
0.172793 + 0.984958i \(0.444721\pi\)
\(84\) 0 0
\(85\) −25.3571 113.732i −0.298318 1.33802i
\(86\) 155.223i 1.80492i
\(87\) 0 0
\(88\) 28.6203i 0.325231i
\(89\) 65.9204i 0.740679i −0.928897 0.370339i \(-0.879241\pi\)
0.928897 0.370339i \(-0.120759\pi\)
\(90\) 0 0
\(91\) −40.8171 −0.448540
\(92\) 36.2903 0.394460
\(93\) 0 0
\(94\) −105.624 −1.12366
\(95\) 12.0491 + 54.0426i 0.126832 + 0.568869i
\(96\) 0 0
\(97\) 71.7451i 0.739640i −0.929103 0.369820i \(-0.879419\pi\)
0.929103 0.369820i \(-0.120581\pi\)
\(98\) 84.7830 0.865133
\(99\) 0 0
\(100\) −27.5277 + 12.9170i −0.275277 + 0.129170i
\(101\) 50.5696i 0.500689i −0.968157 0.250344i \(-0.919456\pi\)
0.968157 0.250344i \(-0.0805438\pi\)
\(102\) 0 0
\(103\) 193.417i 1.87783i 0.344144 + 0.938917i \(0.388169\pi\)
−0.344144 + 0.938917i \(0.611831\pi\)
\(104\) 75.2952i 0.723992i
\(105\) 0 0
\(106\) 155.311 1.46519
\(107\) −129.069 −1.20626 −0.603128 0.797644i \(-0.706079\pi\)
−0.603128 + 0.797644i \(0.706079\pi\)
\(108\) 0 0
\(109\) −189.029 −1.73421 −0.867107 0.498122i \(-0.834023\pi\)
−0.867107 + 0.498122i \(0.834023\pi\)
\(110\) −50.1752 + 11.1868i −0.456138 + 0.101698i
\(111\) 0 0
\(112\) 66.8132i 0.596546i
\(113\) 140.231 1.24098 0.620491 0.784213i \(-0.286933\pi\)
0.620491 + 0.784213i \(0.286933\pi\)
\(114\) 0 0
\(115\) 32.4639 + 145.607i 0.282295 + 1.26615i
\(116\) 43.3393i 0.373615i
\(117\) 0 0
\(118\) 78.9854i 0.669368i
\(119\) 80.3199i 0.674957i
\(120\) 0 0
\(121\) 100.735 0.832522
\(122\) 39.6565 0.325053
\(123\) 0 0
\(124\) 36.8578 0.297241
\(125\) −76.4521 98.8943i −0.611617 0.791154i
\(126\) 0 0
\(127\) 12.6839i 0.0998729i −0.998752 0.0499364i \(-0.984098\pi\)
0.998752 0.0499364i \(-0.0159019\pi\)
\(128\) 154.182 1.20455
\(129\) 0 0
\(130\) −132.002 + 29.4306i −1.01540 + 0.226389i
\(131\) 114.351i 0.872909i −0.899726 0.436455i \(-0.856234\pi\)
0.899726 0.436455i \(-0.143766\pi\)
\(132\) 0 0
\(133\) 38.1662i 0.286964i
\(134\) 224.481i 1.67523i
\(135\) 0 0
\(136\) 148.166 1.08946
\(137\) 19.2247 0.140326 0.0701631 0.997536i \(-0.477648\pi\)
0.0701631 + 0.997536i \(0.477648\pi\)
\(138\) 0 0
\(139\) −56.1230 −0.403763 −0.201881 0.979410i \(-0.564706\pi\)
−0.201881 + 0.979410i \(0.564706\pi\)
\(140\) −20.4577 + 4.56115i −0.146126 + 0.0325796i
\(141\) 0 0
\(142\) 307.573i 2.16601i
\(143\) −53.3134 −0.372821
\(144\) 0 0
\(145\) −173.890 + 38.7697i −1.19924 + 0.267377i
\(146\) 308.242i 2.11125i
\(147\) 0 0
\(148\) 6.22442i 0.0420569i
\(149\) 177.733i 1.19284i 0.802672 + 0.596420i \(0.203411\pi\)
−0.802672 + 0.596420i \(0.796589\pi\)
\(150\) 0 0
\(151\) 282.208 1.86893 0.934465 0.356056i \(-0.115879\pi\)
0.934465 + 0.356056i \(0.115879\pi\)
\(152\) −70.4050 −0.463191
\(153\) 0 0
\(154\) −35.4349 −0.230097
\(155\) 32.9716 + 147.884i 0.212720 + 0.954093i
\(156\) 0 0
\(157\) 186.737i 1.18940i 0.803946 + 0.594702i \(0.202730\pi\)
−0.803946 + 0.594702i \(0.797270\pi\)
\(158\) 112.766 0.713708
\(159\) 0 0
\(160\) −20.5043 91.9658i −0.128152 0.574786i
\(161\) 102.831i 0.638704i
\(162\) 0 0
\(163\) 33.6033i 0.206155i 0.994673 + 0.103078i \(0.0328690\pi\)
−0.994673 + 0.103078i \(0.967131\pi\)
\(164\) 27.5464i 0.167966i
\(165\) 0 0
\(166\) 65.5113 0.394646
\(167\) −50.0505 −0.299704 −0.149852 0.988708i \(-0.547880\pi\)
−0.149852 + 0.988708i \(0.547880\pi\)
\(168\) 0 0
\(169\) 28.7417 0.170069
\(170\) −57.9136 259.754i −0.340668 1.52797i
\(171\) 0 0
\(172\) 82.6641i 0.480605i
\(173\) 75.5605 0.436766 0.218383 0.975863i \(-0.429922\pi\)
0.218383 + 0.975863i \(0.429922\pi\)
\(174\) 0 0
\(175\) −36.6013 78.0020i −0.209150 0.445725i
\(176\) 87.2682i 0.495842i
\(177\) 0 0
\(178\) 150.557i 0.845827i
\(179\) 116.454i 0.650583i 0.945614 + 0.325291i \(0.105462\pi\)
−0.945614 + 0.325291i \(0.894538\pi\)
\(180\) 0 0
\(181\) −45.4016 −0.250838 −0.125419 0.992104i \(-0.540027\pi\)
−0.125419 + 0.992104i \(0.540027\pi\)
\(182\) −93.2231 −0.512215
\(183\) 0 0
\(184\) −189.693 −1.03094
\(185\) −24.9742 + 5.56813i −0.134996 + 0.0300980i
\(186\) 0 0
\(187\) 104.910i 0.561016i
\(188\) −56.2502 −0.299203
\(189\) 0 0
\(190\) 27.5192 + 123.429i 0.144838 + 0.649627i
\(191\) 149.606i 0.783278i 0.920119 + 0.391639i \(0.128092\pi\)
−0.920119 + 0.391639i \(0.871908\pi\)
\(192\) 0 0
\(193\) 141.802i 0.734727i −0.930077 0.367363i \(-0.880261\pi\)
