Properties

Label 405.3.h.k.134.5
Level $405$
Weight $3$
Character 405.134
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 134.5
Character \(\chi\) \(=\) 405.134
Dual form 405.3.h.k.269.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14196 - 1.97794i) q^{2} +(-0.608153 + 1.05335i) q^{4} +(-4.77039 - 1.49780i) q^{5} +(2.98475 - 1.72325i) q^{7} -6.35774 q^{8} +(2.48505 + 11.1459i) q^{10} +(3.89854 - 2.25082i) q^{11} +(-10.2564 - 5.92153i) q^{13} +(-6.81695 - 3.93577i) q^{14} +(9.69291 + 16.7886i) q^{16} -23.3048 q^{17} +11.0739 q^{19} +(4.47884 - 4.11401i) q^{20} +(-8.90397 - 5.14071i) q^{22} +(-14.9182 + 25.8391i) q^{23} +(20.5132 + 14.2902i) q^{25} +27.0487i q^{26} +4.19199i q^{28} +(30.8581 - 17.8160i) q^{29} +(-15.1515 + 26.2432i) q^{31} +(9.42238 - 16.3200i) q^{32} +(26.6132 + 46.0954i) q^{34} +(-16.8195 + 3.75000i) q^{35} +5.11748i q^{37} +(-12.6460 - 21.9035i) q^{38} +(30.3289 + 9.52263i) q^{40} +(-19.6134 - 11.3238i) q^{41} +(-58.8579 + 33.9816i) q^{43} +5.47538i q^{44} +68.1442 q^{46} +(23.1234 + 40.0508i) q^{47} +(-18.5608 + 32.1483i) q^{49} +(4.83975 - 56.8926i) q^{50} +(12.4749 - 7.20240i) q^{52} +68.0017 q^{53} +(-21.9688 + 4.89807i) q^{55} +(-18.9763 + 10.9560i) q^{56} +(-70.4776 - 40.6903i) q^{58} +(-29.9499 - 17.2916i) q^{59} +(-8.68165 - 15.0371i) q^{61} +69.2099 q^{62} +34.5033 q^{64} +(40.0577 + 43.6100i) q^{65} +(85.1195 + 49.1438i) q^{67} +(14.1729 - 24.5482i) q^{68} +(26.6245 + 28.9856i) q^{70} +134.669i q^{71} -134.962i q^{73} +(10.1221 - 5.84397i) q^{74} +(-6.73463 + 11.6647i) q^{76} +(7.75746 - 13.4363i) q^{77} +(-24.6869 - 42.7589i) q^{79} +(-21.0930 - 94.6062i) q^{80} +51.7254i q^{82} +(-14.3418 - 24.8408i) q^{83} +(111.173 + 34.9059i) q^{85} +(134.427 + 77.6114i) q^{86} +(-24.7859 + 14.3102i) q^{88} -65.9204i q^{89} -40.8171 q^{91} +(-18.1451 - 31.4283i) q^{92} +(52.8120 - 91.4730i) q^{94} +(-52.8268 - 16.5865i) q^{95} +(-62.1331 + 35.8725i) q^{97} +84.7830 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14196 1.97794i −0.570981 0.988968i −0.996466 0.0840022i \(-0.973230\pi\)
0.425485 0.904966i \(-0.360104\pi\)
\(3\) 0 0
\(4\) −0.608153 + 1.05335i −0.152038 + 0.263338i
\(5\) −4.77039 1.49780i −0.954077 0.299560i
\(6\) 0 0
\(7\) 2.98475 1.72325i 0.426393 0.246178i −0.271416 0.962462i \(-0.587492\pi\)
0.697809 + 0.716284i \(0.254158\pi\)
\(8\) −6.35774 −0.794718
\(9\) 0 0
\(10\) 2.48505 + 11.1459i 0.248505 + 1.11459i
\(11\) 3.89854 2.25082i 0.354413 0.204620i −0.312214 0.950012i \(-0.601071\pi\)
0.666627 + 0.745391i \(0.267737\pi\)
\(12\) 0 0
\(13\) −10.2564 5.92153i −0.788954 0.455503i 0.0506403 0.998717i \(-0.483874\pi\)
−0.839594 + 0.543214i \(0.817207\pi\)
\(14\) −6.81695 3.93577i −0.486925 0.281126i
\(15\) 0 0
\(16\) 9.69291 + 16.7886i 0.605807 + 1.04929i
\(17\) −23.3048 −1.37087 −0.685436 0.728133i \(-0.740388\pi\)
−0.685436 + 0.728133i \(0.740388\pi\)
\(18\) 0 0
\(19\) 11.0739 0.582837 0.291419 0.956596i \(-0.405873\pi\)
0.291419 + 0.956596i \(0.405873\pi\)
\(20\) 4.47884 4.11401i 0.223942 0.205700i
\(21\) 0 0
\(22\) −8.90397 5.14071i −0.404726 0.233669i
\(23\) −14.9182 + 25.8391i −0.648619 + 1.12344i 0.334834 + 0.942277i \(0.391320\pi\)
−0.983453 + 0.181164i \(0.942014\pi\)
\(24\) 0 0
\(25\) 20.5132 + 14.2902i 0.820528 + 0.571607i
\(26\) 27.0487i 1.04033i
\(27\) 0 0
\(28\) 4.19199i 0.149714i
\(29\) 30.8581 17.8160i 1.06407 0.614343i 0.137518 0.990499i \(-0.456088\pi\)
0.926556 + 0.376156i \(0.122754\pi\)
\(30\) 0 0
\(31\) −15.1515 + 26.2432i −0.488759 + 0.846556i −0.999916 0.0129312i \(-0.995884\pi\)
0.511157 + 0.859487i \(0.329217\pi\)
\(32\) 9.42238 16.3200i 0.294449 0.510001i
\(33\) 0 0
\(34\) 26.6132 + 46.0954i 0.782741 + 1.35575i
\(35\) −16.8195 + 3.75000i −0.480557 + 0.107143i
\(36\) 0 0
\(37\) 5.11748i 0.138310i 0.997606 + 0.0691552i \(0.0220304\pi\)
−0.997606 + 0.0691552i \(0.977970\pi\)
\(38\) −12.6460 21.9035i −0.332789 0.576407i
\(39\) 0 0
\(40\) 30.3289 + 9.52263i 0.758223 + 0.238066i
\(41\) −19.6134 11.3238i −0.478376 0.276190i 0.241364 0.970435i \(-0.422405\pi\)
−0.719739 + 0.694244i \(0.755739\pi\)
\(42\) 0 0
\(43\) −58.8579 + 33.9816i −1.36879 + 0.790270i −0.990773 0.135529i \(-0.956727\pi\)
−0.378015 + 0.925799i \(0.623393\pi\)
\(44\) 5.47538i 0.124441i
\(45\) 0 0
\(46\) 68.1442 1.48140
\(47\) 23.1234 + 40.0508i 0.491986 + 0.852145i 0.999957 0.00922888i \(-0.00293769\pi\)
−0.507971 + 0.861374i \(0.669604\pi\)
\(48\) 0 0
\(49\) −18.5608 + 32.1483i −0.378792 + 0.656088i
\(50\) 4.83975 56.8926i 0.0967950 1.13785i
\(51\) 0 0
\(52\) 12.4749 7.20240i 0.239902 0.138508i
\(53\) 68.0017 1.28305 0.641525 0.767102i \(-0.278302\pi\)
0.641525 + 0.767102i \(0.278302\pi\)
\(54\) 0 0
\(55\) −21.9688 + 4.89807i −0.399434 + 0.0890558i
\(56\) −18.9763 + 10.9560i −0.338862 + 0.195642i
\(57\) 0 0
\(58\) −70.4776 40.6903i −1.21513 0.701557i
\(59\) −29.9499 17.2916i −0.507626 0.293078i 0.224231 0.974536i \(-0.428013\pi\)
−0.731857 + 0.681458i \(0.761346\pi\)
\(60\) 0 0
\(61\) −8.68165 15.0371i −0.142322 0.246509i 0.786049 0.618165i \(-0.212124\pi\)
−0.928371 + 0.371656i \(0.878790\pi\)
\(62\) 69.2099 1.11629
\(63\) 0 0
\(64\) 34.5033 0.539114
\(65\) 40.0577 + 43.6100i 0.616273 + 0.670924i
\(66\) 0 0
