Properties

Label 405.3.h.k.269.19
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.19
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.k.134.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14196 - 1.97794i) q^{2} +(-0.608153 - 1.05335i) q^{4} +(-3.68233 + 3.38238i) q^{5} +(-2.98475 - 1.72325i) q^{7} +6.35774 q^{8} +(2.48505 + 11.1459i) q^{10} +(3.89854 + 2.25082i) q^{11} +(10.2564 - 5.92153i) q^{13} +(-6.81695 + 3.93577i) q^{14} +(9.69291 - 16.7886i) q^{16} +23.3048 q^{17} +11.0739 q^{19} +(5.80225 + 1.82178i) q^{20} +(8.90397 - 5.14071i) q^{22} +(14.9182 + 25.8391i) q^{23} +(2.11905 - 24.9100i) q^{25} -27.0487i q^{26} +4.19199i q^{28} +(30.8581 + 17.8160i) q^{29} +(-15.1515 - 26.2432i) q^{31} +(-9.42238 - 16.3200i) q^{32} +(26.6132 - 46.0954i) q^{34} +(16.8195 - 3.75000i) q^{35} +5.11748i q^{37} +(12.6460 - 21.9035i) q^{38} +(-23.4113 + 21.5043i) q^{40} +(-19.6134 + 11.3238i) q^{41} +(58.8579 + 33.9816i) q^{43} -5.47538i q^{44} +68.1442 q^{46} +(-23.1234 + 40.0508i) q^{47} +(-18.5608 - 32.1483i) q^{49} +(-46.8506 - 32.6376i) q^{50} +(-12.4749 - 7.20240i) q^{52} -68.0017 q^{53} +(-21.9688 + 4.89807i) q^{55} +(-18.9763 - 10.9560i) q^{56} +(70.4776 - 40.6903i) q^{58} +(-29.9499 + 17.2916i) q^{59} +(-8.68165 + 15.0371i) q^{61} -69.2099 q^{62} +34.5033 q^{64} +(-17.7385 + 56.4960i) q^{65} +(-85.1195 + 49.1438i) q^{67} +(-14.1729 - 24.5482i) q^{68} +(11.7900 - 37.5503i) q^{70} -134.669i q^{71} -134.962i q^{73} +(10.1221 + 5.84397i) q^{74} +(-6.73463 - 11.6647i) q^{76} +(-7.75746 - 13.4363i) q^{77} +(-24.6869 + 42.7589i) q^{79} +(21.0930 + 94.6062i) q^{80} +51.7254i q^{82} +(14.3418 - 24.8408i) q^{83} +(-85.8159 + 78.8256i) q^{85} +(134.427 - 77.6114i) q^{86} +(24.7859 + 14.3102i) q^{88} +65.9204i q^{89} -40.8171 q^{91} +(18.1451 - 31.4283i) q^{92} +(52.8120 + 91.4730i) q^{94} +(-40.7777 + 37.4561i) q^{95} +(62.1331 + 35.8725i) q^{97} -84.7830 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14196 1.97794i 0.570981 0.988968i −0.425485 0.904966i \(-0.639896\pi\)
0.996466 0.0840022i \(-0.0267703\pi\)
\(3\) 0 0
\(4\) −0.608153 1.05335i −0.152038 0.263338i
\(5\) −3.68233 + 3.38238i −0.736465 + 0.676475i
\(6\) 0 0
\(7\) −2.98475 1.72325i −0.426393 0.246178i 0.271416 0.962462i \(-0.412508\pi\)
−0.697809 + 0.716284i \(0.745842\pi\)
\(8\) 6.35774 0.794718
\(9\) 0 0
\(10\) 2.48505 + 11.1459i 0.248505 + 1.11459i
\(11\) 3.89854 + 2.25082i 0.354413 + 0.204620i 0.666627 0.745391i \(-0.267737\pi\)
−0.312214 + 0.950012i \(0.601071\pi\)
\(12\) 0 0
\(13\) 10.2564 5.92153i 0.788954 0.455503i −0.0506403 0.998717i \(-0.516126\pi\)
0.839594 + 0.543214i \(0.182793\pi\)
\(14\) −6.81695 + 3.93577i −0.486925 + 0.281126i
\(15\) 0 0
\(16\) 9.69291 16.7886i 0.605807 1.04929i
\(17\) 23.3048 1.37087 0.685436 0.728133i \(-0.259612\pi\)
0.685436 + 0.728133i \(0.259612\pi\)
\(18\) 0 0
\(19\) 11.0739 0.582837 0.291419 0.956596i \(-0.405873\pi\)
0.291419 + 0.956596i \(0.405873\pi\)
\(20\) 5.80225 + 1.82178i 0.290113 + 0.0910891i
\(21\) 0 0
\(22\) 8.90397 5.14071i 0.404726 0.233669i
\(23\) 14.9182 + 25.8391i 0.648619 + 1.12344i 0.983453 + 0.181164i \(0.0579865\pi\)
−0.334834 + 0.942277i \(0.608680\pi\)
\(24\) 0 0
\(25\) 2.11905 24.9100i 0.0847621 0.996401i
\(26\) 27.0487i 1.04033i
\(27\) 0 0
\(28\) 4.19199i 0.149714i
\(29\) 30.8581 + 17.8160i 1.06407 + 0.614343i 0.926556 0.376156i \(-0.122754\pi\)
0.137518 + 0.990499i \(0.456088\pi\)
\(30\) 0 0
\(31\) −15.1515 26.2432i −0.488759 0.846556i 0.511157 0.859487i \(-0.329217\pi\)
−0.999916 + 0.0129312i \(0.995884\pi\)
\(32\) −9.42238 16.3200i −0.294449 0.510001i
\(33\) 0 0
\(34\) 26.6132 46.0954i 0.782741 1.35575i
\(35\) 16.8195 3.75000i 0.480557 0.107143i
\(36\) 0 0
\(37\) 5.11748i 0.138310i 0.997606 + 0.0691552i \(0.0220304\pi\)
−0.997606 + 0.0691552i \(0.977970\pi\)
\(38\) 12.6460 21.9035i 0.332789 0.576407i
\(39\) 0 0
\(40\) −23.4113 + 21.5043i −0.585282 + 0.537607i
\(41\) −19.6134 + 11.3238i −0.478376 + 0.276190i −0.719739 0.694244i \(-0.755739\pi\)
0.241364 + 0.970435i \(0.422405\pi\)
\(42\) 0 0
\(43\) 58.8579 + 33.9816i 1.36879 + 0.790270i 0.990773 0.135529i \(-0.0432734\pi\)
0.378015 + 0.925799i \(0.376607\pi\)
\(44\) 5.47538i 0.124441i
\(45\) 0 0
\(46\) 68.1442 1.48140
\(47\) −23.1234 + 40.0508i −0.491986 + 0.852145i −0.999957 0.00922888i \(-0.997062\pi\)
0.507971 + 0.861374i \(0.330396\pi\)
\(48\) 0 0
\(49\) −18.5608 32.1483i −0.378792 0.656088i
\(50\) −46.8506 32.6376i −0.937011 0.652753i
\(51\) 0 0
\(52\) −12.4749 7.20240i −0.239902 0.138508i
\(53\) −68.0017 −1.28305 −0.641525 0.767102i \(-0.721698\pi\)
−0.641525 + 0.767102i \(0.721698\pi\)
\(54\) 0 0
\(55\) −21.9688 + 4.89807i −0.399434 + 0.0890558i
\(56\) −18.9763 10.9560i −0.338862 0.195642i
\(57\) 0 0
\(58\) 70.4776 40.6903i 1.21513 0.701557i
\(59\) −29.9499 + 17.2916i −0.507626 + 0.293078i −0.731857 0.681458i \(-0.761346\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(60\) 0 0
\(61\) −8.68165 + 15.0371i −0.142322 + 0.246509i −0.928371 0.371656i \(-0.878790\pi\)
0.786049 + 0.618165i \(0.212124\pi\)
\(62\) −69.2099 −1.11629
\(63\) 0 0
\(64\) 34.5033 0.539114
\(65\) −17.7385 + 56.4960i −0.272901 + 0.869170i
\(66\) 0 0
\(67\) −85.1195 + 49.1438i −1.27044 + 0.733489i −0.975071 0.221894i \(-0.928776\pi\)
−0.295369 + 0.955383i \(0.595443\pi\)
\(68\) −14.1729 24.5482i −0.208425 0.361002i
\(69\) 0 0
\(70\) 11.7900 37.5503i 0.168428 0.536432i
\(71\) 134.669i 1.89674i −0.317164 0.948371i \(-0.602731\pi\)
0.317164 0.948371i \(-0.397269\pi\)
\(72\) 0 0
\(73\) 134.962i 1.84879i −0.381436 0.924395i \(-0.624570\pi\)
0.381436 0.924395i \(-0.375430\pi\)
\(74\) 10.1221 + 5.84397i 0.136784 + 0.0789726i
\(75\) 0 0
\(76\) −6.73463 11.6647i −0.0886135 0.153483i
\(77\) −7.75746 13.4363i −0.100746 0.174498i
\(78\) 0 0
\(79\) −24.6869 + 42.7589i −0.312492 + 0.541252i −0.978901 0.204334i \(-0.934497\pi\)
0.666409 + 0.745586i \(0.267831\pi\)