0.930077 0.367363i \(-0.119739\pi\)
\(194\) 163.860i 0.844641i
\(195\) 0 0
\(196\) 45.1513 0.230364
\(197\) 121.128 0.614864 0.307432 0.951570i \(-0.400530\pi\)
0.307432 + 0.951570i \(0.400530\pi\)
\(198\) 0 0
\(199\) −25.7205 −0.129249 −0.0646243 0.997910i \(-0.520585\pi\)
−0.0646243 + 0.997910i \(0.520585\pi\)
\(200\) 143.890 67.5184i 0.719450 0.337592i
\(201\) 0 0
\(202\) 115.497i 0.571767i
\(203\) −122.805 −0.604952
\(204\) 0 0
\(205\) −110.524 + 24.6420i −0.539143 + 0.120205i
\(206\) 441.749i 2.14441i
\(207\) 0 0
\(208\) 229.588i 1.10379i
\(209\) 49.8508i 0.238521i
\(210\) 0 0
\(211\) 76.8965 0.364439 0.182219 0.983258i \(-0.441672\pi\)
0.182219 + 0.983258i \(0.441672\pi\)
\(212\) 82.7108 0.390145
\(213\) 0 0
\(214\) −294.785 −1.37750
\(215\) 331.673 73.9482i 1.54266 0.343945i
\(216\) 0 0
\(217\) 104.439i 0.481288i
\(218\) −431.729 −1.98041
\(219\) 0 0
\(220\) −26.7208 + 5.95755i −0.121458 + 0.0270798i
\(221\) 276.000i 1.24887i
\(222\) 0 0
\(223\) 194.407i 0.871781i 0.900000 + 0.435890i \(0.143567\pi\)
−0.900000 + 0.435890i \(0.856433\pi\)
\(224\) 64.9484i 0.289948i
\(225\) 0 0
\(226\) 320.277 1.41715
\(227\) −152.365 −0.671210 −0.335605 0.942003i \(-0.608941\pi\)
−0.335605 + 0.942003i \(0.608941\pi\)
\(228\) 0 0
\(229\) 266.415 1.16338 0.581691 0.813410i \(-0.302391\pi\)
0.581691 + 0.813410i \(0.302391\pi\)
\(230\) 74.1451 + 332.556i 0.322370 + 1.44589i
\(231\) 0 0
\(232\) 226.539i 0.976459i
\(233\) 107.497 0.461361 0.230681 0.973029i \(-0.425905\pi\)
0.230681 + 0.973029i \(0.425905\pi\)
\(234\) 0 0
\(235\) −50.3193 225.692i −0.214124 0.960392i
\(236\) 42.0638i 0.178236i
\(237\) 0 0
\(238\) 183.445i 0.770776i
\(239\) 311.707i 1.30421i 0.758127 + 0.652106i \(0.226114\pi\)
−0.758127 + 0.652106i \(0.773886\pi\)
\(240\) 0 0
\(241\) −160.321 −0.665232 −0.332616 0.943062i \(-0.607931\pi\)
−0.332616 + 0.943062i \(0.607931\pi\)
\(242\) 230.071 0.950708
\(243\) 0 0
\(244\) 21.1191 0.0865537
\(245\) 40.3906 + 181.160i 0.164860 + 0.739430i
\(246\) 0 0
\(247\) 131.149i 0.530968i
\(248\) −192.659 −0.776852
\(249\) 0 0
\(250\) −174.611 225.867i −0.698443 0.903468i
\(251\) 357.272i 1.42339i 0.702487 + 0.711697i \(0.252073\pi\)
−0.702487 + 0.711697i \(0.747927\pi\)
\(252\) 0 0
\(253\) 134.313i 0.530883i
\(254\) 28.9690i 0.114051i
\(255\) 0 0
\(256\) 214.127 0.836432
\(257\) −455.848 −1.77373 −0.886865 0.462029i \(-0.847121\pi\)
−0.886865 + 0.462029i \(0.847121\pi\)
\(258\) 0 0
\(259\) −17.6374 −0.0680980
\(260\) −70.2980 + 15.6733i −0.270377 + 0.0602819i
\(261\) 0 0
\(262\) 261.169i 0.996829i
\(263\) −60.8355 −0.231314 −0.115657 0.993289i \(-0.536897\pi\)
−0.115657 + 0.993289i \(0.536897\pi\)
\(264\) 0 0
\(265\) 73.9900 + 331.860i 0.279207 + 1.25230i
\(266\) 87.1686i 0.327702i
\(267\) 0 0
\(268\) 119.548i 0.446073i
\(269\) 213.484i 0.793620i −0.917901 0.396810i \(-0.870117\pi\)
0.917901 0.396810i \(-0.129883\pi\)
\(270\) 0 0
\(271\) 259.475 0.957474 0.478737 0.877958i \(-0.341095\pi\)
0.478737 + 0.877958i \(0.341095\pi\)
\(272\) 451.783 1.66097
\(273\) 0 0
\(274\) 43.9077 0.160247
\(275\) −47.8069 101.882i −0.173843 0.370482i
\(276\) 0 0
\(277\) 254.189i 0.917651i −0.888527 0.458825i \(-0.848270\pi\)
0.888527 0.458825i \(-0.151730\pi\)
\(278\) −128.181 −0.461081
\(279\) 0 0
\(280\) 106.934 23.8415i 0.381908 0.0851483i
\(281\) 250.476i 0.891374i −0.895189 0.445687i \(-0.852959\pi\)
0.895189 0.445687i \(-0.147041\pi\)
\(282\) 0 0
\(283\) 346.284i 1.22362i −0.791005 0.611810i \(-0.790442\pi\)
0.791005 0.611810i \(-0.209558\pi\)
\(284\) 163.798i 0.576755i
\(285\) 0 0
\(286\) −121.764 −0.425747
\(287\) −78.0549 −0.271968
\(288\) 0 0
\(289\) 254.114 0.879287
\(290\) −397.152 + 88.5470i −1.36949 + 0.305335i
\(291\) 0 0
\(292\) 164.155i 0.562174i
\(293\) −313.036 −1.06838 −0.534192 0.845363i \(-0.679384\pi\)
−0.534192 + 0.845363i \(0.679384\pi\)
\(294\) 0 0
\(295\) −168.772 + 37.6286i −0.572109 + 0.127555i
\(296\) 32.5356i 0.109918i
\(297\) 0 0
\(298\) 405.929i 1.36218i
\(299\) 353.355i 1.18179i
\(300\) 0 0
\(301\) 234.235 0.778190
\(302\) 644.542 2.13425
\(303\) 0 0
\(304\) −214.677 −0.706173
\(305\) 18.8923 + 84.7360i 0.0619421 + 0.277823i
\(306\) 0 0
\(307\) 267.727i 0.872074i 0.899929 + 0.436037i \(0.143618\pi\)
−0.899929 + 0.436037i \(0.856382\pi\)