\(67\) 85.1195 + 49.1438i 1.27044 + 0.733489i 0.975071 0.221894i \(-0.0712240\pi\)
0.295369 + 0.955383i \(0.404557\pi\)
\(68\) 14.1729 24.5482i 0.208425 0.361002i
\(69\) 0 0
\(70\) 26.6245 + 28.9856i 0.380350 + 0.414079i
\(71\) 134.669i 1.89674i 0.317164 + 0.948371i \(0.397269\pi\)
−0.317164 + 0.948371i \(0.602731\pi\)
\(72\) 0 0
\(73\) 134.962i 1.84879i −0.381436 0.924395i \(-0.624570\pi\)
0.381436 0.924395i \(-0.375430\pi\)
\(74\) 10.1221 5.84397i 0.136784 0.0789726i
\(75\) 0 0
\(76\) −6.73463 + 11.6647i −0.0886135 + 0.153483i
\(77\) 7.75746 13.4363i 0.100746 0.174498i
\(78\) 0 0
\(79\) −24.6869 42.7589i −0.312492 0.541252i 0.666409 0.745586i \(-0.267831\pi\)
−0.978901 + 0.204334i \(0.934497\pi\)
\(80\) −21.0930 94.6062i −0.263662 1.18258i
\(81\) 0 0
\(82\) 51.7254i 0.630798i
\(83\) −14.3418 24.8408i −0.172793 0.299286i 0.766602 0.642122i \(-0.221946\pi\)
−0.939395 + 0.342836i \(0.888613\pi\)
\(84\) 0 0
\(85\) 111.173 + 34.9059i 1.30792 + 0.410658i
\(86\) 134.427 + 77.6114i 1.56310 + 0.902459i
\(87\) 0 0
\(88\) −24.7859 + 14.3102i −0.281658 + 0.162616i
\(89\) 65.9204i 0.740679i −0.928897 0.370339i \(-0.879241\pi\)
0.928897 0.370339i \(-0.120759\pi\)
\(90\) 0 0
\(91\) −40.8171 −0.448540
\(92\) −18.1451 31.4283i −0.197230 0.341612i
\(93\) 0 0
\(94\) 52.8120 91.4730i 0.561829 0.973117i
\(95\) −52.8268 16.5865i −0.556072 0.174595i
\(96\) 0 0
\(97\) −62.1331 + 35.8725i −0.640547 + 0.369820i −0.784825 0.619717i \(-0.787247\pi\)
0.144278 + 0.989537i \(0.453914\pi\)
\(98\) 84.7830 0.865133
\(99\) 0 0
\(100\) −27.5277 + 12.9170i −0.275277 + 0.129170i
\(101\) −43.7945 + 25.2848i −0.433609 + 0.250344i −0.700883 0.713276i \(-0.747211\pi\)
0.267274 + 0.963621i \(0.413877\pi\)
\(102\) 0 0
\(103\) −167.504 96.7084i −1.62625 0.938917i −0.985198 0.171421i \(-0.945164\pi\)
−0.641054 0.767496i \(-0.721502\pi\)
\(104\) 65.2076 + 37.6476i 0.626996 + 0.361996i
\(105\) 0 0
\(106\) −77.6553 134.503i −0.732597 1.26890i
\(107\) −129.069 −1.20626 −0.603128 0.797644i \(-0.706079\pi\)
−0.603128 + 0.797644i \(0.706079\pi\)
\(108\) 0 0
\(109\) −189.029 −1.73421 −0.867107 0.498122i \(-0.834023\pi\)
−0.867107 + 0.498122i \(0.834023\pi\)
\(110\) 34.7756 + 37.8596i 0.316142 + 0.344178i
\(111\) 0 0
\(112\) 57.8619 + 33.4066i 0.516624 + 0.298273i
\(113\) −70.1155 + 121.444i −0.620491 + 1.07472i 0.368903 + 0.929468i \(0.379734\pi\)
−0.989394 + 0.145255i \(0.953600\pi\)
\(114\) 0 0
\(115\) 109.868 100.918i 0.955371 0.877550i
\(116\) 43.3393i 0.373615i
\(117\) 0 0
\(118\) 78.9854i 0.669368i
\(119\) −69.5591 + 40.1600i −0.584530 + 0.337479i
\(120\) 0 0
\(121\) −50.3676 + 87.2392i −0.416261 + 0.720985i
\(122\) −19.8282 + 34.3435i −0.162526 + 0.281504i
\(123\) 0 0
\(124\) −18.4289 31.9198i −0.148620 0.257418i
\(125\) −76.4521 98.8943i −0.611617 0.791154i
\(126\) 0 0
\(127\) 12.6839i 0.0998729i −0.998752 0.0499364i \(-0.984098\pi\)
0.998752 0.0499364i \(-0.0159019\pi\)
\(128\) −77.0910 133.525i −0.602273 1.04317i
\(129\) 0 0
\(130\) 40.5135 129.033i 0.311642 0.992559i
\(131\) 99.0310 + 57.1756i 0.755962 + 0.436455i 0.827844 0.560958i \(-0.189567\pi\)
−0.0718823 + 0.997413i \(0.522901\pi\)
\(132\) 0 0
\(133\) 33.0529 19.0831i 0.248518 0.143482i
\(134\) 224.481i 1.67523i
\(135\) 0 0
\(136\) 148.166 1.08946
\(137\) −9.61235 16.6491i −0.0701631 0.121526i 0.828810 0.559531i \(-0.189019\pi\)
−0.898973 + 0.438005i \(0.855685\pi\)
\(138\) 0 0
\(139\) 28.0615 48.6040i 0.201881 0.349669i −0.747253 0.664539i \(-0.768628\pi\)
0.949135 + 0.314871i \(0.101961\pi\)
\(140\) 6.27877 19.9974i 0.0448483 0.142839i
\(141\) 0 0
\(142\) 266.366 153.786i 1.87582 1.08300i
\(143\) −53.3134 −0.372821
\(144\) 0 0
\(145\) −173.890 + 38.7697i −1.19924 + 0.267377i
\(146\) −266.946 + 154.121i −1.82839 + 1.05562i
\(147\) 0 0
\(148\) −5.39051 3.11221i −0.0364224 0.0210285i
\(149\) −153.921 88.8666i −1.03303 0.596420i −0.115179 0.993345i \(-0.536744\pi\)
−0.917851 + 0.396925i \(0.870077\pi\)
\(150\) 0 0
\(151\) −141.104 244.400i −0.934465 1.61854i −0.775586 0.631242i \(-0.782545\pi\)
−0.158879 0.987298i \(-0.550788\pi\)
\(152\) −70.4050 −0.463191
\(153\) 0 0
\(154\) −35.4349 −0.230097
\(155\) 111.586 102.496i 0.719909 0.661268i
\(156\) 0 0
\(157\) −161.719 93.3683i −1.03005 0.594702i −0.113055 0.993589i \(-0.536063\pi\)
−0.917000 + 0.398886i \(0.869397\pi\)
\(158\) −56.3830 + 97.6582i −0.356854 + 0.618090i
\(159\) 0 0
\(160\) −69.3926 + 63.7401i −0.433704 + 0.398376i
\(161\) 102.831i 0.638704i
\(162\) 0 0
\(163\) 33.6033i 0.206155i 0.994673 + 0.103078i \(0.0328690\pi\)
−0.994673 + 0.103078i \(0.967131\pi\)
\(164\) 23.8559 13.7732i 0.145463 0.0839830i
\(165\) 0 0
\(166\) −32.7556 + 56.7344i −0.197323 + 0.341774i
\(167\) 25.0253 43.3450i 0.149852 0.259551i −0.781321 0.624130i \(-0.785454\pi\)
0.931173 + 0.364579i \(0.118787\pi\)
\(168\) 0 0
\(169\) −14.3708 24.8910i −0.0850346 0.147284i
\(170\) −57.9136 259.754i −0.340668 1.52797i
\(171\) 0 0
\(172\) 82.6641i 0.480605i
\(173\) −37.7803 65.4373i −0.218383 0.378251i 0.735931 0.677057i \(-0.236745\pi\)
−0.954314 + 0.298806i \(0.903412\pi\)
\(174\) 0 0
\(175\) 85.8523 + 7.30330i 0.490585 + 0.0417332i
\(176\) 75.5765 + 43.6341i 0.429412 + 0.247921i
\(177\) 0 0
\(178\) −130.386 + 75.2786i −0.732507 + 0.422913i