\(80\) 21.0930 + 94.6062i 0.263662 + 1.18258i
\(81\) 0 0
\(82\) 51.7254i 0.630798i
\(83\) 14.3418 24.8408i 0.172793 0.299286i −0.766602 0.642122i \(-0.778054\pi\)
0.939395 + 0.342836i \(0.111387\pi\)
\(84\) 0 0
\(85\) −85.8159 + 78.8256i −1.00960 + 0.927361i
\(86\) 134.427 77.6114i 1.56310 0.902459i
\(87\) 0 0
\(88\) 24.7859 + 14.3102i 0.281658 + 0.162616i
\(89\) 65.9204i 0.740679i 0.928897 + 0.370339i \(0.120759\pi\)
−0.928897 + 0.370339i \(0.879241\pi\)
\(90\) 0 0
\(91\) −40.8171 −0.448540
\(92\) 18.1451 31.4283i 0.197230 0.341612i
\(93\) 0 0
\(94\) 52.8120 + 91.4730i 0.561829 + 0.973117i
\(95\) −40.7777 + 37.4561i −0.429239 + 0.394275i
\(96\) 0 0
\(97\) 62.1331 + 35.8725i 0.640547 + 0.369820i 0.784825 0.619717i \(-0.212753\pi\)
−0.144278 + 0.989537i \(0.546086\pi\)
\(98\) −84.7830 −0.865133
\(99\) 0 0
\(100\) −27.5277 + 12.9170i −0.275277 + 0.129170i
\(101\) −43.7945 25.2848i −0.433609 0.250344i 0.267274 0.963621i \(-0.413877\pi\)
−0.700883 + 0.713276i \(0.747211\pi\)
\(102\) 0 0
\(103\) 167.504 96.7084i 1.62625 0.938917i 0.641054 0.767496i \(-0.278498\pi\)
0.985198 0.171421i \(-0.0548358\pi\)
\(104\) 65.2076 37.6476i 0.626996 0.361996i
\(105\) 0 0
\(106\) −77.6553 + 134.503i −0.732597 + 1.26890i
\(107\) 129.069 1.20626 0.603128 0.797644i \(-0.293921\pi\)
0.603128 + 0.797644i \(0.293921\pi\)
\(108\) 0 0
\(109\) −189.029 −1.73421 −0.867107 0.498122i \(-0.834023\pi\)
−0.867107 + 0.498122i \(0.834023\pi\)
\(110\) −15.3995 + 49.0464i −0.139996 + 0.445876i
\(111\) 0 0
\(112\) −57.8619 + 33.4066i −0.516624 + 0.298273i
\(113\) 70.1155 + 121.444i 0.620491 + 1.07472i 0.989394 + 0.145255i \(0.0464002\pi\)
−0.368903 + 0.929468i \(0.620266\pi\)
\(114\) 0 0
\(115\) −142.332 44.6891i −1.23767 0.388601i
\(116\) 43.3393i 0.373615i
\(117\) 0 0
\(118\) 78.9854i 0.669368i
\(119\) −69.5591 40.1600i −0.584530 0.337479i
\(120\) 0 0
\(121\) −50.3676 87.2392i −0.416261 0.720985i
\(122\) 19.8282 + 34.3435i 0.162526 + 0.281504i
\(123\) 0 0
\(124\) −18.4289 + 31.9198i −0.148620 + 0.257418i
\(125\) 76.4521 + 98.8943i 0.611617 + 0.791154i
\(126\) 0 0
\(127\) 12.6839i 0.0998729i −0.998752 0.0499364i \(-0.984098\pi\)
0.998752 0.0499364i \(-0.0159019\pi\)
\(128\) 77.0910 133.525i 0.602273 1.04317i
\(129\) 0 0
\(130\) 91.4888 + 99.6020i 0.703760 + 0.766169i
\(131\) 99.0310 57.1756i 0.755962 0.436455i −0.0718823 0.997413i \(-0.522901\pi\)
0.827844 + 0.560958i \(0.189567\pi\)
\(132\) 0 0
\(133\) −33.0529 19.0831i −0.248518 0.143482i
\(134\) 224.481i 1.67523i
\(135\) 0 0
\(136\) 148.166 1.08946
\(137\) 9.61235 16.6491i 0.0701631 0.121526i −0.828810 0.559531i \(-0.810981\pi\)
0.898973 + 0.438005i \(0.144315\pi\)
\(138\) 0 0
\(139\) 28.0615 + 48.6040i 0.201881 + 0.349669i 0.949135 0.314871i \(-0.101961\pi\)
−0.747253 + 0.664539i \(0.768628\pi\)
\(140\) −14.1789 15.4363i −0.101278 0.110259i
\(141\) 0 0
\(142\) −266.366 153.786i −1.87582 1.08300i
\(143\) 53.3134 0.372821
\(144\) 0 0
\(145\) −173.890 + 38.7697i −1.19924 + 0.267377i
\(146\) −266.946 154.121i −1.82839 1.05562i
\(147\) 0 0
\(148\) 5.39051 3.11221i 0.0364224 0.0210285i
\(149\) −153.921 + 88.8666i −1.03303 + 0.596420i −0.917851 0.396925i \(-0.870077\pi\)
−0.115179 + 0.993345i \(0.536744\pi\)
\(150\) 0 0
\(151\) −141.104 + 244.400i −0.934465 + 1.61854i −0.158879 + 0.987298i \(0.550788\pi\)
−0.775586 + 0.631242i \(0.782545\pi\)
\(152\) 70.4050 0.463191
\(153\) 0 0
\(154\) −35.4349 −0.230097
\(155\) 144.557 + 45.3879i 0.932629 + 0.292825i
\(156\) 0 0
\(157\) 161.719 93.3683i 1.03005 0.594702i 0.113055 0.993589i \(-0.463937\pi\)
0.917000 + 0.398886i \(0.130603\pi\)
\(158\) 56.3830 + 97.6582i 0.356854 + 0.618090i
\(159\) 0 0
\(160\) 89.8968 + 28.2257i 0.561855 + 0.176410i
\(161\) 102.831i 0.638704i
\(162\) 0 0
\(163\) 33.6033i 0.206155i 0.994673 + 0.103078i \(0.0328690\pi\)
−0.994673 + 0.103078i \(0.967131\pi\)
\(164\) 23.8559 + 13.7732i 0.145463 + 0.0839830i
\(165\) 0 0
\(166\) −32.7556 56.7344i −0.197323 0.341774i
\(167\) −25.0253 43.3450i −0.149852 0.259551i 0.781321 0.624130i \(-0.214546\pi\)
−0.931173 + 0.364579i \(0.881213\pi\)
\(168\) 0 0
\(169\) −14.3708 + 24.8910i −0.0850346 + 0.147284i
\(170\) 57.9136 + 259.754i 0.340668 + 1.52797i
\(171\) 0 0
\(172\) 82.6641i 0.480605i
\(173\) 37.7803 65.4373i 0.218383 0.378251i −0.735931 0.677057i \(-0.763255\pi\)
0.954314 + 0.298806i \(0.0965884\pi\)
\(174\) 0 0
\(175\) −49.2510 + 70.6986i −0.281434 + 0.403992i
\(176\) 75.5765 43.6341i 0.429412 0.247921i
\(177\) 0 0
\(178\) 130.386 + 75.2786i 0.732507 + 0.422913i
\(179\) 116.454i 0.650583i −0.945614 0.325291i \(-0.894538\pi\)
0.945614 0.325291i \(-0.105462\pi\)
\(180\) 0 0
\(181\) −45.4016 −0.250838 −0.125419 0.992104i \(-0.540027\pi\)
−0.125419 + 0.992104i \(0.540027\pi\)
\(182\) −46.6116 + 80.7336i −0.256107 + 0.443591i
\(183\) 0 0
\(184\) 94.8463 + 164.279i 0.515469 + 0.892819i
\(185\) −17.3093 18.8442i −0.0935635 0.101861i
\(186\) 0 0
\(187\) 90.8548 + 52.4550i 0.485855 + 0.280508i
\(188\) 56.2502 0.299203
\(189\) 0 0
\(190\) 27.5192 + 123.429i 0.144838 + 0.649627i
\(191\) 129.563 + 74.8030i 0.678338 + 0.391639i 0.799229 0.601027i \(-0.205242\pi\)
−0.120890 + 0.992666i \(0.538575\pi\)
\(192\) 0 0
\(193\) −122.804 + 70.9011i −0.636292 + 0.367363i −0.783185 0.621789i \(-0.786406\pi\)
0.146893 + 0.989152i \(0.453073\pi\)
\(194\) 141.907 81.9301i 0.731480 0.422320i
\(195\) 0 0
\(196\) −22.5757 + 39.1022i −0.115182 + 0.199501i
\(197\) −121.128 −0.614864 −0.307432 0.951570i \(-0.599470\pi\)
−0.307432 + 0.951570i \(0.599470\pi\)
\(198\) 0 0
\(199\) −25.7205 −0.129249 −0.0646243 0.997910i \(-0.520585\pi\)
−0.0646243 + 0.997910i \(0.520585\pi\)
\(200\) 13.4724 158.372i 0.0673619 0.791858i
\(201\) 0 0
\(202\) −100.023 + 57.7485i −0.495165 + 0.285884i
\(203\) −61.4026 106.352i −0.302476 0.523904i
\(204\) 0 0
\(205\) 33.9216 108.038i 0.165471 0.527014i
\(206\) 441.749i 2.14441i
\(207\) 0 0
\(208\) 229.588i 1.10379i