\(308\) −18.8709 −0.0612691
\(309\) 0 0
\(310\) 75.3046 + 337.757i 0.242918 + 1.08954i
\(311\) 353.124i 1.13545i 0.823220 + 0.567723i \(0.192176\pi\)
−0.823220 + 0.567723i \(0.807824\pi\)
\(312\) 0 0
\(313\) 381.115i 1.21762i 0.793317 + 0.608809i \(0.208353\pi\)
−0.793317 + 0.608809i \(0.791647\pi\)
\(314\) 426.492i 1.35825i
\(315\) 0 0
\(316\) 60.0536 0.190043
\(317\) 1.08266 0.00341535 0.00170767 0.999999i \(-0.499456\pi\)
0.00170767 + 0.999999i \(0.499456\pi\)
\(318\) 0 0
\(319\) −160.402 −0.502829
\(320\) 37.5417 + 168.382i 0.117318 + 0.526194i
\(321\) 0 0
\(322\) 234.859i 0.729375i
\(323\) −258.075 −0.798994
\(324\) 0 0
\(325\) −125.772 268.035i −0.386990 0.824724i
\(326\) 76.7474i 0.235422i
\(327\) 0 0
\(328\) 143.988i 0.438987i
\(329\) 159.389i 0.484465i
\(330\) 0 0
\(331\) −134.879 −0.407491 −0.203745 0.979024i \(-0.565311\pi\)
−0.203745 + 0.979024i \(0.565311\pi\)
\(332\) 34.8881 0.105085
\(333\) 0 0
\(334\) −114.312 −0.342250
\(335\) 479.660 106.943i 1.43182 0.319232i
\(336\) 0 0
\(337\) 343.619i 1.01964i 0.860280 + 0.509821i \(0.170288\pi\)
−0.860280 + 0.509821i \(0.829712\pi\)
\(338\) 65.6438 0.194213
\(339\) 0 0
\(340\) −30.8419 138.332i −0.0907116 0.406860i
\(341\) 136.414i 0.400041i
\(342\) 0 0
\(343\) 296.818i 0.865359i
\(344\) 432.093i 1.25608i
\(345\) 0 0
\(346\) 172.574 0.498770
\(347\) 199.494 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(348\) 0 0
\(349\) −207.578 −0.594778 −0.297389 0.954756i \(-0.596116\pi\)
−0.297389 + 0.954756i \(0.596116\pi\)
\(350\) −83.5946 178.150i −0.238842 0.509001i
\(351\) 0 0
\(352\) 84.8325i 0.241001i
\(353\) −79.8281 −0.226142 −0.113071 0.993587i \(-0.536069\pi\)
−0.113071 + 0.993587i \(0.536069\pi\)
\(354\) 0 0
\(355\) −657.207 + 146.528i −1.85129 + 0.412754i
\(356\) 80.1794i 0.225223i
\(357\) 0 0
\(358\) 265.973i 0.742940i
\(359\) 234.273i 0.652571i −0.945271 0.326285i \(-0.894203\pi\)
0.945271 0.326285i \(-0.105797\pi\)
\(360\) 0 0
\(361\) −238.369 −0.660301
\(362\) −103.694 −0.286447
\(363\) 0 0
\(364\) −49.6461 −0.136390
\(365\) 658.637 146.847i 1.80448 0.402319i
\(366\) 0 0
\(367\) 219.296i 0.597536i −0.954326 0.298768i \(-0.903424\pi\)
0.954326 0.298768i \(-0.0965757\pi\)
\(368\) −578.405 −1.57175
\(369\) 0 0
\(370\) −57.0392 + 12.7172i −0.154160 + 0.0343708i
\(371\) 234.368i 0.631718i
\(372\) 0 0
\(373\) 161.434i 0.432800i −0.976305 0.216400i \(-0.930569\pi\)
0.976305 0.216400i \(-0.0694315\pi\)
\(374\) 239.607i 0.640659i
\(375\) 0 0
\(376\) 294.025 0.781981
\(377\) −421.991 −1.11934
\(378\) 0 0
\(379\) 227.627 0.600598 0.300299 0.953845i \(-0.402914\pi\)
0.300299 + 0.953845i \(0.402914\pi\)
\(380\) 14.6554 + 65.7323i 0.0385668 + 0.172980i
\(381\) 0 0
\(382\) 341.689i 0.894473i
\(383\) −180.111 −0.470264 −0.235132 0.971963i \(-0.575552\pi\)
−0.235132 + 0.971963i \(0.575552\pi\)
\(384\) 0 0
\(385\) −16.8812 75.7155i −0.0438472 0.196664i
\(386\) 323.866i 0.839030i
\(387\) 0 0
\(388\) 87.2640i 0.224907i
\(389\) 728.327i 1.87231i −0.351594 0.936153i \(-0.614360\pi\)
0.351594 0.936153i \(-0.385640\pi\)
\(390\) 0 0
\(391\) −695.333 −1.77835
\(392\) −236.010 −0.602066
\(393\) 0 0
\(394\) 276.648 0.702151
\(395\) 53.7217 + 240.953i 0.136004 + 0.610007i
\(396\) 0 0
\(397\) 417.565i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(398\) −58.7436 −0.147597
\(399\) 0 0
\(400\) 438.745 205.875i 1.09686 0.514687i
\(401\) 461.319i 1.15042i −0.818005 0.575211i \(-0.804920\pi\)
0.818005 0.575211i \(-0.195080\pi\)
\(402\) 0 0
\(403\) 358.882i 0.890525i
\(404\) 61.5081i 0.152248i
\(405\) 0 0
\(406\) −280.478 −0.690832
\(407\) −23.0371 −0.0566022
\(408\) 0 0
\(409\) 532.027 1.30080 0.650400 0.759592i \(-0.274601\pi\)
0.650400 + 0.759592i \(0.274601\pi\)
\(410\) −252.429 + 56.2804i −0.615681 + 0.137269i
\(411\) 0 0
\(412\) 235.254i 0.571005i
\(413\) −119.191 −0.288598
\(414\) 0 0
\(415\) 31.2096 + 139.981i 0.0752038 + 0.337304i
\(416\) 223.180i 0.536490i
\(417\) 0 0
\(418\) 113.855i 0.272382i
\(419\) 469.258i 1.11995i 0.828510 + 0.559974i \(0.189189\pi\)
−0.828510 + 0.559974i \(0.810811\pi\)
\(420\) 0 0
\(421\) −220.538 −0.523844 −0.261922 0.965089i \(-0.584356\pi\)
−0.261922 + 0.965089i \(0.584356\pi\)
\(422\) 175.626 0.416175
\(423\) 0 0
\(424\) −432.337 −1.01966
\(425\) 527.440 247.494i 1.24104 0.582338i
\(426\) 0 0