\(179\) 116.454i 0.650583i 0.945614 + 0.325291i \(0.105462\pi\)
−0.945614 + 0.325291i \(0.894538\pi\)
\(180\) 0 0
\(181\) −45.4016 −0.250838 −0.125419 0.992104i \(-0.540027\pi\)
−0.125419 + 0.992104i \(0.540027\pi\)
\(182\) 46.6116 + 80.7336i 0.256107 + 0.443591i
\(183\) 0 0
\(184\) 94.8463 164.279i 0.515469 0.892819i
\(185\) 7.66496 24.4124i 0.0414322 0.131959i
\(186\) 0 0
\(187\) −90.8548 + 52.4550i −0.485855 + 0.280508i
\(188\) −56.2502 −0.299203
\(189\) 0 0
\(190\) 27.5192 + 123.429i 0.144838 + 0.649627i
\(191\) 129.563 74.8030i 0.678338 0.391639i −0.120890 0.992666i \(-0.538575\pi\)
0.799229 + 0.601027i \(0.205242\pi\)
\(192\) 0 0
\(193\) 122.804 + 70.9011i 0.636292 + 0.367363i 0.783185 0.621789i \(-0.213594\pi\)
−0.146893 + 0.989152i \(0.546927\pi\)
\(194\) 141.907 + 81.9301i 0.731480 + 0.422320i
\(195\) 0 0
\(196\) −22.5757 39.1022i −0.115182 0.199501i
\(197\) 121.128 0.614864 0.307432 0.951570i \(-0.400530\pi\)
0.307432 + 0.951570i \(0.400530\pi\)
\(198\) 0 0
\(199\) −25.7205 −0.129249 −0.0646243 0.997910i \(-0.520585\pi\)
−0.0646243 + 0.997910i \(0.520585\pi\)
\(200\) −130.418 90.8532i −0.652088 0.454266i
\(201\) 0 0
\(202\) 100.023 + 57.7485i 0.495165 + 0.285884i
\(203\) 61.4026 106.352i 0.302476 0.523904i
\(204\) 0 0
\(205\) 76.6027 + 83.3959i 0.373672 + 0.406809i
\(206\) 441.749i 2.14441i
\(207\) 0 0
\(208\) 229.588i 1.10379i
\(209\) 43.1721 24.9254i 0.206565 0.119260i
\(210\) 0 0
\(211\) −38.4483 + 66.5944i −0.182219 + 0.315613i −0.942636 0.333822i \(-0.891661\pi\)
0.760417 + 0.649436i \(0.224995\pi\)
\(212\) −41.3554 + 71.6297i −0.195073 + 0.337876i
\(213\) 0 0
\(214\) 147.392 + 255.291i 0.688749 + 1.19295i
\(215\) 331.673 73.9482i 1.54266 0.343945i
\(216\) 0 0
\(217\) 104.439i 0.481288i
\(218\) 215.864 + 373.888i 0.990203 + 1.71508i
\(219\) 0 0
\(220\) 8.20103 26.1197i 0.0372774 0.118726i
\(221\) 239.023 + 138.000i 1.08155 + 0.624435i
\(222\) 0 0
\(223\) 168.362 97.2036i 0.754984 0.435890i −0.0725076 0.997368i \(-0.523100\pi\)
0.827492 + 0.561477i \(0.189767\pi\)
\(224\) 64.9484i 0.289948i
\(225\) 0 0
\(226\) 320.277 1.41715
\(227\) 76.1824 + 131.952i 0.335605 + 0.581285i 0.983601 0.180359i \(-0.0577259\pi\)
−0.647996 + 0.761644i \(0.724393\pi\)
\(228\) 0 0
\(229\) −133.207 + 230.722i −0.581691 + 1.00752i 0.413588 + 0.910464i \(0.364276\pi\)
−0.995279 + 0.0970548i \(0.969058\pi\)
\(230\) −325.074 102.066i −1.41337 0.443767i
\(231\) 0 0
\(232\) −196.188 + 113.269i −0.845639 + 0.488230i
\(233\) 107.497 0.461361 0.230681 0.973029i \(-0.425905\pi\)
0.230681 + 0.973029i \(0.425905\pi\)
\(234\) 0 0
\(235\) −50.3193 225.692i −0.214124 0.960392i
\(236\) 36.4283 21.0319i 0.154357 0.0891181i
\(237\) 0 0
\(238\) 158.868 + 91.7223i 0.667511 + 0.385388i
\(239\) −269.946 155.853i −1.12948 0.652106i −0.185677 0.982611i \(-0.559448\pi\)
−0.943804 + 0.330504i \(0.892781\pi\)
\(240\) 0 0
\(241\) 80.1604 + 138.842i 0.332616 + 0.576108i 0.983024 0.183477i \(-0.0587354\pi\)
−0.650408 + 0.759585i \(0.725402\pi\)
\(242\) 230.071 0.950708
\(243\) 0 0
\(244\) 21.1191 0.0865537
\(245\) 136.694 125.559i 0.557935 0.512488i
\(246\) 0 0
\(247\) −113.578 65.5745i −0.459831 0.265484i
\(248\) 96.3296 166.848i 0.388426 0.672773i
\(249\) 0 0
\(250\) −108.301 + 264.151i −0.433205 + 1.05660i
\(251\) 357.272i 1.42339i 0.702487 + 0.711697i \(0.252073\pi\)
−0.702487 + 0.711697i \(0.747927\pi\)
\(252\) 0 0
\(253\) 134.313i 0.530883i
\(254\) −25.0879 + 14.4845i −0.0987711 + 0.0570255i
\(255\) 0 0
\(256\) −107.063 + 185.439i −0.418216 + 0.724371i
\(257\) 227.924 394.776i 0.886865 1.53609i 0.0433031 0.999062i \(-0.486212\pi\)
0.843562 0.537033i \(-0.180455\pi\)
\(258\) 0 0
\(259\) 8.81869 + 15.2744i 0.0340490 + 0.0589746i
\(260\) −70.2980 + 15.6733i −0.270377 + 0.0602819i
\(261\) 0 0
\(262\) 261.169i 0.996829i
\(263\) 30.4177 + 52.6851i 0.115657 + 0.200323i 0.918042 0.396483i \(-0.129769\pi\)
−0.802385 + 0.596806i \(0.796436\pi\)
\(264\) 0 0
\(265\) −324.394 101.853i −1.22413 0.384350i
\(266\) −75.4902 43.5843i −0.283798 0.163851i
\(267\) 0 0
\(268\) −103.531 + 59.7738i −0.386311 + 0.223037i
\(269\) 213.484i 0.793620i −0.917901 0.396810i \(-0.870117\pi\)
0.917901 0.396810i \(-0.129883\pi\)
\(270\) 0 0
\(271\) 259.475 0.957474 0.478737 0.877958i \(-0.341095\pi\)
0.478737 + 0.877958i \(0.341095\pi\)
\(272\) −225.891 391.255i −0.830483 1.43844i
\(273\) 0 0
\(274\) −21.9539 + 38.0252i −0.0801236 + 0.138778i
\(275\) 112.136 + 9.53923i 0.407768 + 0.0346881i
\(276\) 0 0
\(277\) −220.134 + 127.095i −0.794709 + 0.458825i −0.841618 0.540074i \(-0.818396\pi\)
0.0469089 + 0.998899i \(0.485063\pi\)
\(278\) −128.181 −0.461081
\(279\) 0 0
\(280\) 106.934 23.8415i 0.381908 0.0851483i
\(281\) −216.919 + 125.238i −0.771953 + 0.445687i −0.833571 0.552413i \(-0.813707\pi\)
0.0616182 + 0.998100i \(0.480374\pi\)
\(282\) 0 0
\(283\) 299.891 + 173.142i 1.05969 + 0.611810i 0.925345 0.379126i \(-0.123775\pi\)
0.134340 + 0.990935i \(0.457108\pi\)
\(284\) −141.853 81.8991i −0.499484 0.288377i
\(285\) 0 0
\(286\) 60.8818 + 105.450i 0.212873 + 0.368708i
\(287\) −78.0549 −0.271968
\(288\) 0 0
\(289\) 254.114 0.879287
\(290\) 275.260 + 299.670i 0.949172 + 1.03334i
\(291\) 0 0
\(292\) 142.162 + 82.0774i 0.486857 + 0.281087i