\(209\) 43.1721 + 24.9254i 0.206565 + 0.119260i
\(210\) 0 0
\(211\) −38.4483 66.5944i −0.182219 0.315613i 0.760417 0.649436i \(-0.224995\pi\)
−0.942636 + 0.333822i \(0.891661\pi\)
\(212\) 41.3554 + 71.6297i 0.195073 + 0.337876i
\(213\) 0 0
\(214\) 147.392 255.291i 0.688749 1.19295i
\(215\) −331.673 + 73.9482i −1.54266 + 0.343945i
\(216\) 0 0
\(217\) 104.439i 0.481288i
\(218\) −215.864 + 373.888i −0.990203 + 1.71508i
\(219\) 0 0
\(220\) 18.5198 + 20.1622i 0.0841810 + 0.0916461i
\(221\) 239.023 138.000i 1.08155 0.624435i
\(222\) 0 0
\(223\) −168.362 97.2036i −0.754984 0.435890i 0.0725076 0.997368i \(-0.476900\pi\)
−0.827492 + 0.561477i \(0.810233\pi\)
\(224\) 64.9484i 0.289948i
\(225\) 0 0
\(226\) 320.277 1.41715
\(227\) −76.1824 + 131.952i −0.335605 + 0.581285i −0.983601 0.180359i \(-0.942274\pi\)
0.647996 + 0.761644i \(0.275607\pi\)
\(228\) 0 0
\(229\) −133.207 230.722i −0.581691 1.00752i −0.995279 0.0970548i \(-0.969058\pi\)
0.413588 0.910464i \(-0.364276\pi\)
\(230\) −250.929 + 230.489i −1.09100 + 1.00213i
\(231\) 0 0
\(232\) 196.188 + 113.269i 0.845639 + 0.488230i
\(233\) −107.497 −0.461361 −0.230681 0.973029i \(-0.574095\pi\)
−0.230681 + 0.973029i \(0.574095\pi\)
\(234\) 0 0
\(235\) −50.3193 225.692i −0.214124 0.960392i
\(236\) 36.4283 + 21.0319i 0.154357 + 0.0891181i
\(237\) 0 0
\(238\) −158.868 + 91.7223i −0.667511 + 0.385388i
\(239\) −269.946 + 155.853i −1.12948 + 0.652106i −0.943804 0.330504i \(-0.892781\pi\)
−0.185677 + 0.982611i \(0.559448\pi\)
\(240\) 0 0
\(241\) 80.1604 138.842i 0.332616 0.576108i −0.650408 0.759585i \(-0.725402\pi\)
0.983024 + 0.183477i \(0.0587354\pi\)
\(242\) −230.071 −0.950708
\(243\) 0 0
\(244\) 21.1191 0.0865537
\(245\) 177.085 + 55.6008i 0.722795 + 0.226942i
\(246\) 0 0
\(247\) 113.578 65.5745i 0.459831 0.265484i
\(248\) −96.3296 166.848i −0.388426 0.672773i
\(249\) 0 0
\(250\) 282.912 38.2838i 1.13165 0.153135i
\(251\) 357.272i 1.42339i −0.702487 0.711697i \(-0.747927\pi\)
0.702487 0.711697i \(-0.252073\pi\)
\(252\) 0 0
\(253\) 134.313i 0.530883i
\(254\) −25.0879 14.4845i −0.0987711 0.0570255i
\(255\) 0 0
\(256\) −107.063 185.439i −0.418216 0.724371i
\(257\) −227.924 394.776i −0.886865 1.53609i −0.843562 0.537033i \(-0.819545\pi\)
−0.0433031 0.999062i \(-0.513788\pi\)
\(258\) 0 0
\(259\) 8.81869 15.2744i 0.0340490 0.0589746i
\(260\) 70.2980 15.6733i 0.270377 0.0602819i
\(261\) 0 0
\(262\) 261.169i 0.996829i
\(263\) −30.4177 + 52.6851i −0.115657 + 0.200323i −0.918042 0.396483i \(-0.870231\pi\)
0.802385 + 0.596806i \(0.203564\pi\)
\(264\) 0 0
\(265\) 250.404 230.007i 0.944922 0.867952i
\(266\) −75.4902 + 43.5843i −0.283798 + 0.163851i
\(267\) 0 0
\(268\) 103.531 + 59.7738i 0.386311 + 0.223037i
\(269\) 213.484i 0.793620i 0.917901 + 0.396810i \(0.129883\pi\)
−0.917901 + 0.396810i \(0.870117\pi\)
\(270\) 0 0
\(271\) 259.475 0.957474 0.478737 0.877958i \(-0.341095\pi\)
0.478737 + 0.877958i \(0.341095\pi\)
\(272\) 225.891 391.255i 0.830483 1.43844i
\(273\) 0 0
\(274\) −21.9539 38.0252i −0.0801236 0.138778i
\(275\) 64.3293 92.3432i 0.233925 0.335793i
\(276\) 0 0
\(277\) 220.134 + 127.095i 0.794709 + 0.458825i 0.841618 0.540074i \(-0.181604\pi\)
−0.0469089 + 0.998899i \(0.514937\pi\)
\(278\) 128.181 0.461081
\(279\) 0 0
\(280\) 106.934 23.8415i 0.381908 0.0851483i
\(281\) −216.919 125.238i −0.771953 0.445687i 0.0616182 0.998100i \(-0.480374\pi\)
−0.833571 + 0.552413i \(0.813707\pi\)
\(282\) 0 0
\(283\) −299.891 + 173.142i −1.05969 + 0.611810i −0.925345 0.379126i \(-0.876225\pi\)
−0.134340 + 0.990935i \(0.542892\pi\)
\(284\) −141.853 + 81.8991i −0.499484 + 0.288377i
\(285\) 0 0
\(286\) 60.8818 105.450i 0.212873 0.368708i
\(287\) 78.0549 0.271968
\(288\) 0 0
\(289\) 254.114 0.879287
\(290\) −121.892 + 388.217i −0.420316 + 1.33868i
\(291\) 0 0
\(292\) −142.162 + 82.0774i −0.486857 + 0.281087i
\(293\) −156.518 271.098i −0.534192 0.925248i −0.999202 0.0399422i \(-0.987283\pi\)
0.465010 0.885305i \(-0.346051\pi\)
\(294\) 0 0
\(295\) 51.7987 164.975i 0.175589 0.559238i
\(296\) 32.5356i 0.109918i
\(297\) 0 0
\(298\) 405.929i 1.36218i
\(299\) 306.015 + 176.678i 1.02346 + 0.590895i
\(300\) 0 0
\(301\) −117.118 202.854i −0.389095 0.673932i
\(302\) 322.271 + 558.190i 1.06712 + 1.84831i
\(303\) 0 0
\(304\) 107.338 185.916i 0.353087 0.611564i
\(305\) −18.8923 84.7360i −0.0619421 0.277823i
\(306\) 0 0
\(307\) 267.727i 0.872074i 0.899929 + 0.436037i \(0.143618\pi\)
−0.899929 + 0.436037i \(0.856382\pi\)
\(308\) −9.43545 + 16.3427i −0.0306346 + 0.0530606i
\(309\) 0 0
\(310\) 254.854 234.094i 0.822108 0.755142i
\(311\) −305.814 + 176.562i −0.983325 + 0.567723i −0.903272 0.429067i \(-0.858842\pi\)
−0.0800530 + 0.996791i \(0.525509\pi\)
\(312\) 0 0
\(313\) −330.055 190.557i −1.05449 0.608809i −0.130586 0.991437i \(-0.541686\pi\)
−0.923903 + 0.382628i \(0.875019\pi\)
\(314\) 426.492i 1.35825i
\(315\) 0 0
\(316\) 60.0536 0.190043
\(317\) 0.541332 0.937615i 0.00170767 0.00295778i −0.865170 0.501478i \(-0.832790\pi\)
0.866878 + 0.498520i \(0.166123\pi\)
\(318\) 0 0
\(319\) 80.2012 + 138.913i 0.251414 + 0.435463i
\(320\) −127.052 + 116.703i −0.397039 + 0.364697i
\(321\) 0 0
\(322\) −203.394 117.429i −0.631657 0.364688i
\(323\) 258.075 0.798994
\(324\) 0 0
\(325\) −125.772 268.035i −0.386990 0.824724i
\(326\) 66.4652 + 38.3737i 0.203881 + 0.117711i
\(327\) 0 0
\(328\) −124.697 + 71.9938i −0.380174 + 0.219493i
\(329\) 138.035 79.6946i 0.419559 0.242233i
\(330\) 0 0
\(331\) 67.4397 116.809i 0.203745 0.352898i −0.745987 0.665961i \(-0.768022\pi\)
0.949732 + 0.313063i \(0.101355\pi\)
\(332\) −34.8881 −0.105085
\(333\) 0 0
\(334\) −114.312 −0.342250
\(335\) 147.215 468.869i 0.439448 1.39961i
\(336\) 0 0
\(337\) 297.583 171.810i 0.883036 0.509821i 0.0113779 0.999935i \(-0.496378\pi\)
0.871658 + 0.490114i \(0.163045\pi\)
\(338\) 32.8219 + 56.8492i 0.0971063 + 0.168193i
\(339\) 0 0
\(340\) 135.220 + 42.4563i 0.397707 + 0.124871i
\(341\) 136.414i 0.400041i