\(427\) 59.8426i 0.140147i
\(428\) −156.988 −0.366794
\(429\) 0 0
\(430\) 757.515 168.892i 1.76166 0.392772i
\(431\) 487.110i 1.13018i −0.825028 0.565092i \(-0.808840\pi\)
0.825028 0.565092i \(-0.191160\pi\)
\(432\) 0 0
\(433\) 462.822i 1.06887i −0.845208 0.534437i \(-0.820524\pi\)
0.845208 0.534437i \(-0.179476\pi\)
\(434\) 238.532i 0.549612i
\(435\) 0 0
\(436\) −229.918 −0.527334
\(437\) 330.406 0.756078
\(438\) 0 0
\(439\) 801.389 1.82549 0.912744 0.408532i \(-0.133959\pi\)
0.912744 + 0.408532i \(0.133959\pi\)
\(440\) 139.672 31.1407i 0.317437 0.0707743i
\(441\) 0 0
\(442\) 630.364i 1.42616i
\(443\) 74.3205 0.167766 0.0838832 0.996476i \(-0.473268\pi\)
0.0838832 + 0.996476i \(0.473268\pi\)
\(444\) 0 0
\(445\) 321.703 71.7254i 0.722928 0.161181i
\(446\) 444.011i 0.995541i
\(447\) 0 0
\(448\) 118.916i 0.265436i
\(449\) 358.472i 0.798379i −0.916868 0.399190i \(-0.869291\pi\)
0.916868 0.399190i \(-0.130709\pi\)
\(450\) 0 0
\(451\) −101.952 −0.226057
\(452\) 170.564 0.377354
\(453\) 0 0
\(454\) −347.989 −0.766496
\(455\) −44.4115 199.195i −0.0976077 0.437790i
\(456\) 0 0
\(457\) 115.782i 0.253351i −0.991944 0.126676i \(-0.959569\pi\)
0.991944 0.126676i \(-0.0404308\pi\)
\(458\) 608.471 1.32854
\(459\) 0 0
\(460\) 39.4861 + 177.103i 0.0858393 + 0.385007i
\(461\) 199.669i 0.433120i −0.976269 0.216560i \(-0.930516\pi\)
0.976269 0.216560i \(-0.0694838\pi\)
\(462\) 0 0
\(463\) 597.086i 1.28960i −0.764350 0.644802i \(-0.776940\pi\)
0.764350 0.644802i \(-0.223060\pi\)
\(464\) 690.754i 1.48869i
\(465\) 0 0
\(466\) 245.515 0.526857
\(467\) 605.150 1.29582 0.647912 0.761715i \(-0.275643\pi\)
0.647912 + 0.761715i \(0.275643\pi\)
\(468\) 0 0
\(469\) 338.748 0.722276
\(470\) −114.925 515.463i −0.244522 1.09673i
\(471\) 0 0
\(472\) 219.871i 0.465829i
\(473\) 305.947 0.646822
\(474\) 0 0
\(475\) −250.627 + 117.603i −0.527636 + 0.247586i
\(476\) 97.6936i 0.205239i
\(477\) 0 0
\(478\) 711.915i 1.48936i
\(479\) 540.426i 1.12824i −0.825694 0.564119i \(-0.809216\pi\)
0.825694 0.564119i \(-0.190784\pi\)
\(480\) 0 0
\(481\) −60.6067 −0.126001
\(482\) −366.161 −0.759669
\(483\) 0 0
\(484\) 122.525 0.253150
\(485\) 350.129 78.0630i 0.721915 0.160955i
\(486\) 0 0
\(487\) 565.424i 1.16104i −0.814248 0.580518i \(-0.802850\pi\)
0.814248 0.580518i \(-0.197150\pi\)
\(488\) −110.391 −0.226212
\(489\) 0 0
\(490\) 92.2491 + 413.756i 0.188264 + 0.844400i
\(491\) 267.021i 0.543830i −0.962321 0.271915i \(-0.912343\pi\)
0.962321 0.271915i \(-0.0876570\pi\)
\(492\) 0 0
\(493\) 830.395i 1.68437i
\(494\) 299.534i 0.606345i
\(495\) 0 0
\(496\) −587.450 −1.18438
\(497\) −464.135 −0.933873
\(498\) 0 0
\(499\) −620.321 −1.24313 −0.621564 0.783363i \(-0.713503\pi\)
−0.621564 + 0.783363i \(0.713503\pi\)
\(500\) −92.9891 120.286i −0.185978 0.240571i
\(501\) 0 0
\(502\) 815.981i 1.62546i
\(503\) 433.671 0.862168 0.431084 0.902312i \(-0.358131\pi\)
0.431084 + 0.902312i \(0.358131\pi\)
\(504\) 0 0
\(505\) 246.788 55.0228i 0.488690 0.108956i
\(506\) 306.761i 0.606248i
\(507\) 0 0
\(508\) 15.4275i 0.0303690i
\(509\) 260.241i 0.511280i −0.966772 0.255640i \(-0.917714\pi\)
0.966772 0.255640i \(-0.0822861\pi\)
\(510\) 0 0
\(511\) 465.145 0.910264
\(512\) −127.679 −0.249373
\(513\) 0 0
\(514\) −1041.12 −2.02553
\(515\) −943.908 + 210.449i −1.83283 + 0.408640i
\(516\) 0 0
\(517\) 208.186i 0.402682i
\(518\) −40.2824 −0.0777653
\(519\) 0 0
\(520\) 367.454 81.9258i 0.706642 0.157550i
\(521\) 658.284i 1.26350i −0.775172 0.631750i \(-0.782337\pi\)
0.775172 0.631750i \(-0.217663\pi\)
\(522\) 0 0
\(523\) 401.215i 0.767142i −0.923511 0.383571i \(-0.874694\pi\)
0.923511 0.383571i \(-0.125306\pi\)
\(524\) 139.086i 0.265431i
\(525\) 0 0
\(526\) −138.944 −0.264151
\(527\) −706.208 −1.34005
\(528\) 0 0
\(529\) 361.215 0.682827
\(530\) 168.987 + 757.943i 0.318844 + 1.43008i
\(531\) 0 0
\(532\) 46.4217i 0.0872589i
\(533\) −268.217 −0.503222
\(534\) 0 0
\(535\) −140.435 629.882i −0.262496 1.17735i
\(536\) 624.887i 1.16583i
\(537\) 0 0
\(538\) 487.580i 0.906283i
\(539\) 167.109i 0.310035i
\(540\) 0 0
\(541\) 131.652 0.243350 0.121675 0.992570i \(-0.461173\pi\)
0.121675 + 0.992570i \(0.461173\pi\)
\(542\) 592.622 1.09340
\(543\) 0 0
\(544\) 439.174 0.807304
\(545\) −205.676 922.497i −0.377386 1.69265i
\(546\) 0 0