\(293\) 156.518 271.098i 0.534192 0.925248i −0.465010 0.885305i \(-0.653949\pi\)
0.999202 0.0399422i \(-0.0127174\pi\)
\(294\) 0 0
\(295\) 116.973 + 127.347i 0.396520 + 0.431683i
\(296\) 32.5356i 0.109918i
\(297\) 0 0
\(298\) 405.929i 1.36218i
\(299\) 306.015 176.678i 1.02346 0.590895i
\(300\) 0 0
\(301\) −117.118 + 202.854i −0.389095 + 0.673932i
\(302\) −322.271 + 558.190i −1.06712 + 1.84831i
\(303\) 0 0
\(304\) 107.338 + 185.916i 0.353087 + 0.611564i
\(305\) 18.8923 + 84.7360i 0.0619421 + 0.277823i
\(306\) 0 0
\(307\) 267.727i 0.872074i 0.899929 + 0.436037i \(0.143618\pi\)
−0.899929 + 0.436037i \(0.856382\pi\)
\(308\) 9.43545 + 16.3427i 0.0306346 + 0.0530606i
\(309\) 0 0
\(310\) −330.158 103.663i −1.06503 0.334395i
\(311\) −305.814 176.562i −0.983325 0.567723i −0.0800530 0.996791i \(-0.525509\pi\)
−0.903272 + 0.429067i \(0.858842\pi\)
\(312\) 0 0
\(313\) 330.055 190.557i 1.05449 0.608809i 0.130586 0.991437i \(-0.458314\pi\)
0.923903 + 0.382628i \(0.124981\pi\)
\(314\) 426.492i 1.35825i
\(315\) 0 0
\(316\) 60.0536 0.190043
\(317\) −0.541332 0.937615i −0.00170767 0.00295778i 0.865170 0.501478i \(-0.167210\pi\)
−0.866878 + 0.498520i \(0.833877\pi\)
\(318\) 0 0
\(319\) 80.2012 138.913i 0.251414 0.435463i
\(320\) −164.594 51.6790i −0.514357 0.161497i
\(321\) 0 0
\(322\) 203.394 117.429i 0.631657 0.364688i
\(323\) −258.075 −0.798994
\(324\) 0 0
\(325\) −125.772 268.035i −0.386990 0.824724i
\(326\) 66.4652 38.3737i 0.203881 0.117711i
\(327\) 0 0
\(328\) 124.697 + 71.9938i 0.380174 + 0.219493i
\(329\) 138.035 + 79.6946i 0.419559 + 0.242233i
\(330\) 0 0
\(331\) 67.4397 + 116.809i 0.203745 + 0.352898i 0.949732 0.313063i \(-0.101355\pi\)
−0.745987 + 0.665961i \(0.768022\pi\)
\(332\) 34.8881 0.105085
\(333\) 0 0
\(334\) −114.312 −0.342250
\(335\) −332.445 361.927i −0.992374 1.08038i
\(336\) 0 0
\(337\) −297.583 171.810i −0.883036 0.509821i −0.0113779 0.999935i \(-0.503622\pi\)
−0.871658 + 0.490114i \(0.836955\pi\)
\(338\) −32.8219 + 56.8492i −0.0971063 + 0.168193i
\(339\) 0 0
\(340\) −104.378 + 95.8761i −0.306995 + 0.281989i
\(341\) 136.414i 0.400041i
\(342\) 0 0
\(343\) 296.818i 0.865359i
\(344\) 374.204 216.046i 1.08780 0.628042i
\(345\) 0 0
\(346\) −86.2872 + 149.454i −0.249385 + 0.431948i
\(347\) −99.7471 + 172.767i −0.287456 + 0.497888i −0.973202 0.229953i \(-0.926143\pi\)
0.685746 + 0.727841i \(0.259476\pi\)
\(348\) 0 0
\(349\) 103.789 + 179.767i 0.297389 + 0.515093i 0.975538 0.219832i \(-0.0705508\pi\)
−0.678149 + 0.734925i \(0.737218\pi\)
\(350\) −83.5946 178.150i −0.238842 0.509001i
\(351\) 0 0
\(352\) 84.8325i 0.241001i
\(353\) 39.9141 + 69.1332i 0.113071 + 0.195845i 0.917007 0.398871i \(-0.130598\pi\)
−0.803936 + 0.594716i \(0.797265\pi\)
\(354\) 0 0
\(355\) 201.707 642.422i 0.568188 1.80964i
\(356\) 69.4374 + 40.0897i 0.195049 + 0.112611i
\(357\) 0 0
\(358\) 230.339 132.986i 0.643405 0.371470i
\(359\) 234.273i 0.652571i −0.945271 0.326285i \(-0.894203\pi\)
0.945271 0.326285i \(-0.105797\pi\)
\(360\) 0 0
\(361\) −238.369 −0.660301
\(362\) 51.8469 + 89.8014i 0.143223 + 0.248070i
\(363\) 0 0
\(364\) 24.8230 42.9948i 0.0681952 0.118118i
\(365\) −202.146 + 643.820i −0.553823 + 1.76389i
\(366\) 0 0
\(367\) −189.916 + 109.648i −0.517481 + 0.298768i −0.735904 0.677086i \(-0.763242\pi\)
0.218422 + 0.975854i \(0.429909\pi\)
\(368\) −578.405 −1.57175
\(369\) 0 0
\(370\) −57.0392 + 12.7172i −0.154160 + 0.0343708i
\(371\) 202.968 117.184i 0.547084 0.315859i
\(372\) 0 0
\(373\) 139.806 + 80.7171i 0.374815 + 0.216400i 0.675560 0.737305i \(-0.263902\pi\)
−0.300745 + 0.953705i \(0.597235\pi\)
\(374\) 207.505 + 119.803i 0.554827 + 0.320330i
\(375\) 0 0
\(376\) −147.012 254.633i −0.390990 0.677215i
\(377\) −421.991 −1.11934
\(378\) 0 0
\(379\) 227.627 0.600598 0.300299 0.953845i \(-0.402914\pi\)
0.300299 + 0.953845i \(0.402914\pi\)
\(380\) 49.5982 45.5581i 0.130522 0.119890i
\(381\) 0 0
\(382\) −295.911 170.844i −0.774636 0.447237i
\(383\) 90.0556 155.981i 0.235132 0.407261i −0.724179 0.689612i \(-0.757781\pi\)
0.959311 + 0.282351i \(0.0911144\pi\)
\(384\) 0 0
\(385\) −57.1310 + 52.4773i −0.148392 + 0.136305i
\(386\) 323.866i 0.839030i
\(387\) 0 0
\(388\) 87.2640i 0.224907i
\(389\) −630.749 + 364.163i −1.62146 + 0.936153i −0.634935 + 0.772566i \(0.718973\pi\)
−0.986529 + 0.163587i \(0.947694\pi\)
\(390\) 0 0
\(391\) 347.667 602.176i 0.889173 1.54009i
\(392\) 118.005 204.391i 0.301033 0.521405i
\(393\) 0 0
\(394\) −138.324 239.584i −0.351076 0.608081i
\(395\) 53.7217 + 240.953i 0.136004 + 0.610007i
\(396\) 0 0
\(397\) 417.565i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(398\) 29.3718 + 50.8734i 0.0737984 + 0.127823i
\(399\) 0 0
\(400\) −41.0796 + 482.901i −0.102699 + 1.20725i
\(401\) 399.514 + 230.659i 0.996294 + 0.575211i 0.907150 0.420808i \(-0.138253\pi\)
0.0891442 + 0.996019i \(0.471587\pi\)
\(402\) 0 0
\(403\) 310.801 179.441i 0.771217 0.445263i
\(404\) 61.5081i 0.152248i
\(405\) 0 0
\(406\) −280.478 −0.690832
\(407\) 11.5186 + 19.9507i 0.0283011 + 0.0490190i
\(408\) 0 0
\(409\) −266.014 + 460.749i −0.650400 + 1.12653i 0.332626 + 0.943059i \(0.392065\pi\)
−0.983026 + 0.183467i \(0.941268\pi\)
\(410\) 77.4743 246.750i 0.188962 0.601830i
\(411\) 0 0
\(412\) 203.736 117.627i 0.494505 0.285503i