\(342\) 0 0
\(343\) 296.818i 0.865359i
\(344\) 374.204 + 216.046i 1.08780 + 0.628042i
\(345\) 0 0
\(346\) −86.2872 149.454i −0.249385 0.431948i
\(347\) 99.7471 + 172.767i 0.287456 + 0.497888i 0.973202 0.229953i \(-0.0738573\pi\)
−0.685746 + 0.727841i \(0.740524\pi\)
\(348\) 0 0
\(349\) 103.789 179.767i 0.297389 0.515093i −0.678149 0.734925i \(-0.737218\pi\)
0.975538 + 0.219832i \(0.0705508\pi\)
\(350\) 83.5946 + 178.150i 0.238842 + 0.509001i
\(351\) 0 0
\(352\) 84.8325i 0.241001i
\(353\) −39.9141 + 69.1332i −0.113071 + 0.195845i −0.917007 0.398871i \(-0.869402\pi\)
0.803936 + 0.594716i \(0.202735\pi\)
\(354\) 0 0
\(355\) 455.500 + 495.894i 1.28310 + 1.39688i
\(356\) 69.4374 40.0897i 0.195049 0.112611i
\(357\) 0 0
\(358\) −230.339 132.986i −0.643405 0.371470i
\(359\) 234.273i 0.652571i 0.945271 + 0.326285i \(0.105797\pi\)
−0.945271 + 0.326285i \(0.894203\pi\)
\(360\) 0 0
\(361\) −238.369 −0.660301
\(362\) −51.8469 + 89.8014i −0.143223 + 0.248070i
\(363\) 0 0
\(364\) 24.8230 + 42.9948i 0.0681952 + 0.118118i
\(365\) 456.491 + 496.973i 1.25066 + 1.36157i
\(366\) 0 0
\(367\) 189.916 + 109.648i 0.517481 + 0.298768i 0.735904 0.677086i \(-0.236758\pi\)
−0.218422 + 0.975854i \(0.570091\pi\)
\(368\) 578.405 1.57175
\(369\) 0 0
\(370\) −57.0392 + 12.7172i −0.154160 + 0.0343708i
\(371\) 202.968 + 117.184i 0.547084 + 0.315859i
\(372\) 0 0
\(373\) −139.806 + 80.7171i −0.374815 + 0.216400i −0.675560 0.737305i \(-0.736098\pi\)
0.300745 + 0.953705i \(0.402765\pi\)
\(374\) 207.505 119.803i 0.554827 0.320330i
\(375\) 0 0
\(376\) −147.012 + 254.633i −0.390990 + 0.677215i
\(377\) 421.991 1.11934
\(378\) 0 0
\(379\) 227.627 0.600598 0.300299 0.953845i \(-0.402914\pi\)
0.300299 + 0.953845i \(0.402914\pi\)
\(380\) 64.2536 + 20.1742i 0.169088 + 0.0530901i
\(381\) 0 0
\(382\) 295.911 170.844i 0.774636 0.447237i
\(383\) −90.0556 155.981i −0.235132 0.407261i 0.724179 0.689612i \(-0.242219\pi\)
−0.959311 + 0.282351i \(0.908886\pi\)
\(384\) 0 0
\(385\) 74.0122 + 23.2382i 0.192239 + 0.0603591i
\(386\) 323.866i 0.839030i
\(387\) 0 0
\(388\) 87.2640i 0.224907i
\(389\) −630.749 364.163i −1.62146 0.936153i −0.986529 0.163587i \(-0.947694\pi\)
−0.634935 0.772566i \(-0.718973\pi\)
\(390\) 0 0
\(391\) 347.667 + 602.176i 0.889173 + 1.54009i
\(392\) −118.005 204.391i −0.301033 0.521405i
\(393\) 0 0
\(394\) −138.324 + 239.584i −0.351076 + 0.608081i
\(395\) −53.7217 240.953i −0.136004 0.610007i
\(396\) 0 0
\(397\) 417.565i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(398\) −29.3718 + 50.8734i −0.0737984 + 0.127823i
\(399\) 0 0
\(400\) −397.665 277.027i −0.994163 0.692567i
\(401\) 399.514 230.659i 0.996294 0.575211i 0.0891442 0.996019i \(-0.471587\pi\)
0.907150 + 0.420808i \(0.138253\pi\)
\(402\) 0 0
\(403\) −310.801 179.441i −0.771217 0.445263i
\(404\) 61.5081i 0.152248i
\(405\) 0 0
\(406\) −280.478 −0.690832
\(407\) −11.5186 + 19.9507i −0.0283011 + 0.0490190i
\(408\) 0 0
\(409\) −266.014 460.749i −0.650400 1.12653i −0.983026 0.183467i \(-0.941268\pi\)
0.332626 0.943059i \(-0.392065\pi\)
\(410\) −174.955 190.470i −0.426719 0.464560i
\(411\) 0 0
\(412\) −203.736 117.627i −0.494505 0.285503i
\(413\) 119.191 0.288598
\(414\) 0 0
\(415\) 31.2096 + 139.981i 0.0752038 + 0.337304i
\(416\) −193.279 111.590i −0.464614 0.268245i
\(417\) 0 0
\(418\) 98.6017 56.9277i 0.235889 0.136191i
\(419\) −406.390 + 234.629i −0.969903 + 0.559974i −0.899207 0.437524i \(-0.855856\pi\)
−0.0706967 + 0.997498i \(0.522522\pi\)
\(420\) 0 0
\(421\) 110.269 190.992i 0.261922 0.453662i −0.704831 0.709376i \(-0.748977\pi\)
0.966753 + 0.255713i \(0.0823103\pi\)
\(422\) −175.626 −0.416175
\(423\) 0 0
\(424\) −432.337 −1.01966
\(425\) 49.3841 580.523i 0.116198 1.36594i
\(426\) 0 0
\(427\) 51.8252 29.9213i 0.121370 0.0700733i
\(428\) −78.4940 135.956i −0.183397 0.317653i
\(429\) 0 0
\(430\) −232.493 + 740.473i −0.540681 + 1.72203i
\(431\) 487.110i 1.13018i 0.825028 + 0.565092i \(0.191160\pi\)
−0.825028 + 0.565092i \(0.808840\pi\)
\(432\) 0 0
\(433\) 462.822i 1.06887i −0.845208 0.534437i \(-0.820524\pi\)
0.845208 0.534437i \(-0.179476\pi\)
\(434\) 206.575 + 119.266i 0.475978 + 0.274806i
\(435\) 0 0
\(436\) 114.959 + 199.114i 0.263667 + 0.456685i
\(437\) 165.203 + 286.140i 0.378039 + 0.654783i
\(438\) 0 0
\(439\) −400.695 + 694.024i −0.912744 + 1.58092i −0.102573 + 0.994725i \(0.532708\pi\)
−0.810171 + 0.586194i \(0.800626\pi\)
\(440\) −139.672 + 31.1407i −0.317437 + 0.0707743i
\(441\) 0 0
\(442\) 630.364i 1.42616i
\(443\) 37.1602 64.3634i 0.0838832 0.145290i −0.821032 0.570883i \(-0.806601\pi\)
0.904915 + 0.425593i \(0.139934\pi\)
\(444\) 0 0
\(445\) −222.968 242.740i −0.501051 0.545484i
\(446\) −384.525 + 222.006i −0.862163 + 0.497770i
\(447\) 0 0
\(448\) −102.984 59.4578i −0.229875 0.132718i
\(449\) 358.472i 0.798379i 0.916868 + 0.399190i \(0.130709\pi\)
−0.916868 + 0.399190i \(0.869291\pi\)
\(450\) 0 0
\(451\) −101.952 −0.226057
\(452\) 85.2819 147.713i 0.188677 0.326798i
\(453\) 0 0
\(454\) 173.995 + 301.368i 0.383248 + 0.663805i
\(455\) 150.302 138.059i 0.330334 0.303426i
\(456\) 0 0
\(457\) 100.270 + 57.8908i 0.219409 + 0.126676i 0.605676 0.795711i \(-0.292903\pi\)
−0.386268 + 0.922387i \(0.626236\pi\)
\(458\) −608.471 −1.32854
\(459\) 0 0
\(460\) 39.4861 + 177.103i 0.0858393 + 0.385007i
\(461\) −172.918 99.8343i −0.375093 0.216560i 0.300588 0.953754i \(-0.402817\pi\)
−0.675681 + 0.737194i \(0.736150\pi\)
\(462\) 0 0
\(463\) −517.092 + 298.543i −1.11683 + 0.644802i −0.940590 0.339546i \(-0.889727\pi\)
−0.176240 + 0.984347i \(0.556393\pi\)
\(464\) 598.211 345.377i 1.28925 0.744347i
\(465\) 0 0
\(466\) −122.758 + 212.623i −0.263429 + 0.456272i
\(467\) −605.150 −1.29582 −0.647912 0.761715i \(-0.724357\pi\)
−0.647912 + 0.761715i \(0.724357\pi\)
\(468\) 0 0
\(469\) 338.748 0.722276
\(470\) −503.867 158.203i −1.07206 0.336603i
\(471\) 0 0
\(472\) −190.414 + 109.936i −0.403419 + 0.232914i