\(547\) 989.756i 1.80943i −0.426021 0.904713i \(-0.640085\pi\)
0.426021 0.904713i \(-0.359915\pi\)
\(548\) 23.3831 0.0426699
\(549\) 0 0
\(550\) −109.187 232.692i −0.198522 0.423076i
\(551\) 394.584i 0.716124i
\(552\) 0 0
\(553\) 170.167i 0.307715i
\(554\) 580.549i 1.04792i
\(555\) 0 0
\(556\) −68.2628 −0.122775
\(557\) −299.018 −0.536836 −0.268418 0.963302i \(-0.586501\pi\)
−0.268418 + 0.963302i \(0.586501\pi\)
\(558\) 0 0
\(559\) 804.894 1.43988
\(560\) 326.060 72.6968i 0.582250 0.129816i
\(561\) 0 0
\(562\) 572.068i 1.01791i
\(563\) 758.370 1.34702 0.673508 0.739180i \(-0.264787\pi\)
0.673508 + 0.739180i \(0.264787\pi\)
\(564\) 0 0
\(565\) 152.580 + 684.352i 0.270053 + 1.21124i
\(566\) 790.887i 1.39733i
\(567\) 0 0
\(568\) 856.189i 1.50737i
\(569\) 581.256i 1.02154i −0.859718 0.510770i \(-0.829361\pi\)
0.859718 0.510770i \(-0.170639\pi\)
\(570\) 0 0
\(571\) −670.478 −1.17422 −0.587109 0.809508i \(-0.699734\pi\)
−0.587109 + 0.809508i \(0.699734\pi\)
\(572\) −64.8454 −0.113366
\(573\) 0 0
\(574\) −178.271 −0.310577
\(575\) −675.266 + 316.859i −1.17438 + 0.551060i
\(576\) 0 0
\(577\) 135.394i 0.234652i 0.993093 + 0.117326i \(0.0374322\pi\)
−0.993093 + 0.117326i \(0.962568\pi\)
\(578\) 580.377 1.00411
\(579\) 0 0
\(580\) −211.504 + 47.1558i −0.364661 + 0.0813032i
\(581\) 98.8581i 0.170152i
\(582\) 0 0
\(583\) 306.120i 0.525077i
\(584\) 858.052i 1.46927i
\(585\) 0 0
\(586\) −714.951 −1.22005
\(587\) −359.404 −0.612272 −0.306136 0.951988i \(-0.599036\pi\)
−0.306136 + 0.951988i \(0.599036\pi\)
\(588\) 0 0
\(589\) 335.573 0.569734
\(590\) −385.463 + 85.9409i −0.653326 + 0.145663i
\(591\) 0 0
\(592\) 99.2066i 0.167579i
\(593\) 540.430 0.911349 0.455675 0.890146i \(-0.349398\pi\)
0.455675 + 0.890146i \(0.349398\pi\)
\(594\) 0 0
\(595\) 391.975 87.3930i 0.658782 0.146879i
\(596\) 216.178i 0.362715i
\(597\) 0 0
\(598\) 807.037i 1.34956i
\(599\) 576.543i 0.962509i 0.876581 + 0.481254i \(0.159819\pi\)
−0.876581 + 0.481254i \(0.840181\pi\)
\(600\) 0 0
\(601\) −1026.42 −1.70785 −0.853927 0.520393i \(-0.825786\pi\)
−0.853927 + 0.520393i \(0.825786\pi\)
\(602\) 534.975 0.888663
\(603\) 0 0
\(604\) 343.252 0.568298
\(605\) 109.606 + 491.605i 0.181167 + 0.812571i
\(606\) 0 0
\(607\) 165.327i 0.272368i 0.990684 + 0.136184i \(0.0434838\pi\)
−0.990684 + 0.136184i \(0.956516\pi\)
\(608\) −208.685 −0.343232
\(609\) 0 0
\(610\) 43.1487 + 193.531i 0.0707355 + 0.317263i
\(611\) 547.703i 0.896404i
\(612\) 0 0
\(613\) 251.007i 0.409473i 0.978817 + 0.204737i \(0.0656338\pi\)
−0.978817 + 0.204737i \(0.934366\pi\)
\(614\) 611.468i 0.995875i
\(615\) 0 0
\(616\) 98.6399 0.160130
\(617\) 917.091 1.48637 0.743186 0.669085i \(-0.233314\pi\)
0.743186 + 0.669085i \(0.233314\pi\)
\(618\) 0 0
\(619\) −277.589 −0.448448 −0.224224 0.974538i \(-0.571985\pi\)
−0.224224 + 0.974538i \(0.571985\pi\)
\(620\) 40.1036 + 179.873i 0.0646832 + 0.290117i
\(621\) 0 0
\(622\) 806.508i 1.29664i
\(623\) 227.194 0.364678
\(624\) 0 0
\(625\) 399.437 480.703i 0.639099 0.769124i
\(626\) 870.436i 1.39047i
\(627\) 0 0
\(628\) 227.129i 0.361670i
\(629\) 119.262i 0.189606i
\(630\) 0 0
\(631\) 322.116 0.510485 0.255243 0.966877i \(-0.417845\pi\)
0.255243 + 0.966877i \(0.417845\pi\)
\(632\) −313.906 −0.496686
\(633\) 0 0
\(634\) 2.47272 0.00390020
\(635\) 61.8995 13.8008i 0.0974795 0.0217336i
\(636\) 0 0
\(637\) 439.634i 0.690164i
\(638\) −366.347 −0.574211
\(639\) 0 0
\(640\) 167.759 + 752.435i 0.262124 + 1.17568i
\(641\) 276.966i 0.432084i −0.976384 0.216042i \(-0.930685\pi\)
0.976384 0.216042i \(-0.0693148\pi\)
\(642\) 0 0
\(643\) 858.353i 1.33492i 0.744646 + 0.667460i \(0.232618\pi\)
−0.744646 + 0.667460i \(0.767382\pi\)
\(644\) 125.074i 0.194215i
\(645\) 0 0
\(646\) −589.424 −0.912421
\(647\) −1065.93 −1.64749 −0.823746 0.566960i \(-0.808120\pi\)
−0.823746 + 0.566960i \(0.808120\pi\)
\(648\) 0 0
\(649\) −155.681 −0.239879
\(650\) −287.253 612.172i −0.441928 0.941803i
\(651\) 0 0
\(652\) 40.8719i 0.0626870i
\(653\) 356.252 0.545561 0.272781 0.962076i \(-0.412057\pi\)
0.272781 + 0.962076i \(0.412057\pi\)
\(654\) 0 0
\(655\) 558.054 124.421i 0.851990 0.189956i
\(656\) 439.043i 0.669272i
\(657\) 0 0
\(658\) 364.033i 0.553241i
\(659\) 38.8525i 0.0589568i −0.999565 0.0294784i \(-0.990615\pi\)
0.999565 0.0294784i \(-0.00938463\pi\)