\(413\) −119.191 −0.288598
\(414\) 0 0
\(415\) 31.2096 + 139.981i 0.0752038 + 0.337304i
\(416\) −193.279 + 111.590i −0.464614 + 0.268245i
\(417\) 0 0
\(418\) −98.6017 56.9277i −0.235889 0.136191i
\(419\) −406.390 234.629i −0.969903 0.559974i −0.0706967 0.997498i \(-0.522522\pi\)
−0.899207 + 0.437524i \(0.855856\pi\)
\(420\) 0 0
\(421\) 110.269 + 190.992i 0.261922 + 0.453662i 0.966753 0.255713i \(-0.0823103\pi\)
−0.704831 + 0.709376i \(0.748977\pi\)
\(422\) 175.626 0.416175
\(423\) 0 0
\(424\) −432.337 −1.01966
\(425\) −478.056 333.030i −1.12484 0.783599i
\(426\) 0 0
\(427\) −51.8252 29.9213i −0.121370 0.0700733i
\(428\) 78.4940 135.956i 0.183397 0.317653i
\(429\) 0 0
\(430\) −525.022 571.581i −1.22098 1.32926i
\(431\) 487.110i 1.13018i −0.825028 0.565092i \(-0.808840\pi\)
0.825028 0.565092i \(-0.191160\pi\)
\(432\) 0 0
\(433\) 462.822i 1.06887i −0.845208 0.534437i \(-0.820524\pi\)
0.845208 0.534437i \(-0.179476\pi\)
\(434\) 206.575 119.266i 0.475978 0.274806i
\(435\) 0 0
\(436\) 114.959 199.114i 0.263667 0.456685i
\(437\) −165.203 + 286.140i −0.378039 + 0.654783i
\(438\) 0 0
\(439\) −400.695 694.024i −0.912744 1.58092i −0.810171 0.586194i \(-0.800626\pi\)
−0.102573 0.994725i \(-0.532708\pi\)
\(440\) 139.672 31.1407i 0.317437 0.0707743i
\(441\) 0 0
\(442\) 630.364i 1.42616i
\(443\) −37.1602 64.3634i −0.0838832 0.145290i 0.821032 0.570883i \(-0.193399\pi\)
−0.904915 + 0.425593i \(0.860066\pi\)
\(444\) 0 0
\(445\) −98.7355 + 314.466i −0.221878 + 0.706665i
\(446\) −384.525 222.006i −0.862163 0.497770i
\(447\) 0 0
\(448\) 102.984 59.4578i 0.229875 0.132718i
\(449\) 358.472i 0.798379i −0.916868 0.399190i \(-0.869291\pi\)
0.916868 0.399190i \(-0.130709\pi\)
\(450\) 0 0
\(451\) −101.952 −0.226057
\(452\) −85.2819 147.713i −0.188677 0.326798i
\(453\) 0 0
\(454\) 173.995 301.368i 0.383248 0.663805i
\(455\) 194.713 + 61.1358i 0.427941 + 0.134364i
\(456\) 0 0
\(457\) −100.270 + 57.8908i −0.219409 + 0.126676i −0.605676 0.795711i \(-0.707097\pi\)
0.386268 + 0.922387i \(0.373764\pi\)
\(458\) 608.471 1.32854
\(459\) 0 0
\(460\) 39.4861 + 177.103i 0.0858393 + 0.385007i
\(461\) −172.918 + 99.8343i −0.375093 + 0.216560i −0.675681 0.737194i \(-0.736150\pi\)
0.300588 + 0.953754i \(0.402817\pi\)
\(462\) 0 0
\(463\) 517.092 + 298.543i 1.11683 + 0.644802i 0.940590 0.339546i \(-0.110273\pi\)
0.176240 + 0.984347i \(0.443607\pi\)
\(464\) 598.211 + 345.377i 1.28925 + 0.744347i
\(465\) 0 0
\(466\) −122.758 212.623i −0.263429 0.456272i
\(467\) 605.150 1.29582 0.647912 0.761715i \(-0.275643\pi\)
0.647912 + 0.761715i \(0.275643\pi\)
\(468\) 0 0
\(469\) 338.748 0.722276
\(470\) −388.942 + 357.260i −0.827536 + 0.760128i
\(471\) 0 0
\(472\) 190.414 + 109.936i 0.403419 + 0.232914i
\(473\) −152.973 + 264.958i −0.323411 + 0.560164i
\(474\) 0 0
\(475\) 227.161 + 158.248i 0.478234 + 0.333154i
\(476\) 97.6936i 0.205239i
\(477\) 0 0
\(478\) 711.915i 1.48936i
\(479\) −468.023 + 270.213i −0.977083 + 0.564119i −0.901388 0.433012i \(-0.857451\pi\)
−0.0756945 + 0.997131i \(0.524117\pi\)
\(480\) 0 0
\(481\) 30.3034 52.4869i 0.0630007 0.109120i
\(482\) 183.080 317.104i 0.379835 0.657893i
\(483\) 0 0
\(484\) −61.2624 106.110i −0.126575 0.219235i
\(485\) 350.129 78.0630i 0.721915 0.160955i
\(486\) 0 0
\(487\) 565.424i 1.16104i −0.814248 0.580518i \(-0.802850\pi\)
0.814248 0.580518i \(-0.197150\pi\)
\(488\) 55.1957 + 95.6018i 0.113106 + 0.195905i
\(489\) 0 0
\(490\) −404.448 126.988i −0.825404 0.259159i
\(491\) 231.247 + 133.510i 0.470971 + 0.271915i 0.716646 0.697437i \(-0.245676\pi\)
−0.245675 + 0.969352i \(0.579010\pi\)
\(492\) 0 0
\(493\) −719.143 + 415.197i −1.45871 + 0.842186i
\(494\) 299.534i 0.606345i
\(495\) 0 0
\(496\) −587.450 −1.18438
\(497\) 232.067 + 401.953i 0.466937 + 0.808758i
\(498\) 0 0
\(499\) 310.161 537.214i 0.621564 1.07658i −0.367630 0.929972i \(-0.619831\pi\)
0.989195 0.146609i \(-0.0468358\pi\)
\(500\) 150.665 20.3881i 0.301330 0.0407762i
\(501\) 0 0
\(502\) 706.660 407.991i 1.40769 0.812730i
\(503\) 433.671 0.862168 0.431084 0.902312i \(-0.358131\pi\)
0.431084 + 0.902312i \(0.358131\pi\)
\(504\) 0 0
\(505\) 246.788 55.0228i 0.488690 0.108956i
\(506\) 265.663 153.381i 0.525026 0.303124i
\(507\) 0 0
\(508\) 13.3606 + 7.71373i 0.0263003 + 0.0151845i
\(509\) 225.376 + 130.121i 0.442781 + 0.255640i 0.704777 0.709429i \(-0.251047\pi\)
−0.261995 + 0.965069i \(0.584381\pi\)
\(510\) 0 0
\(511\) −232.573 402.827i −0.455132 0.788312i
\(512\) −127.679 −0.249373
\(513\) 0 0
\(514\) −1041.12 −2.02553
\(515\) 654.209 + 712.224i 1.27031 + 1.38296i
\(516\) 0 0
\(517\) 180.295 + 104.093i 0.348733 + 0.201341i
\(518\) 20.1412 34.8856i 0.0388827 0.0673467i
\(519\) 0 0
\(520\) −254.677 277.261i −0.489763 0.533195i
\(521\) 658.284i 1.26350i −0.775172 0.631750i \(-0.782337\pi\)
0.775172 0.631750i \(-0.217663\pi\)
\(522\) 0 0
\(523\) 401.215i 0.767142i −0.923511 0.383571i \(-0.874694\pi\)
0.923511 0.383571i \(-0.125306\pi\)
\(524\) −120.452 + 69.5430i −0.229870 + 0.132716i
\(525\) 0 0
\(526\) 69.4718 120.329i 0.132076 0.228762i
\(527\) 353.104 611.594i 0.670026 1.16052i
\(528\) 0 0
\(529\) −180.608 312.822i −0.341413 0.591345i
\(530\) 168.987 + 757.943i 0.318844 + 1.43008i
\(531\) 0 0
\(532\) 46.4217i 0.0872589i