\(473\) 152.973 + 264.958i 0.323411 + 0.560164i
\(474\) 0 0
\(475\) 23.4662 275.851i 0.0494025 0.580740i
\(476\) 97.6936i 0.205239i
\(477\) 0 0
\(478\) 711.915i 1.48936i
\(479\) −468.023 270.213i −0.977083 0.564119i −0.0756945 0.997131i \(-0.524117\pi\)
−0.901388 + 0.433012i \(0.857451\pi\)
\(480\) 0 0
\(481\) 30.3034 + 52.4869i 0.0630007 + 0.109120i
\(482\) −183.080 317.104i −0.379835 0.657893i
\(483\) 0 0
\(484\) −61.2624 + 106.110i −0.126575 + 0.219235i
\(485\) −350.129 + 78.0630i −0.721915 + 0.160955i
\(486\) 0 0
\(487\) 565.424i 1.16104i −0.814248 0.580518i \(-0.802850\pi\)
0.814248 0.580518i \(-0.197150\pi\)
\(488\) −55.1957 + 95.6018i −0.113106 + 0.195905i
\(489\) 0 0
\(490\) 312.199 286.768i 0.637140 0.585241i
\(491\) 231.247 133.510i 0.470971 0.271915i −0.245675 0.969352i \(-0.579010\pi\)
0.716646 + 0.697437i \(0.245676\pi\)
\(492\) 0 0
\(493\) 719.143 + 415.197i 1.45871 + 0.842186i
\(494\) 299.534i 0.606345i
\(495\) 0 0
\(496\) −587.450 −1.18438
\(497\) −232.067 + 401.953i −0.466937 + 0.808758i
\(498\) 0 0
\(499\) 310.161 + 537.214i 0.621564 + 1.07658i 0.989195 + 0.146609i \(0.0468358\pi\)
−0.367630 + 0.929972i \(0.619831\pi\)
\(500\) 57.6759 140.674i 0.115352 0.281348i
\(501\) 0 0
\(502\) −706.660 407.991i −1.40769 0.812730i
\(503\) −433.671 −0.862168 −0.431084 0.902312i \(-0.641869\pi\)
−0.431084 + 0.902312i \(0.641869\pi\)
\(504\) 0 0
\(505\) 246.788 55.0228i 0.488690 0.108956i
\(506\) 265.663 + 153.381i 0.525026 + 0.303124i
\(507\) 0 0
\(508\) −13.3606 + 7.71373i −0.0263003 + 0.0151845i
\(509\) 225.376 130.121i 0.442781 0.255640i −0.261995 0.965069i \(-0.584381\pi\)
0.704777 + 0.709429i \(0.251047\pi\)
\(510\) 0 0
\(511\) −232.573 + 402.827i −0.455132 + 0.788312i
\(512\) 127.679 0.249373
\(513\) 0 0
\(514\) −1041.12 −2.02553
\(515\) −289.700 + 922.673i −0.562524 + 1.79160i
\(516\) 0 0
\(517\) −180.295 + 104.093i −0.348733 + 0.201341i
\(518\) −20.1412 34.8856i −0.0388827 0.0673467i
\(519\) 0 0
\(520\) −112.777 + 359.187i −0.216879 + 0.690745i
\(521\) 658.284i 1.26350i 0.775172 + 0.631750i \(0.217663\pi\)
−0.775172 + 0.631750i \(0.782337\pi\)
\(522\) 0 0
\(523\) 401.215i 0.767142i −0.923511 0.383571i \(-0.874694\pi\)
0.923511 0.383571i \(-0.125306\pi\)
\(524\) −120.452 69.5430i −0.229870 0.132716i
\(525\) 0 0
\(526\) 69.4718 + 120.329i 0.132076 + 0.228762i
\(527\) −353.104 611.594i −0.670026 1.16052i
\(528\) 0 0
\(529\) −180.608 + 312.822i −0.341413 + 0.591345i
\(530\) −168.987 757.943i −0.318844 1.43008i
\(531\) 0 0
\(532\) 46.4217i 0.0872589i
\(533\) −134.109 + 232.283i −0.251611 + 0.435803i
\(534\) 0 0
\(535\) −475.276 + 436.561i −0.888366 + 0.816003i
\(536\) −541.168 + 312.443i −1.00964 + 0.582917i
\(537\) 0 0
\(538\) 422.257 + 243.790i 0.784864 + 0.453142i
\(539\) 167.109i 0.310035i
\(540\) 0 0
\(541\) 131.652 0.243350 0.121675 0.992570i \(-0.461173\pi\)
0.121675 + 0.992570i \(0.461173\pi\)
\(542\) 296.311 513.226i 0.546699 0.946911i
\(543\) 0 0
\(544\) −219.587 380.335i −0.403652 0.699146i
\(545\) 696.068 639.369i 1.27719 1.17315i
\(546\) 0 0
\(547\) 857.154 + 494.878i 1.56701 + 0.904713i 0.996515 + 0.0834119i \(0.0265817\pi\)
0.570494 + 0.821301i \(0.306752\pi\)
\(548\) −23.3831 −0.0426699
\(549\) 0 0
\(550\) −109.187 232.692i −0.198522 0.423076i
\(551\) 341.720 + 197.292i 0.620182 + 0.358062i
\(552\) 0 0
\(553\) 147.369 85.0833i 0.266489 0.153858i
\(554\) 502.770 290.274i 0.907527 0.523961i
\(555\) 0 0
\(556\) 34.1314 59.1173i 0.0613874 0.106326i
\(557\) 299.018 0.536836 0.268418 0.963302i \(-0.413499\pi\)
0.268418 + 0.963302i \(0.413499\pi\)
\(558\) 0 0
\(559\) 804.894 1.43988
\(560\) 100.073 318.725i 0.178701 0.569151i
\(561\) 0 0
\(562\) −495.426 + 286.034i −0.881540 + 0.508957i
\(563\) 379.185 + 656.768i 0.673508 + 1.16655i 0.976903 + 0.213685i \(0.0685467\pi\)
−0.303394 + 0.952865i \(0.598120\pi\)
\(564\) 0 0
\(565\) −668.957 210.038i −1.18399 0.371749i
\(566\) 790.887i 1.39733i
\(567\) 0 0
\(568\) 856.189i 1.50737i
\(569\) −503.382 290.628i −0.884679 0.510770i −0.0124807 0.999922i \(-0.503973\pi\)
−0.872198 + 0.489152i \(0.837306\pi\)
\(570\) 0 0
\(571\) 335.239 + 580.651i 0.587109 + 1.01690i 0.994609 + 0.103697i \(0.0330673\pi\)
−0.407500 + 0.913205i \(0.633599\pi\)
\(572\) −32.4227 56.1577i −0.0566830 0.0981778i
\(573\) 0 0
\(574\) 89.1357 154.388i 0.155289 0.268968i
\(575\) 675.266 316.859i 1.17438 0.551060i
\(576\) 0 0
\(577\) 135.394i 0.234652i 0.993093 + 0.117326i \(0.0374322\pi\)
−0.993093 + 0.117326i \(0.962568\pi\)
\(578\) 290.189 502.621i 0.502056 0.869587i
\(579\) 0 0
\(580\) 146.590 + 159.589i 0.252741 + 0.275154i
\(581\) −85.6137 + 49.4291i −0.147356 + 0.0850758i
\(582\) 0 0
\(583\) −265.107 153.060i −0.454730 0.262538i
\(584\) 858.052i 1.46927i
\(585\) 0 0
\(586\) −714.951 −1.22005
\(587\) −179.702 + 311.253i −0.306136 + 0.530243i −0.977514 0.210872i \(-0.932370\pi\)
0.671377 + 0.741116i \(0.265703\pi\)
\(588\) 0 0
\(589\) −167.787 290.615i −0.284867 0.493404i
\(590\) −267.158 290.850i −0.452811 0.492966i
\(591\) 0 0
\(592\) 85.9154 + 49.6033i 0.145127 + 0.0837894i
\(593\) −540.430 −0.911349 −0.455675 0.890146i \(-0.650602\pi\)
−0.455675 + 0.890146i \(0.650602\pi\)
\(594\) 0 0
\(595\) 391.975 87.3930i 0.658782 0.146879i
\(596\) 187.216 + 108.089i 0.314120 + 0.181357i
\(597\) 0 0
\(598\) 698.914 403.518i 1.16875 0.674780i
\(599\) −499.301 + 288.271i −0.833557 + 0.481254i −0.855069 0.518514i \(-0.826485\pi\)
0.0215119 + 0.999769i \(0.493152\pi\)
\(600\) 0 0
\(601\) 513.210 888.906i 0.853927 1.47905i −0.0237095 0.999719i \(-0.507548\pi\)
0.877637 0.479326i \(-0.159119\pi\)
\(602\) −534.975 −0.888663
\(603\) 0 0
\(604\) 343.252 0.568298
\(605\) 480.546 + 150.881i 0.794290 + 0.249390i
\(606\) 0 0
\(607\) 143.178 82.6636i 0.235877 0.136184i −0.377403 0.926049i \(-0.623183\pi\)
0.613280 + 0.789865i \(0.289850\pi\)
\(608\) −104.343 180.727i −0.171616 0.297248i
\(609\) 0 0