\(660\) 0 0
\(661\) 201.835 0.305349 0.152674 0.988277i \(-0.451211\pi\)
0.152674 + 0.988277i \(0.451211\pi\)
\(662\) −308.054 −0.465339
\(663\) 0 0
\(664\) −182.363 −0.274644
\(665\) −186.258 + 41.5271i −0.280087 + 0.0624468i
\(666\) 0 0
\(667\) 1063.13i 1.59390i
\(668\) −60.8768 −0.0911329
\(669\) 0 0
\(670\) 1095.51 244.249i 1.63509 0.364551i
\(671\) 78.1635i 0.116488i
\(672\) 0 0
\(673\) 449.327i 0.667648i −0.942636 0.333824i \(-0.891661\pi\)
0.942636 0.333824i \(-0.108339\pi\)
\(674\) 784.801i 1.16439i
\(675\) 0 0
\(676\) 34.9587 0.0517141
\(677\) 702.810 1.03812 0.519062 0.854737i \(-0.326281\pi\)
0.519062 + 0.854737i \(0.326281\pi\)
\(678\) 0 0
\(679\) 247.269 0.364167
\(680\) 161.214 + 723.076i 0.237079 + 1.06335i
\(681\) 0 0
\(682\) 311.559i 0.456831i
\(683\) −705.068 −1.03231 −0.516155 0.856495i \(-0.672637\pi\)
−0.516155 + 0.856495i \(0.672637\pi\)
\(684\) 0 0
\(685\) 20.9177 + 93.8199i 0.0305367 + 0.136963i
\(686\) 677.910i 0.988206i
\(687\) 0 0
\(688\) 1317.52i 1.91501i
\(689\) 805.348i 1.16887i
\(690\) 0 0
\(691\) −884.250 −1.27967 −0.639833 0.768514i \(-0.720997\pi\)
−0.639833 + 0.768514i \(0.720997\pi\)
\(692\) 91.9047 0.132810
\(693\) 0 0
\(694\) 455.630 0.656527
\(695\) −61.0653 273.890i −0.0878637 0.394087i
\(696\) 0 0
\(697\) 527.798i 0.757243i
\(698\) −474.091 −0.679214
\(699\) 0 0
\(700\) −44.5184 94.8743i −0.0635977 0.135535i
\(701\) 267.537i 0.381651i −0.981624 0.190826i \(-0.938884\pi\)
0.981624 0.190826i \(-0.0611165\pi\)
\(702\) 0 0
\(703\) 56.6705i 0.0806124i
\(704\) 155.322i 0.220628i
\(705\) 0 0
\(706\) −182.321 −0.258246
\(707\) 174.288 0.246517
\(708\) 0 0
\(709\) −533.247 −0.752111 −0.376056 0.926597i \(-0.622720\pi\)
−0.376056 + 0.926597i \(0.622720\pi\)
\(710\) −1501.01 + 334.658i −2.11410 + 0.471349i
\(711\) 0 0
\(712\) 419.105i 0.588631i
\(713\) 904.137 1.26807
\(714\) 0 0
\(715\) −58.0082 260.179i −0.0811303 0.363886i
\(716\) 141.644i 0.197827i
\(717\) 0 0
\(718\) 535.061i 0.745211i
\(719\) 101.956i 0.141803i −0.997483 0.0709015i \(-0.977412\pi\)
0.997483 0.0709015i \(-0.0225876\pi\)
\(720\) 0 0
\(721\) −666.611 −0.924564
\(722\) −544.416 −0.754038
\(723\) 0 0
\(724\) −55.2222 −0.0762738
\(725\) −378.406 806.430i −0.521939 1.11232i
\(726\) 0 0
\(727\) 734.939i 1.01092i 0.862850 + 0.505460i \(0.168677\pi\)
−0.862850 + 0.505460i \(0.831323\pi\)
\(728\) 259.505 0.356462
\(729\) 0 0
\(730\) 1504.28 335.386i 2.06065 0.459433i
\(731\) 1583.87i 2.16672i
\(732\) 0 0
\(733\) 1324.21i 1.80656i 0.429047 + 0.903282i \(0.358849\pi\)
−0.429047 + 0.903282i \(0.641151\pi\)
\(734\) 500.855i 0.682363i
\(735\) 0 0
\(736\) −562.261 −0.763942
\(737\) 442.456 0.600347
\(738\) 0 0
\(739\) 978.711 1.32437 0.662186 0.749340i \(-0.269629\pi\)
0.662186 + 0.749340i \(0.269629\pi\)
\(740\) −30.3763 + 6.77256i −0.0410490 + 0.00915210i
\(741\) 0 0
\(742\) 535.277i 0.721398i
\(743\) 928.176 1.24923 0.624614 0.780934i \(-0.285256\pi\)
0.624614 + 0.780934i \(0.285256\pi\)
\(744\) 0 0
\(745\) −867.370 + 193.385i −1.16425 + 0.259577i
\(746\) 368.704i 0.494241i
\(747\) 0 0
\(748\) 127.603i 0.170592i
\(749\) 444.837i 0.593908i
\(750\) 0 0
\(751\) −537.997 −0.716374 −0.358187 0.933650i \(-0.616605\pi\)
−0.358187 + 0.933650i \(0.616605\pi\)
\(752\) 896.531 1.19219
\(753\) 0 0
\(754\) −963.796 −1.27824
\(755\) 307.060 + 1377.23i 0.406702 + 1.82414i
\(756\) 0 0
\(757\) 981.098i 1.29603i −0.761626 0.648017i \(-0.775599\pi\)
0.761626 0.648017i \(-0.224401\pi\)
\(758\) 519.882 0.685860
\(759\) 0 0
\(760\) −76.6050 343.589i −0.100796 0.452091i
\(761\) 572.605i 0.752438i 0.926531 + 0.376219i \(0.122776\pi\)
−0.926531 + 0.376219i \(0.877224\pi\)
\(762\) 0 0
\(763\) 651.489i 0.853852i
\(764\) 181.967i 0.238176i
\(765\) 0 0
\(766\) −411.360 −0.537024
\(767\) −409.571 −0.533991
\(768\) 0 0
\(769\) 932.372 1.21245 0.606223 0.795294i \(-0.292684\pi\)
0.606223 + 0.795294i \(0.292684\pi\)
\(770\) −38.5553 172.929i −0.0500719 0.224582i
\(771\) 0 0
\(772\) 172.475i 0.223413i
\(773\) 280.315 0.362632 0.181316 0.983425i \(-0.441964\pi\)
0.181316 + 0.983425i \(0.441964\pi\)
\(774\) 0 0
\(775\) −685.827 + 321.815i −0.884938 + 0.415245i
\(776\) 456.137i 0.587805i
\(777\) 0 0
\(778\) 1663.44i 2.13810i
\(779\) 250.797i 0.321948i
\(780\) 0 0
\(781\) −606.231 −0.776224