\(533\) 134.109 + 232.283i 0.251611 + 0.435803i
\(534\) 0 0
\(535\) 615.711 + 193.320i 1.15086 + 0.361346i
\(536\) −541.168 312.443i −1.00964 0.582917i
\(537\) 0 0
\(538\) −422.257 + 243.790i −0.784864 + 0.453142i
\(539\) 167.109i 0.310035i
\(540\) 0 0
\(541\) 131.652 0.243350 0.121675 0.992570i \(-0.461173\pi\)
0.121675 + 0.992570i \(0.461173\pi\)
\(542\) −296.311 513.226i −0.546699 0.946911i
\(543\) 0 0
\(544\) −219.587 + 380.335i −0.403652 + 0.699146i
\(545\) 901.743 + 283.128i 1.65457 + 0.519501i
\(546\) 0 0
\(547\) −857.154 + 494.878i −1.56701 + 0.904713i −0.570494 + 0.821301i \(0.693248\pi\)
−0.996515 + 0.0834119i \(0.973418\pi\)
\(548\) 23.3831 0.0426699
\(549\) 0 0
\(550\) −109.187 232.692i −0.198522 0.423076i
\(551\) 341.720 197.292i 0.620182 0.358062i
\(552\) 0 0
\(553\) −147.369 85.0833i −0.266489 0.153858i
\(554\) 502.770 + 290.274i 0.907527 + 0.523961i
\(555\) 0 0
\(556\) 34.1314 + 59.1173i 0.0613874 + 0.106326i
\(557\) −299.018 −0.536836 −0.268418 0.963302i \(-0.586501\pi\)
−0.268418 + 0.963302i \(0.586501\pi\)
\(558\) 0 0
\(559\) 804.894 1.43988
\(560\) −225.987 246.028i −0.403549 0.439336i
\(561\) 0 0
\(562\) 495.426 + 286.034i 0.881540 + 0.508957i
\(563\) −379.185 + 656.768i −0.673508 + 1.16655i 0.303394 + 0.952865i \(0.401880\pi\)
−0.976903 + 0.213685i \(0.931453\pi\)
\(564\) 0 0
\(565\) 516.377 474.314i 0.913941 0.839494i
\(566\) 790.887i 1.39733i
\(567\) 0 0
\(568\) 856.189i 1.50737i
\(569\) −503.382 + 290.628i −0.884679 + 0.510770i −0.872198 0.489152i \(-0.837306\pi\)
−0.0124807 + 0.999922i \(0.503973\pi\)
\(570\) 0 0
\(571\) 335.239 580.651i 0.587109 1.01690i −0.407500 0.913205i \(-0.633599\pi\)
0.994609 0.103697i \(-0.0330673\pi\)
\(572\) 32.4227 56.1577i 0.0566830 0.0981778i
\(573\) 0 0
\(574\) 89.1357 + 154.388i 0.155289 + 0.268968i
\(575\) −675.266 + 316.859i −1.17438 + 0.551060i
\(576\) 0 0
\(577\) 135.394i 0.234652i 0.993093 + 0.117326i \(0.0374322\pi\)
−0.993093 + 0.117326i \(0.962568\pi\)
\(578\) −290.189 502.621i −0.502056 0.869587i
\(579\) 0 0
\(580\) 64.9136 206.745i 0.111920 0.356457i
\(581\) −85.6137 49.4291i −0.147356 0.0850758i
\(582\) 0 0
\(583\) 265.107 153.060i 0.454730 0.262538i
\(584\) 858.052i 1.46927i
\(585\) 0 0
\(586\) −714.951 −1.22005
\(587\) 179.702 + 311.253i 0.306136 + 0.530243i 0.977514 0.210872i \(-0.0676304\pi\)
−0.671377 + 0.741116i \(0.734297\pi\)
\(588\) 0 0
\(589\) −167.787 + 290.615i −0.284867 + 0.493404i
\(590\) 118.304 376.791i 0.200516 0.638628i
\(591\) 0 0
\(592\) −85.9154 + 49.6033i −0.145127 + 0.0837894i
\(593\) 540.430 0.911349 0.455675 0.890146i \(-0.349398\pi\)
0.455675 + 0.890146i \(0.349398\pi\)
\(594\) 0 0
\(595\) 391.975 87.3930i 0.658782 0.146879i
\(596\) 187.216 108.089i 0.314120 0.181357i
\(597\) 0 0
\(598\) −698.914 403.518i −1.16875 0.674780i
\(599\) −499.301 288.271i −0.833557 0.481254i 0.0215119 0.999769i \(-0.493152\pi\)
−0.855069 + 0.518514i \(0.826485\pi\)
\(600\) 0 0
\(601\) 513.210 + 888.906i 0.853927 + 1.47905i 0.877637 + 0.479326i \(0.159119\pi\)
−0.0237095 + 0.999719i \(0.507548\pi\)
\(602\) 534.975 0.888663
\(603\) 0 0
\(604\) 343.252 0.568298
\(605\) 370.940 340.724i 0.613123 0.563181i
\(606\) 0 0
\(607\) −143.178 82.6636i −0.235877 0.136184i 0.377403 0.926049i \(-0.376817\pi\)
−0.613280 + 0.789865i \(0.710150\pi\)
\(608\) 104.343 180.727i 0.171616 0.297248i
\(609\) 0 0
\(610\) 146.028 134.133i 0.239390 0.219890i
\(611\) 547.703i 0.896404i
\(612\) 0 0
\(613\) 251.007i 0.409473i 0.978817 + 0.204737i \(0.0656338\pi\)
−0.978817 + 0.204737i \(0.934366\pi\)
\(614\) 529.546 305.734i 0.862453 0.497938i
\(615\) 0 0
\(616\) −49.3199 + 85.4246i −0.0800648 + 0.138676i
\(617\) −458.546 + 794.224i −0.743186 + 1.28724i 0.207852 + 0.978160i \(0.433353\pi\)
−0.951038 + 0.309075i \(0.899981\pi\)
\(618\) 0 0
\(619\) 138.795 + 240.399i 0.224224 + 0.388367i 0.956086 0.293085i \(-0.0946820\pi\)
−0.731862 + 0.681452i \(0.761349\pi\)
\(620\) 40.1036 + 179.873i 0.0646832 + 0.290117i
\(621\) 0 0
\(622\) 806.508i 1.29664i
\(623\) −113.597 196.756i −0.182339 0.315820i
\(624\) 0 0
\(625\) 216.582 + 586.274i 0.346532 + 0.938038i
\(626\) −753.820 435.218i −1.20419 0.695237i
\(627\) 0 0
\(628\) 196.699 113.564i 0.313216 0.180835i
\(629\) 119.262i 0.189606i
\(630\) 0 0
\(631\) 322.116 0.510485 0.255243 0.966877i \(-0.417845\pi\)
0.255243 + 0.966877i \(0.417845\pi\)
\(632\) 156.953 + 271.850i 0.248343 + 0.430143i
\(633\) 0 0
\(634\) −1.23636 + 2.14144i −0.00195010 + 0.00337767i
\(635\) −18.9979 + 60.5069i −0.0299179 + 0.0952865i
\(636\) 0 0
\(637\) 380.735 219.817i 0.597700 0.345082i
\(638\) −366.347 −0.574211
\(639\) 0 0
\(640\) 167.759 + 752.435i 0.262124 + 1.17568i
\(641\) −239.860 + 138.483i −0.374196 + 0.216042i −0.675290 0.737552i \(-0.735982\pi\)
0.301094 + 0.953594i \(0.402648\pi\)
\(642\) 0 0
\(643\) −743.356 429.177i −1.15607 0.667460i −0.205714 0.978612i \(-0.565952\pi\)
−0.950360 + 0.311152i \(0.899285\pi\)
\(644\) −108.318 62.5372i −0.168195 0.0971074i
\(645\) 0 0
\(646\) 294.712 + 510.456i 0.456210 + 0.790180i
\(647\) −1065.93 −1.64749 −0.823746 0.566960i \(-0.808120\pi\)
−0.823746 + 0.566960i \(0.808120\pi\)
\(648\) 0 0
\(649\) −155.681 −0.239879
\(650\) −386.530 + 554.854i −0.594661 + 0.853622i
\(651\) 0 0