\(610\) −189.177 59.3974i −0.310126 0.0973728i
\(611\) 547.703i 0.896404i
\(612\) 0 0
\(613\) 251.007i 0.409473i 0.978817 + 0.204737i \(0.0656338\pi\)
−0.978817 + 0.204737i \(0.934366\pi\)
\(614\) 529.546 + 305.734i 0.862453 + 0.497938i
\(615\) 0 0
\(616\) −49.3199 85.4246i −0.0800648 0.138676i
\(617\) 458.546 + 794.224i 0.743186 + 1.28724i 0.951038 + 0.309075i \(0.100019\pi\)
−0.207852 + 0.978160i \(0.566647\pi\)
\(618\) 0 0
\(619\) 138.795 240.399i 0.224224 0.388367i −0.731862 0.681452i \(-0.761349\pi\)
0.956086 + 0.293085i \(0.0946820\pi\)
\(620\) −40.1036 179.873i −0.0646832 0.290117i
\(621\) 0 0
\(622\) 806.508i 1.29664i
\(623\) 113.597 196.756i 0.182339 0.315820i
\(624\) 0 0
\(625\) −616.019 105.571i −0.985631 0.168914i
\(626\) −753.820 + 435.218i −1.20419 + 0.695237i
\(627\) 0 0
\(628\) −196.699 113.564i −0.313216 0.180835i
\(629\) 119.262i 0.189606i
\(630\) 0 0
\(631\) 322.116 0.510485 0.255243 0.966877i \(-0.417845\pi\)
0.255243 + 0.966877i \(0.417845\pi\)
\(632\) −156.953 + 271.850i −0.248343 + 0.430143i
\(633\) 0 0
\(634\) −1.23636 2.14144i −0.00195010 0.00337767i
\(635\) 42.9016 + 46.7061i 0.0675616 + 0.0735529i
\(636\) 0 0
\(637\) −380.735 219.817i −0.597700 0.345082i
\(638\) 366.347 0.574211
\(639\) 0 0
\(640\) 167.759 + 752.435i 0.262124 + 1.17568i
\(641\) −239.860 138.483i −0.374196 0.216042i 0.301094 0.953594i \(-0.402648\pi\)
−0.675290 + 0.737552i \(0.735982\pi\)
\(642\) 0 0
\(643\) 743.356 429.177i 1.15607 0.667460i 0.205714 0.978612i \(-0.434048\pi\)
0.950360 + 0.311152i \(0.100715\pi\)
\(644\) −108.318 + 62.5372i −0.168195 + 0.0971074i
\(645\) 0 0
\(646\) 294.712 510.456i 0.456210 0.790180i
\(647\) 1065.93 1.64749 0.823746 0.566960i \(-0.191880\pi\)
0.823746 + 0.566960i \(0.191880\pi\)
\(648\) 0 0
\(649\) −155.681 −0.239879
\(650\) −673.783 57.3175i −1.03659 0.0881808i
\(651\) 0 0
\(652\) 35.3961 20.4360i 0.0542886 0.0313435i
\(653\) 178.126 + 308.523i 0.272781 + 0.472470i 0.969573 0.244803i \(-0.0787233\pi\)
−0.696792 + 0.717273i \(0.745390\pi\)
\(654\) 0 0
\(655\) −171.275 + 545.499i −0.261489 + 0.832823i
\(656\) 439.043i 0.669272i
\(657\) 0 0
\(658\) 364.033i 0.553241i
\(659\) −33.6473 19.4263i −0.0510581 0.0294784i 0.474254 0.880388i \(-0.342718\pi\)
−0.525312 + 0.850910i \(0.676051\pi\)
\(660\) 0 0
\(661\) −100.918 174.795i −0.152674 0.264440i 0.779535 0.626358i \(-0.215455\pi\)
−0.932210 + 0.361918i \(0.882122\pi\)
\(662\) −154.027 266.783i −0.232670 0.402995i
\(663\) 0 0
\(664\) 91.1817 157.931i 0.137322 0.237848i
\(665\) 186.258 41.5271i 0.280087 0.0624468i
\(666\) 0 0
\(667\) 1063.13i 1.59390i
\(668\) −30.4384 + 52.7208i −0.0455665 + 0.0789234i
\(669\) 0 0
\(670\) −759.280 826.613i −1.13325 1.23375i
\(671\) −67.6916 + 39.0818i −0.100882 + 0.0582441i
\(672\) 0 0
\(673\) 389.128 + 224.663i 0.578200 + 0.333824i 0.760418 0.649434i \(-0.224994\pi\)
−0.182218 + 0.983258i \(0.558328\pi\)
\(674\) 784.801i 1.16439i
\(675\) 0 0
\(676\) 34.9587 0.0517141
\(677\) 351.405 608.651i 0.519062 0.899042i −0.480693 0.876889i \(-0.659615\pi\)
0.999755 0.0221524i \(-0.00705192\pi\)
\(678\) 0 0
\(679\) −123.635 214.141i −0.182083 0.315378i
\(680\) −545.596 + 501.153i −0.802346 + 0.736990i
\(681\) 0 0
\(682\) −269.818 155.779i −0.395627 0.228416i
\(683\) 705.068 1.03231 0.516155 0.856495i \(-0.327363\pi\)
0.516155 + 0.856495i \(0.327363\pi\)
\(684\) 0 0
\(685\) 20.9177 + 93.8199i 0.0305367 + 0.136963i
\(686\) 587.087 + 338.955i 0.855812 + 0.494103i
\(687\) 0 0
\(688\) 1141.01 658.762i 1.65844 0.957503i
\(689\) −697.452 + 402.674i −1.01227 + 0.584433i
\(690\) 0 0
\(691\) 442.125 765.783i 0.639833 1.10822i −0.345636 0.938369i \(-0.612337\pi\)
0.985469 0.169855i \(-0.0543300\pi\)
\(692\) −91.9047 −0.132810
\(693\) 0 0
\(694\) 455.630 0.656527
\(695\) −267.728 84.0610i −0.385221 0.120951i
\(696\) 0 0
\(697\) −457.087 + 263.899i −0.655791 + 0.378621i
\(698\) −237.046 410.575i −0.339607 0.588216i
\(699\) 0 0
\(700\) 104.423 + 8.88305i 0.149175 + 0.0126901i
\(701\) 267.537i 0.381651i 0.981624 + 0.190826i \(0.0611165\pi\)
−0.981624 + 0.190826i \(0.938884\pi\)
\(702\) 0 0
\(703\) 56.6705i 0.0806124i
\(704\) 134.513 + 77.6609i 0.191069 + 0.110314i
\(705\) 0 0
\(706\) 91.1607 + 157.895i 0.129123 + 0.223647i
\(707\) 87.1439 + 150.938i 0.123259 + 0.213490i
\(708\) 0 0
\(709\) 266.623 461.805i 0.376056 0.651348i −0.614429 0.788972i \(-0.710613\pi\)
0.990484 + 0.137625i \(0.0439468\pi\)
\(710\) 1501.01 334.658i 2.11410 0.471349i
\(711\) 0 0
\(712\) 419.105i 0.588631i
\(713\) 452.069 783.006i 0.634037 1.09818i
\(714\) 0 0
\(715\) −196.317 + 180.326i −0.274569 + 0.252204i
\(716\) −122.667 + 70.8220i −0.171323 + 0.0989134i
\(717\) 0 0
\(718\) 463.377 + 267.531i 0.645372 + 0.372606i
\(719\) 101.956i 0.141803i 0.997483 + 0.0709015i \(0.0225876\pi\)
−0.997483 + 0.0709015i \(0.977412\pi\)
\(720\) 0 0
\(721\) −666.611 −0.924564
\(722\) −272.208 + 471.478i −0.377019 + 0.653016i
\(723\) 0 0
\(724\) 27.6111 + 47.8239i 0.0381369 + 0.0660551i
\(725\) 509.186 730.924i 0.702326 1.00817i
\(726\) 0 0
\(727\) −636.475 367.469i −0.875482 0.505460i −0.00631598 0.999980i \(-0.502010\pi\)
−0.869166 + 0.494520i \(0.835344\pi\)
\(728\) −259.505 −0.356462
\(729\) 0 0
\(730\) 1504.28 335.386i 2.06065 0.459433i
\(731\) 1371.67 + 791.935i 1.87643 + 1.08336i
\(732\) 0 0
\(733\) 1146.80 662.106i 1.56453 0.903282i 0.567742 0.823207i \(-0.307817\pi\)
0.996789 0.0800754i \(-0.0255161\pi\)
\(734\) 433.753 250.427i 0.590944 0.341182i
\(735\) 0 0
\(736\) 281.131 486.933i 0.381971 0.661593i
\(737\) −442.456 −0.600347
\(738\) 0 0
\(739\) 978.711 1.32437 0.662186 0.749340i \(-0.269629\pi\)
0.662186 + 0.749340i \(0.269629\pi\)
\(740\) −9.32294 + 29.6929i −0.0125986 + 0.0401256i
\(741\) 0 0
\(742\) 463.564 267.639i 0.624749 0.360699i
\(743\) 464.088 + 803.824i 0.624614 + 1.08186i 0.988615 + 0.150464i \(0.0480769\pi\)
−0.364002 + 0.931398i \(0.618590\pi\)
\(744\) 0 0
\(745\) 266.209 847.856i 0.357327 1.13806i