\(782\) −1588.09 −2.03080
\(783\) 0 0
\(784\) −719.634 −0.917901
\(785\) −911.307 + 203.181i −1.16090 + 0.258829i
\(786\) 0 0
\(787\) 707.211i 0.898617i −0.893377 0.449308i \(-0.851670\pi\)
0.893377 0.449308i \(-0.148330\pi\)
\(788\) 147.329 0.186966
\(789\) 0 0
\(790\) 122.696 + 550.318i 0.155312 + 0.696605i
\(791\) 483.306i 0.611006i
\(792\) 0 0
\(793\) 205.635i 0.259313i
\(794\) 953.688i 1.20112i
\(795\) 0 0
\(796\) −31.2840 −0.0393014
\(797\) −1346.08 −1.68894 −0.844468 0.535606i \(-0.820083\pi\)
−0.844468 + 0.535606i \(0.820083\pi\)
\(798\) 0 0
\(799\) 1077.77 1.34890
\(800\) 426.499 200.129i 0.533124 0.250161i
\(801\) 0 0
\(802\) 1053.62i 1.31374i
\(803\) 607.550 0.756601
\(804\) 0 0
\(805\) −501.835 + 111.887i −0.623397 + 0.138990i
\(806\) 819.658i 1.01695i
\(807\) 0 0
\(808\) 321.508i 0.397906i
\(809\) 63.7611i 0.0788147i 0.999223 + 0.0394073i \(0.0125470\pi\)
−0.999223 + 0.0394073i \(0.987453\pi\)
\(810\) 0 0
\(811\) 869.786 1.07249 0.536243 0.844064i \(-0.319843\pi\)
0.536243 + 0.844064i \(0.319843\pi\)
\(812\) −149.369 −0.183952
\(813\) 0 0
\(814\) −52.6150 −0.0646376
\(815\) −163.990 + 36.5625i −0.201215 + 0.0448619i
\(816\) 0 0
\(817\) 752.619i 0.921198i
\(818\) 1215.11 1.48546
\(819\) 0 0
\(820\) −134.431 + 29.9722i −0.163941 + 0.0365515i
\(821\) 577.553i 0.703475i −0.936099 0.351737i \(-0.885591\pi\)
0.936099 0.351737i \(-0.114409\pi\)
\(822\) 0 0
\(823\) 347.744i 0.422532i 0.977429 + 0.211266i \(0.0677586\pi\)
−0.977429 + 0.211266i \(0.932241\pi\)
\(824\) 1229.69i 1.49235i
\(825\) 0 0
\(826\) −272.223 −0.329568
\(827\) 19.0847 0.0230770 0.0115385 0.999933i \(-0.496327\pi\)
0.0115385 + 0.999933i \(0.496327\pi\)
\(828\) 0 0
\(829\) −39.6514 −0.0478303 −0.0239152 0.999714i \(-0.507613\pi\)
−0.0239152 + 0.999714i \(0.507613\pi\)
\(830\) 71.2803 + 319.707i 0.0858799 + 0.385189i
\(831\) 0 0
\(832\) 408.625i 0.491136i
\(833\) −865.113 −1.03855
\(834\) 0 0
\(835\) −54.4581 244.255i −0.0652192 0.292522i
\(836\) 60.6339i 0.0725286i
\(837\) 0 0
\(838\) 1071.75i 1.27894i
\(839\) 377.259i 0.449653i −0.974399 0.224827i \(-0.927818\pi\)
0.974399 0.224827i \(-0.0721816\pi\)
\(840\) 0 0
\(841\) −428.633 −0.509671
\(842\) −503.693 −0.598210
\(843\) 0 0
\(844\) 93.5297 0.110817
\(845\) 31.2727 + 140.265i 0.0370091 + 0.165994i
\(846\) 0 0
\(847\) 347.183i 0.409898i
\(848\) −1318.27 −1.55456
\(849\) 0 0
\(850\) 1204.63 565.257i 1.41722 0.665008i
\(851\) 152.688i 0.179421i
\(852\) 0 0
\(853\) 164.036i 0.192304i −0.995367 0.0961521i \(-0.969346\pi\)
0.995367 0.0961521i \(-0.0306535\pi\)
\(854\) 136.676i 0.160042i
\(855\) 0 0
\(856\) 820.590 0.958634
\(857\) −315.386 −0.368011 −0.184006 0.982925i \(-0.558906\pi\)
−0.184006 + 0.982925i \(0.558906\pi\)
\(858\) 0 0
\(859\) −93.6399 −0.109010 −0.0545052 0.998513i \(-0.517358\pi\)
−0.0545052 + 0.998513i \(0.517358\pi\)
\(860\) 403.416 89.9436i 0.469088 0.104586i
\(861\) 0 0
\(862\) 1112.52i 1.29063i
\(863\) 1055.96 1.22360 0.611799 0.791013i \(-0.290446\pi\)
0.611799 + 0.791013i \(0.290446\pi\)
\(864\) 0 0
\(865\) 82.2145 + 368.749i 0.0950457 + 0.426299i
\(866\) 1057.05i 1.22061i
\(867\) 0 0
\(868\) 127.030i 0.146348i
\(869\) 222.263i 0.255769i
\(870\) 0 0
\(871\) 1164.03 1.33642
\(872\) 1201.80 1.37821
\(873\) 0 0
\(874\) 754.623 0.863413
\(875\) 340.839 263.492i 0.389530 0.301133i
\(876\) 0 0
\(877\) 211.260i 0.240890i −0.992720 0.120445i \(-0.961568\pi\)
0.992720 0.120445i \(-0.0384321\pi\)
\(878\) 1830.31 2.08464
\(879\) 0 0
\(880\) 425.884 94.9531i 0.483959 0.107901i
\(881\) 824.884i 0.936304i −0.883648 0.468152i \(-0.844920\pi\)
0.883648 0.468152i \(-0.155080\pi\)
\(882\) 0 0
\(883\) 1155.63i 1.30875i −0.756171 0.654375i \(-0.772932\pi\)
0.756171 0.654375i \(-0.227068\pi\)
\(884\) 335.701i 0.379752i
\(885\) 0 0
\(886\) 169.742 0.191583
\(887\) −1256.41 −1.41648 −0.708238 0.705973i \(-0.750510\pi\)
−0.708238 + 0.705973i \(0.750510\pi\)
\(888\) 0 0
\(889\) 43.7149 0.0491731
\(890\) 734.745 163.815i 0.825557 0.184062i
\(891\) 0 0
\(892\) 236.459i 0.265088i
\(893\) −512.132 −0.573496
\(894\) 0 0
\(895\) −568.317 + 126.709i −0.634992 + 0.141575i
\(896\) 531.388i 0.593066i
\(897\) 0 0
\(898\) 818.723i 0.911719i
\(899\) 1079.76i 1.20106i
\(900\) 0 0
\(901\) −1584.77 −1.75890
\(902\) −232.850 −0.258148
\(903\) 0 0