\(652\) −35.3961 20.4360i −0.0542886 0.0313435i
\(653\) −178.126 + 308.523i −0.272781 + 0.472470i −0.969573 0.244803i \(-0.921277\pi\)
0.696792 + 0.717273i \(0.254610\pi\)
\(654\) 0 0
\(655\) −386.779 421.078i −0.590502 0.642867i
\(656\) 439.043i 0.669272i
\(657\) 0 0
\(658\) 364.033i 0.553241i
\(659\) −33.6473 + 19.4263i −0.0510581 + 0.0294784i −0.525312 0.850910i \(-0.676051\pi\)
0.474254 + 0.880388i \(0.342718\pi\)
\(660\) 0 0
\(661\) −100.918 + 174.795i −0.152674 + 0.264440i −0.932210 0.361918i \(-0.882122\pi\)
0.779535 + 0.626358i \(0.215455\pi\)
\(662\) 154.027 266.783i 0.232670 0.402995i
\(663\) 0 0
\(664\) 91.1817 + 157.931i 0.137322 + 0.237848i
\(665\) −186.258 + 41.5271i −0.280087 + 0.0624468i
\(666\) 0 0
\(667\) 1063.13i 1.59390i
\(668\) 30.4384 + 52.7208i 0.0455665 + 0.0789234i
\(669\) 0 0
\(670\) −336.228 + 1070.86i −0.501832 + 1.59830i
\(671\) −67.6916 39.0818i −0.100882 0.0582441i
\(672\) 0 0
\(673\) −389.128 + 224.663i −0.578200 + 0.333824i −0.760418 0.649434i \(-0.775006\pi\)
0.182218 + 0.983258i \(0.441672\pi\)
\(674\) 784.801i 1.16439i
\(675\) 0 0
\(676\) 34.9587 0.0517141
\(677\) −351.405 608.651i −0.519062 0.899042i −0.999755 0.0221524i \(-0.992948\pi\)
0.480693 0.876889i \(-0.340385\pi\)
\(678\) 0 0
\(679\) −123.635 + 214.141i −0.182083 + 0.315378i
\(680\) −706.809 221.923i −1.03943 0.326357i
\(681\) 0 0
\(682\) 269.818 155.779i 0.395627 0.228416i
\(683\) −705.068 −1.03231 −0.516155 0.856495i \(-0.672637\pi\)
−0.516155 + 0.856495i \(0.672637\pi\)
\(684\) 0 0
\(685\) 20.9177 + 93.8199i 0.0305367 + 0.136963i
\(686\) 587.087 338.955i 0.855812 0.494103i
\(687\) 0 0
\(688\) −1141.01 658.762i −1.65844 0.957503i
\(689\) −697.452 402.674i −1.01227 0.584433i
\(690\) 0 0
\(691\) 442.125 + 765.783i 0.639833 + 1.10822i 0.985469 + 0.169855i \(0.0543300\pi\)
−0.345636 + 0.938369i \(0.612337\pi\)
\(692\) 91.9047 0.132810
\(693\) 0 0
\(694\) 455.630 0.656527
\(695\) −206.663 + 189.829i −0.297357 + 0.273136i
\(696\) 0 0
\(697\) 457.087 + 263.899i 0.655791 + 0.378621i
\(698\) 237.046 410.575i 0.339607 0.588216i
\(699\) 0 0
\(700\) −59.9043 + 85.9912i −0.0855776 + 0.122845i
\(701\) 267.537i 0.381651i −0.981624 0.190826i \(-0.938884\pi\)
0.981624 0.190826i \(-0.0611165\pi\)
\(702\) 0 0
\(703\) 56.6705i 0.0806124i
\(704\) 134.513 77.6609i 0.191069 0.110314i
\(705\) 0 0
\(706\) 91.1607 157.895i 0.129123 0.223647i
\(707\) −87.1439 + 150.938i −0.123259 + 0.213490i
\(708\) 0 0
\(709\) 266.623 + 461.805i 0.376056 + 0.651348i 0.990484 0.137625i \(-0.0439468\pi\)
−0.614429 + 0.788972i \(0.710613\pi\)
\(710\) −1501.01 + 334.658i −2.11410 + 0.471349i
\(711\) 0 0
\(712\) 419.105i 0.588631i
\(713\) −452.069 783.006i −0.634037 1.09818i
\(714\) 0 0
\(715\) 254.325 + 79.8527i 0.355700 + 0.111682i
\(716\) −122.667 70.8220i −0.171323 0.0989134i
\(717\) 0 0
\(718\) −463.377 + 267.531i −0.645372 + 0.372606i
\(719\) 101.956i 0.141803i −0.997483 0.0709015i \(-0.977412\pi\)
0.997483 0.0709015i \(-0.0225876\pi\)
\(720\) 0 0
\(721\) −666.611 −0.924564
\(722\) 272.208 + 471.478i 0.377019 + 0.653016i
\(723\) 0 0
\(724\) 27.6111 47.8239i 0.0381369 0.0660551i
\(725\) 887.592 + 75.5059i 1.22426 + 0.104146i
\(726\) 0 0
\(727\) 636.475 367.469i 0.875482 0.505460i 0.00631598 0.999980i \(-0.497990\pi\)
0.869166 + 0.494520i \(0.164656\pi\)
\(728\) 259.505 0.356462
\(729\) 0 0
\(730\) 1504.28 335.386i 2.06065 0.459433i
\(731\) 1371.67 791.935i 1.87643 1.08336i
\(732\) 0 0
\(733\) −1146.80 662.106i −1.56453 0.903282i −0.996789 0.0800754i \(-0.974484\pi\)
−0.567742 0.823207i \(-0.692183\pi\)
\(734\) 433.753 + 250.427i 0.590944 + 0.341182i
\(735\) 0 0
\(736\) 281.131 + 486.933i 0.381971 + 0.661593i
\(737\) 442.456 0.600347
\(738\) 0 0
\(739\) 978.711 1.32437 0.662186 0.749340i \(-0.269629\pi\)
0.662186 + 0.749340i \(0.269629\pi\)
\(740\) 21.0534 + 22.9204i 0.0284505 + 0.0309735i
\(741\) 0 0
\(742\) −463.564 267.639i −0.624749 0.360699i
\(743\) −464.088 + 803.824i −0.624614 + 1.08186i 0.364002 + 0.931398i \(0.381410\pi\)
−0.988615 + 0.150464i \(0.951923\pi\)
\(744\) 0 0
\(745\) 601.161 + 654.472i 0.806927 + 0.878486i
\(746\) 368.704i 0.494241i
\(747\) 0 0
\(748\) 127.603i 0.170592i
\(749\) −385.240 + 222.419i −0.514340 + 0.296954i
\(750\) 0 0
\(751\) 268.998 465.919i 0.358187 0.620398i −0.629471 0.777024i \(-0.716728\pi\)
0.987658 + 0.156626i \(0.0500618\pi\)
\(752\) −448.265 + 776.418i −0.596097 + 1.03247i
\(753\) 0 0
\(754\) 481.898 + 834.672i 0.639122 + 1.10699i
\(755\) 307.060 + 1377.23i 0.406702 + 1.82414i
\(756\) 0 0
\(757\) 981.098i 1.29603i −0.761626 0.648017i \(-0.775599\pi\)
0.761626 0.648017i \(-0.224401\pi\)
\(758\) −259.941 450.231i −0.342930 0.593972i
\(759\) 0 0
\(760\) 335.859 + 105.453i 0.441920 + 0.138753i
\(761\) −495.891 286.303i −0.651630 0.376219i 0.137450 0.990509i \(-0.456109\pi\)
−0.789080 + 0.614290i \(0.789443\pi\)
\(762\) 0 0
\(763\) −564.206 + 325.745i −0.739457 + 0.426926i
\(764\) 181.967i 0.238176i
\(765\) 0 0
\(766\) −411.360 −0.537024
\(767\) 204.786 + 354.699i 0.266996 + 0.462450i
\(768\) 0 0
\(769\) −466.186 + 807.457i −0.606223 + 1.05001i 0.385634 + 0.922652i \(0.373983\pi\)
−0.991857 + 0.127358i \(0.959350\pi\)
\(770\) 169.038 + 53.0744i 0.219530 + 0.0689277i
\(771\) 0 0