\(746\) 368.704i 0.494241i
\(747\) 0 0
\(748\) 127.603i 0.170592i
\(749\) −385.240 222.419i −0.514340 0.296954i
\(750\) 0 0
\(751\) 268.998 + 465.919i 0.358187 + 0.620398i 0.987658 0.156626i \(-0.0500618\pi\)
−0.629471 + 0.777024i \(0.716728\pi\)
\(752\) 448.265 + 776.418i 0.596097 + 1.03247i
\(753\) 0 0
\(754\) 481.898 834.672i 0.639122 1.10699i
\(755\) −307.060 1377.23i −0.406702 1.82414i
\(756\) 0 0
\(757\) 981.098i 1.29603i −0.761626 0.648017i \(-0.775599\pi\)
0.761626 0.648017i \(-0.224401\pi\)
\(758\) 259.941 450.231i 0.342930 0.593972i
\(759\) 0 0
\(760\) −259.254 + 238.136i −0.341124 + 0.313337i
\(761\) −495.891 + 286.303i −0.651630 + 0.376219i −0.789080 0.614290i \(-0.789443\pi\)
0.137450 + 0.990509i \(0.456109\pi\)
\(762\) 0 0
\(763\) 564.206 + 325.745i 0.739457 + 0.426926i
\(764\) 181.967i 0.238176i
\(765\) 0 0
\(766\) −411.360 −0.537024
\(767\) −204.786 + 354.699i −0.266996 + 0.462450i
\(768\) 0 0
\(769\) −466.186 807.457i −0.606223 1.05001i −0.991857 0.127358i \(-0.959350\pi\)
0.385634 0.922652i \(-0.373983\pi\)
\(770\) 130.483 119.854i 0.169458 0.155655i
\(771\) 0 0
\(772\) 149.368 + 86.2375i 0.193482 + 0.111707i
\(773\) −280.315 −0.362632 −0.181316 0.983425i \(-0.558036\pi\)
−0.181316 + 0.983425i \(0.558036\pi\)
\(774\) 0 0
\(775\) −685.827 + 321.815i −0.884938 + 0.415245i
\(776\) 395.026 + 228.068i 0.509054 + 0.293903i
\(777\) 0 0
\(778\) −1440.58 + 831.721i −1.85165 + 1.06905i
\(779\) −217.197 + 125.399i −0.278815 + 0.160974i
\(780\) 0 0
\(781\) 303.116 525.011i 0.388112 0.672230i
\(782\) 1588.09 2.03080
\(783\) 0 0
\(784\) −719.634 −0.917901
\(785\) −279.694 + 890.806i −0.356298 + 1.13478i
\(786\) 0 0
\(787\) −612.463 + 353.606i −0.778225 + 0.449308i −0.835801 0.549033i \(-0.814996\pi\)
0.0575759 + 0.998341i \(0.481663\pi\)
\(788\) 73.6645 + 127.591i 0.0934829 + 0.161917i
\(789\) 0 0
\(790\) −537.937 168.901i −0.680933 0.213798i
\(791\) 483.306i 0.611006i
\(792\) 0 0
\(793\) 205.635i 0.259313i
\(794\) 825.918 + 476.844i 1.04020 + 0.600559i
\(795\) 0 0
\(796\) 15.6420 + 27.0927i 0.0196507 + 0.0340361i
\(797\) −673.041 1165.74i −0.844468 1.46266i −0.886082 0.463528i \(-0.846583\pi\)
0.0416138 0.999134i \(-0.486750\pi\)
\(798\) 0 0
\(799\) −538.885 + 933.377i −0.674450 + 1.16818i
\(800\) −426.499 + 200.129i −0.533124 + 0.250161i
\(801\) 0 0
\(802\) 1053.62i 1.31374i
\(803\) 303.775 526.154i 0.378300 0.655235i
\(804\) 0 0
\(805\) 347.814 + 378.658i 0.432067 + 0.470383i
\(806\) −709.845 + 409.829i −0.880701 + 0.508473i
\(807\) 0 0
\(808\) −278.434 160.754i −0.344597 0.198953i
\(809\) 63.7611i 0.0788147i −0.999223 0.0394073i \(-0.987453\pi\)
0.999223 0.0394073i \(-0.0125470\pi\)
\(810\) 0 0
\(811\) 869.786 1.07249 0.536243 0.844064i \(-0.319843\pi\)
0.536243 + 0.844064i \(0.319843\pi\)
\(812\) −74.6844 + 129.357i −0.0919759 + 0.159307i
\(813\) 0 0
\(814\) 26.3075 + 45.5659i 0.0323188 + 0.0559778i
\(815\) −113.659 123.738i −0.139459 0.151826i
\(816\) 0 0
\(817\) 651.787 + 376.309i 0.797781 + 0.460599i
\(818\) −1215.11 −1.48546
\(819\) 0 0
\(820\) −134.431 + 29.9722i −0.163941 + 0.0365515i
\(821\) −500.175 288.776i −0.609227 0.351737i 0.163436 0.986554i \(-0.447742\pi\)
−0.772663 + 0.634817i \(0.781076\pi\)
\(822\) 0 0
\(823\) 301.155 173.872i 0.365923 0.211266i −0.305753 0.952111i \(-0.598908\pi\)
0.671676 + 0.740845i \(0.265575\pi\)
\(824\) 1064.95 614.847i 1.29241 0.746174i
\(825\) 0 0
\(826\) 136.111 235.752i 0.164784 0.285414i
\(827\) −19.0847 −0.0230770 −0.0115385 0.999933i \(-0.503673\pi\)
−0.0115385 + 0.999933i \(0.503673\pi\)
\(828\) 0 0
\(829\) −39.6514 −0.0478303 −0.0239152 0.999714i \(-0.507613\pi\)
−0.0239152 + 0.999714i \(0.507613\pi\)
\(830\) 312.514 + 98.1228i 0.376523 + 0.118220i
\(831\) 0 0
\(832\) 353.880 204.313i 0.425336 0.245568i
\(833\) −432.557 749.210i −0.519276 0.899412i
\(834\) 0 0
\(835\) 238.760 + 74.9657i 0.285941 + 0.0897793i
\(836\) 60.6339i 0.0725286i
\(837\) 0 0
\(838\) 1071.75i 1.27894i
\(839\) −326.716 188.630i −0.389411 0.224827i 0.292494 0.956267i \(-0.405515\pi\)
−0.681905 + 0.731441i \(0.738848\pi\)
\(840\) 0 0
\(841\) 214.317 + 371.207i 0.254835 + 0.441388i
\(842\) −251.846 436.211i −0.299105 0.518065i
\(843\) 0 0
\(844\) −46.7649 + 80.9991i −0.0554086 + 0.0959705i
\(845\) −31.2727 140.265i −0.0370091 0.165994i
\(846\) 0 0
\(847\) 347.183i 0.409898i
\(848\) −659.134 + 1141.65i −0.777281 + 1.34629i
\(849\) 0 0
\(850\) −1091.84 760.614i −1.28452 0.894840i
\(851\) −132.231 + 76.3438i −0.155384 + 0.0897107i
\(852\) 0 0
\(853\) 142.059 + 82.0178i 0.166540 + 0.0961521i 0.580954 0.813937i \(-0.302680\pi\)
−0.414413 + 0.910089i \(0.636013\pi\)
\(854\) 136.676i 0.160042i
\(855\) 0 0
\(856\) 820.590 0.958634
\(857\) −157.693 + 273.132i −0.184006 + 0.318707i −0.943241 0.332109i \(-0.892240\pi\)
0.759235 + 0.650816i \(0.225573\pi\)
\(858\) 0 0
\(859\) 46.8200 + 81.0946i 0.0545052 + 0.0944058i 0.891991 0.452054i \(-0.149309\pi\)
−0.837485 + 0.546460i \(0.815975\pi\)
\(860\) 279.601 + 304.396i 0.325118 + 0.353949i
\(861\) 0 0
\(862\) 963.472 + 556.261i 1.11772 + 0.645314i
\(863\) −1055.96 −1.22360 −0.611799 0.791013i \(-0.709554\pi\)
−0.611799 + 0.791013i \(0.709554\pi\)
\(864\) 0 0
\(865\) 82.2145 + 368.749i 0.0950457 + 0.426299i
\(866\) −915.433 528.525i −1.05708 0.610306i
\(867\) 0 0
\(868\) 110.012 63.5152i 0.126741 0.0731742i
\(869\) −192.486 + 111.132i −0.221503 + 0.127885i
\(870\) 0 0
\(871\) −582.013 + 1008.08i −0.668212 + 1.15738i
\(872\) −1201.80 −1.37821
\(873\) 0 0
\(874\) 754.623 0.863413
\(875\) −57.7712 426.921i −0.0660242 0.487910i
\(876\) 0 0
\(877\) −182.957 + 105.630i −0.208617 + 0.120445i −0.600668 0.799498i \(-0.705099\pi\)
0.392052 + 0.919943i \(0.371765\pi\)
\(878\) 915.156 + 1585.10i 1.04232 + 1.80535i
\(879\) 0 0
\(880\) −130.710 + 416.303i −0.148534 + 0.473072i
\(881\) 824.884i 0.936304i 0.883648 + 0.468152i \(0.155080\pi\)