\(904\) −891.553 −0.986231
\(905\) −49.3997 221.568i −0.0545853 0.244826i
\(906\) 0 0
\(907\) 1154.46i 1.27283i 0.771345 + 0.636417i \(0.219584\pi\)
−0.771345 + 0.636417i \(0.780416\pi\)
\(908\) −185.322 −0.204099
\(909\) 0 0
\(910\) −101.432 454.945i −0.111464 0.499940i
\(911\) 349.820i 0.383996i −0.981395 0.191998i \(-0.938503\pi\)
0.981395 0.191998i \(-0.0614966\pi\)
\(912\) 0 0
\(913\) 129.124i 0.141428i
\(914\) 264.436i 0.289318i
\(915\) 0 0
\(916\) 324.042 0.353757
\(917\) 394.111 0.429783
\(918\) 0 0
\(919\) −375.011 −0.408064 −0.204032 0.978964i \(-0.565405\pi\)
−0.204032 + 0.978964i \(0.565405\pi\)
\(920\) −206.397 925.734i −0.224345 1.00623i
\(921\) 0 0
\(922\) 456.028i 0.494607i
\(923\) −1594.89 −1.72794
\(924\) 0 0
\(925\) −54.3470 115.820i −0.0587535 0.125211i
\(926\) 1363.70i 1.47268i
\(927\) 0 0
\(928\) 671.475i 0.723572i
\(929\) 1063.34i 1.14461i 0.820040 + 0.572306i \(0.193951\pi\)
−0.820040 + 0.572306i \(0.806049\pi\)
\(930\) 0 0
\(931\) 411.082 0.441549
\(932\) 130.750 0.140289
\(933\) 0 0
\(934\) 1382.12 1.47978
\(935\) 511.980 114.149i 0.547572 0.122084i
\(936\) 0 0
\(937\) 1021.59i 1.09028i −0.838344 0.545141i \(-0.816476\pi\)
0.838344 0.545141i \(-0.183524\pi\)
\(938\) 773.673 0.824812
\(939\) 0 0
\(940\) −61.2036 274.511i −0.0651102 0.292033i
\(941\) 437.037i 0.464439i −0.972663 0.232220i \(-0.925401\pi\)
0.972663 0.232220i \(-0.0745988\pi\)
\(942\) 0 0
\(943\) 675.725i 0.716569i
\(944\) 670.424i 0.710195i
\(945\) 0 0
\(946\) 698.759 0.738646
\(947\) 1658.44 1.75126 0.875631 0.482981i \(-0.160446\pi\)
0.875631 + 0.482981i \(0.160446\pi\)
\(948\) 0 0
\(949\) 1598.36 1.68426
\(950\) −572.414 + 268.597i −0.602541 + 0.282734i
\(951\) 0 0
\(952\) 510.654i 0.536401i
\(953\) −413.980 −0.434397 −0.217198 0.976127i \(-0.569692\pi\)
−0.217198 + 0.976127i \(0.569692\pi\)
\(954\) 0 0
\(955\) −730.104 + 162.781i −0.764507 + 0.170451i
\(956\) 379.131i 0.396580i
\(957\) 0 0
\(958\) 1234.29i 1.28840i
\(959\) 66.2579i 0.0690906i
\(960\) 0 0
\(961\) −42.7229 −0.0444567
\(962\) −138.421 −0.143889
\(963\) 0 0
\(964\) −194.999 −0.202281
\(965\) 692.020 154.290i 0.717119 0.159886i
\(966\) 0 0
\(967\) 102.641i 0.106144i 0.998591 + 0.0530720i \(0.0169013\pi\)
−0.998591 + 0.0530720i \(0.983099\pi\)
\(968\) −640.448 −0.661620
\(969\) 0 0
\(970\) 799.667 178.290i 0.824399 0.183804i
\(971\) 997.502i 1.02729i 0.858002 + 0.513647i \(0.171706\pi\)
−0.858002 + 0.513647i \(0.828294\pi\)
\(972\) 0 0
\(973\) 193.428i 0.198795i
\(974\) 1291.39i 1.32586i
\(975\) 0 0
\(976\) −336.602 −0.344879
\(977\) 1261.86 1.29157 0.645785 0.763520i \(-0.276530\pi\)
0.645785 + 0.763520i \(0.276530\pi\)
\(978\) 0 0
\(979\) 296.751 0.303116
\(980\) 49.1274 + 220.346i 0.0501300 + 0.224843i
\(981\) 0 0
\(982\) 609.855i 0.621033i
\(983\) −1036.20 −1.05412 −0.527058 0.849829i \(-0.676705\pi\)
−0.527058 + 0.849829i \(0.676705\pi\)
\(984\) 0 0
\(985\) 131.795 + 591.127i 0.133802 + 0.600129i
\(986\) 1896.56i 1.92349i
\(987\) 0 0
\(988\) 159.517i 0.161455i
\(989\) 2027.78i 2.05034i
\(990\) 0 0
\(991\) −1503.88 −1.51754 −0.758770 0.651358i \(-0.774200\pi\)
−0.758770 + 0.651358i \(0.774200\pi\)
\(992\) −571.054 −0.575660
\(993\) 0 0
\(994\) −1060.05 −1.06645
\(995\) −27.9854 125.520i −0.0281261 0.126151i
\(996\) 0 0
\(997\) 334.836i 0.335843i 0.985800 + 0.167922i \(0.0537056\pi\)
−0.985800 + 0.167922i \(0.946294\pi\)
\(998\) −1416.77 −1.41961
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.b.404.20 yes 24
3.2 odd 2 inner 405.3.d.b.404.5 24
5.4 even 2 inner 405.3.d.b.404.6 yes 24
9.2 odd 6 405.3.h.k.134.20 48
9.4 even 3 405.3.h.k.269.6 48
9.5 odd 6 405.3.h.k.269.19 48
9.7 even 3 405.3.h.k.134.5 48
15.14 odd 2 inner 405.3.d.b.404.19 yes 24
45.4 even 6 405.3.h.k.269.20 48
45.14 odd 6 405.3.h.k.269.5 48
45.29 odd 6 405.3.h.k.134.6 48
45.34 even 6 405.3.h.k.134.19 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.5 24 3.2 odd 2 inner
405.3.d.b.404.6 yes 24 5.4 even 2 inner
405.3.d.b.404.19 yes 24 15.14 odd 2 inner
405.3.d.b.404.20 yes 24 1.1 even 1 trivial
405.3.h.k.134.5 48 9.7 even 3
405.3.h.k.134.6 48 45.29 odd 6
405.3.h.k.134.19 48 45.34 even 6
405.3.h.k.134.20 48 9.2 odd 6
405.3.h.k.269.5 48 45.14 odd 6
405.3.h.k.269.6 48 9.4 even 3
405.3.h.k.269.19 48 9.5 odd 6
405.3.h.k.269.20 48 45.4 even 6