−0.883648 + 0.468152i \(0.844920\pi\)
\(882\) 0 0
\(883\) 1155.63i 1.30875i −0.756171 0.654375i \(-0.772932\pi\)
0.756171 0.654375i \(-0.227068\pi\)
\(884\) −290.726 167.851i −0.328875 0.189876i
\(885\) 0 0
\(886\) −84.8711 147.001i −0.0957914 0.165916i
\(887\) −628.207 1088.09i −0.708238 1.22670i −0.965510 0.260366i \(-0.916157\pi\)
0.257272 0.966339i \(-0.417176\pi\)
\(888\) 0 0
\(889\) −21.8574 + 37.8582i −0.0245865 + 0.0425851i
\(890\) −734.745 + 163.815i −0.825557 + 0.184062i
\(891\) 0 0
\(892\) 236.459i 0.265088i
\(893\) −256.066 + 443.519i −0.286748 + 0.496662i
\(894\) 0 0
\(895\) 393.892 + 428.823i 0.440103 + 0.479131i
\(896\) −460.195 + 265.694i −0.513611 + 0.296533i
\(897\) 0 0
\(898\) 709.035 + 409.362i 0.789572 + 0.455859i
\(899\) 1079.76i 1.20106i
\(900\) 0 0
\(901\) −1584.77 −1.75890
\(902\) −116.425 + 201.654i −0.129074 + 0.223563i
\(903\) 0 0
\(904\) 445.777 + 772.108i 0.493116 + 0.854101i
\(905\) 167.183 153.565i 0.184733 0.169685i
\(906\) 0 0
\(907\) −999.793 577.230i −1.10231 0.636417i −0.165481 0.986213i \(-0.552918\pi\)
−0.936826 + 0.349796i \(0.886251\pi\)
\(908\) 185.322 0.204099
\(909\) 0 0
\(910\) −101.432 454.945i −0.111464 0.499940i
\(911\) −302.953 174.910i −0.332550 0.191998i 0.324423 0.945912i \(-0.394830\pi\)
−0.656973 + 0.753914i \(0.728163\pi\)
\(912\) 0 0
\(913\) 111.824 64.5619i 0.122480 0.0707140i
\(914\) 229.009 132.218i 0.250556 0.144659i
\(915\) 0 0
\(916\) −162.021 + 280.628i −0.176879 + 0.306363i
\(917\) −394.111 −0.429783
\(918\) 0 0
\(919\) −375.011 −0.408064 −0.204032 0.978964i \(-0.565405\pi\)
−0.204032 + 0.978964i \(0.565405\pi\)
\(920\) −904.907 284.122i −0.983595 0.308828i
\(921\) 0 0
\(922\) −394.932 + 228.014i −0.428342 + 0.247303i
\(923\) −797.445 1381.22i −0.863971 1.49644i
\(924\) 0 0
\(925\) 127.477 + 10.8442i 0.137813 + 0.0117235i
\(926\) 1363.70i 1.47268i
\(927\) 0 0
\(928\) 671.475i 0.723572i
\(929\) 920.884 + 531.672i 0.991263 + 0.572306i 0.905652 0.424022i \(-0.139382\pi\)
0.0856117 + 0.996329i \(0.472716\pi\)
\(930\) 0 0
\(931\) −205.541 356.007i −0.220774 0.382392i
\(932\) 65.3748 + 113.232i 0.0701446 + 0.121494i
\(933\) 0 0
\(934\) −691.058 + 1196.95i −0.739890 + 1.28153i
\(935\) −511.980 + 114.149i −0.547572 + 0.122084i
\(936\) 0 0
\(937\) 1021.59i 1.09028i −0.838344 0.545141i \(-0.816476\pi\)
0.838344 0.545141i \(-0.183524\pi\)
\(938\) 386.837 670.021i 0.412406 0.714308i
\(939\) 0 0
\(940\) −207.131 + 190.259i −0.220353 + 0.202403i
\(941\) 378.485 218.519i 0.402216 0.232220i −0.285224 0.958461i \(-0.592068\pi\)
0.687440 + 0.726241i \(0.258735\pi\)
\(942\) 0 0
\(943\) −585.195 337.862i −0.620567 0.358285i
\(944\) 670.424i 0.710195i
\(945\) 0 0
\(946\) 698.759 0.738646
\(947\) 829.222 1436.26i 0.875631 1.51664i 0.0195416 0.999809i \(-0.493779\pi\)
0.856089 0.516828i \(-0.172887\pi\)
\(948\) 0 0
\(949\) −799.180 1384.22i −0.842129 1.45861i
\(950\) −518.819 361.426i −0.546125 0.380449i
\(951\) 0 0
\(952\) −442.239 255.327i −0.464537 0.268200i
\(953\) 413.980 0.434397 0.217198 0.976127i \(-0.430308\pi\)
0.217198 + 0.976127i \(0.430308\pi\)
\(954\) 0 0
\(955\) −730.104 + 162.781i −0.764507 + 0.170451i
\(956\) 328.337 + 189.565i 0.343449 + 0.198290i
\(957\) 0 0
\(958\) −1068.93 + 617.146i −1.11579 + 0.644202i
\(959\) −57.3810 + 33.1289i −0.0598342 + 0.0345453i
\(960\) 0 0
\(961\) 21.3614 36.9991i 0.0222283 0.0385006i
\(962\) 138.421 0.143889
\(963\) 0 0
\(964\) −194.999 −0.202281
\(965\) 212.391 676.452i 0.220095 0.700986i
\(966\) 0 0
\(967\) 88.8900 51.3207i 0.0919235 0.0530720i −0.453334 0.891341i \(-0.649765\pi\)
0.545257 + 0.838269i \(0.316432\pi\)
\(968\) −320.224 554.644i −0.330810 0.572980i
\(969\) 0 0
\(970\) −245.430 + 781.677i −0.253020 + 0.805853i
\(971\) 997.502i 1.02729i −0.858002 0.513647i \(-0.828294\pi\)
0.858002 0.513647i \(-0.171706\pi\)
\(972\) 0 0
\(973\) 193.428i 0.198795i
\(974\) −1118.37 645.693i −1.14823 0.662929i
\(975\) 0 0
\(976\) 168.301 + 291.506i 0.172440 + 0.298674i
\(977\) 630.932 + 1092.81i 0.645785 + 1.11853i 0.984120 + 0.177506i \(0.0568030\pi\)
−0.338335 + 0.941026i \(0.609864\pi\)
\(978\) 0 0
\(979\) −148.375 + 256.993i −0.151558 + 0.262506i
\(980\) −49.1274 220.346i −0.0501300 0.224843i
\(981\) 0 0
\(982\) 609.855i 0.621033i
\(983\) −518.098 + 897.372i −0.527058 + 0.912891i 0.472445 + 0.881360i \(0.343372\pi\)
−0.999503 + 0.0315308i \(0.989962\pi\)
\(984\) 0 0
\(985\) 446.034 409.701i 0.452826 0.415940i
\(986\) 1642.47 948.279i 1.66579 0.961744i
\(987\) 0 0
\(988\) −138.146 79.7587i −0.139824 0.0807274i
\(989\) 2027.78i 2.05034i
\(990\) 0 0
\(991\) −1503.88 −1.51754 −0.758770 0.651358i \(-0.774200\pi\)
−0.758770 + 0.651358i \(0.774200\pi\)
\(992\) −285.527 + 494.548i −0.287830 + 0.498536i
\(993\) 0 0
\(994\) 530.024 + 918.029i 0.533224 + 0.923571i
\(995\) 94.7111 86.9963i 0.0951871 0.0874335i
\(996\) 0 0
\(997\) −289.976 167.418i −0.290849 0.167922i 0.347476 0.937689i \(-0.387039\pi\)
−0.638325 + 0.769767i \(0.720372\pi\)
\(998\) 1416.77 1.41961
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.269.19 48
3.2 odd 2 inner 405.3.h.k.269.6 48
5.4 even 2 inner 405.3.h.k.269.5 48
9.2 odd 6 405.3.d.b.404.20 yes 24
9.4 even 3 inner 405.3.h.k.134.20 48
9.5 odd 6 inner 405.3.h.k.134.5 48
9.7 even 3 405.3.d.b.404.5 24
15.14 odd 2 inner 405.3.h.k.269.20 48
45.4 even 6 inner 405.3.h.k.134.6 48
45.14 odd 6 inner 405.3.h.k.134.19 48
45.29 odd 6 405.3.d.b.404.6 yes 24
45.34 even 6 405.3.d.b.404.19 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.5 24 9.7 even 3
405.3.d.b.404.6 yes 24 45.29 odd 6
405.3.d.b.404.19 yes 24 45.34 even 6
405.3.d.b.404.20 yes 24 9.2 odd 6
405.3.h.k.134.5 48 9.5 odd 6 inner
405.3.h.k.134.6 48 45.4 even 6 inner
405.3.h.k.134.19 48 45.14 odd 6 inner
405.3.h.k.134.20 48 9.4 even 3 inner
405.3.h.k.269.5 48 5.4 even 2 inner
405.3.h.k.269.6 48 3.2 odd 2 inner
405.3.h.k.269.19 48 1.1 even 1 trivial
405.3.h.k.269.20 48 15.14 odd 2 inner