\(772\) −149.368 + 86.2375i −0.193482 + 0.111707i
\(773\) 280.315 0.362632 0.181316 0.983425i \(-0.441964\pi\)
0.181316 + 0.983425i \(0.441964\pi\)
\(774\) 0 0
\(775\) −685.827 + 321.815i −0.884938 + 0.415245i
\(776\) 395.026 228.068i 0.509054 0.293903i
\(777\) 0 0
\(778\) 1440.58 + 831.721i 1.85165 + 1.06905i
\(779\) −217.197 125.399i −0.278815 0.160974i
\(780\) 0 0
\(781\) 303.116 + 525.011i 0.388112 + 0.672230i
\(782\) −1588.09 −2.03080
\(783\) 0 0
\(784\) −719.634 −0.917901
\(785\) 631.613 + 687.625i 0.804603 + 0.875955i
\(786\) 0 0
\(787\) 612.463 + 353.606i 0.778225 + 0.449308i 0.835801 0.549033i \(-0.185004\pi\)
−0.0575759 + 0.998341i \(0.518337\pi\)
\(788\) −73.6645 + 127.591i −0.0934829 + 0.161917i
\(789\) 0 0
\(790\) 415.241 381.417i 0.525621 0.482806i
\(791\) 483.306i 0.611006i
\(792\) 0 0
\(793\) 205.635i 0.259313i
\(794\) 825.918 476.844i 1.04020 0.600559i
\(795\) 0 0
\(796\) 15.6420 27.0927i 0.0196507 0.0340361i
\(797\) 673.041 1165.74i 0.844468 1.46266i −0.0416138 0.999134i \(-0.513250\pi\)
0.886082 0.463528i \(-0.153417\pi\)
\(798\) 0 0
\(799\) −538.885 933.377i −0.674450 1.16818i
\(800\) 426.499 200.129i 0.533124 0.250161i
\(801\) 0 0
\(802\) 1053.62i 1.31374i
\(803\) −303.775 526.154i −0.378300 0.655235i
\(804\) 0 0
\(805\) 154.021 490.545i 0.191330 0.609373i
\(806\) −709.845 409.829i −0.880701 0.508473i
\(807\) 0 0
\(808\) 278.434 160.754i 0.344597 0.198953i
\(809\) 63.7611i 0.0788147i 0.999223 + 0.0394073i \(0.0125470\pi\)
−0.999223 + 0.0394073i \(0.987453\pi\)
\(810\) 0 0
\(811\) 869.786 1.07249 0.536243 0.844064i \(-0.319843\pi\)
0.536243 + 0.844064i \(0.319843\pi\)
\(812\) 74.6844 + 129.357i 0.0919759 + 0.159307i
\(813\) 0 0
\(814\) 26.3075 45.5659i 0.0323188 0.0559778i
\(815\) 50.3311 160.301i 0.0617559 0.196688i
\(816\) 0 0
\(817\) −651.787 + 376.309i −0.797781 + 0.460599i
\(818\) 1215.11 1.48546
\(819\) 0 0
\(820\) −134.431 + 29.9722i −0.163941 + 0.0365515i
\(821\) −500.175 + 288.776i −0.609227 + 0.351737i −0.772663 0.634817i \(-0.781076\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(822\) 0 0
\(823\) −301.155 173.872i −0.365923 0.211266i 0.305753 0.952111i \(-0.401092\pi\)
−0.671676 + 0.740845i \(0.734425\pi\)
\(824\) 1064.95 + 614.847i 1.29241 + 0.746174i
\(825\) 0 0
\(826\) 136.111 + 235.752i 0.164784 + 0.285414i
\(827\) 19.0847 0.0230770 0.0115385 0.999933i \(-0.496327\pi\)
0.0115385 + 0.999933i \(0.496327\pi\)
\(828\) 0 0
\(829\) −39.6514 −0.0478303 −0.0239152 0.999714i \(-0.507613\pi\)
−0.0239152 + 0.999714i \(0.507613\pi\)
\(830\) 241.234 221.584i 0.290643 0.266968i
\(831\) 0 0
\(832\) −353.880 204.313i −0.425336 0.245568i
\(833\) 432.557 749.210i 0.519276 0.899412i
\(834\) 0 0
\(835\) −184.302 + 169.290i −0.220721 + 0.202742i
\(836\) 60.6339i 0.0725286i
\(837\) 0 0
\(838\) 1071.75i 1.27894i
\(839\) −326.716 + 188.630i −0.389411 + 0.224827i −0.681905 0.731441i \(-0.738848\pi\)
0.292494 + 0.956267i \(0.405515\pi\)
\(840\) 0 0
\(841\) 214.317 371.207i 0.254835 0.441388i
\(842\) 251.846 436.211i 0.299105 0.518065i
\(843\) 0 0
\(844\) −46.7649 80.9991i −0.0554086 0.0959705i
\(845\) 31.2727 + 140.265i 0.0370091 + 0.165994i
\(846\) 0 0
\(847\) 347.183i 0.409898i
\(848\) 659.134 + 1141.65i 0.777281 + 1.34629i
\(849\) 0 0
\(850\) −112.789 + 1325.87i −0.132694 + 1.55985i
\(851\) −132.231 76.3438i −0.155384 0.0897107i
\(852\) 0 0
\(853\) −142.059 + 82.0178i −0.166540 + 0.0961521i −0.580954 0.813937i \(-0.697320\pi\)
0.414413 + 0.910089i \(0.363987\pi\)
\(854\) 136.676i 0.160042i
\(855\) 0 0
\(856\) 820.590 0.958634
\(857\) 157.693 + 273.132i 0.184006 + 0.318707i 0.943241 0.332109i \(-0.107760\pi\)
−0.759235 + 0.650816i \(0.774427\pi\)
\(858\) 0 0
\(859\) 46.8200 81.0946i 0.0545052 0.0944058i −0.837485 0.546460i \(-0.815975\pi\)
0.891991 + 0.452054i \(0.149309\pi\)
\(860\) −123.814 + 394.340i −0.143970 + 0.458535i
\(861\) 0 0
\(862\) −963.472 + 556.261i −1.11772 + 0.645314i
\(863\) 1055.96 1.22360 0.611799 0.791013i \(-0.290446\pi\)
0.611799 + 0.791013i \(0.290446\pi\)
\(864\) 0 0
\(865\) 82.2145 + 368.749i 0.0950457 + 0.426299i
\(866\) −915.433 + 528.525i −1.05708 + 0.610306i
\(867\) 0 0
\(868\) −110.012 63.5152i −0.126741 0.0731742i
\(869\) −192.486 111.132i −0.221503 0.127885i
\(870\) 0 0
\(871\) −582.013 1008.08i −0.668212 1.15738i
\(872\) 1201.80 1.37821
\(873\) 0 0
\(874\) 754.623 0.863413
\(875\) −398.610 163.429i −0.455554 0.186776i
\(876\) 0 0
\(877\) 182.957 + 105.630i 0.208617 + 0.120445i 0.600668 0.799498i \(-0.294901\pi\)
−0.392052 + 0.919943i \(0.628235\pi\)
\(878\) −915.156 + 1585.10i −1.04232 + 1.80535i
\(879\) 0 0
\(880\) −295.174 321.350i −0.335425 0.365170i
\(881\) 824.884i 0.936304i −0.883648 0.468152i \(-0.844920\pi\)
0.883648 0.468152i \(-0.155080\pi\)
\(882\) 0 0
\(883\) 1155.63i 1.30875i −0.756171 0.654375i \(-0.772932\pi\)
0.756171 0.654375i \(-0.227068\pi\)
\(884\) −290.726 + 167.851i −0.328875 + 0.189876i
\(885\) 0 0
\(886\) −84.8711 + 147.001i −0.0957914 + 0.165916i
\(887\) 628.207 1088.09i 0.708238 1.22670i −0.257272 0.966339i \(-0.582824\pi\)
0.965510 0.260366i \(-0.0838431\pi\)
\(888\) 0 0
\(889\) −21.8574 37.8582i −0.0245865 0.0425851i
\(890\) 734.745 163.815i 0.825557 0.184062i
\(891\) 0 0
\(892\) 236.459i 0.265088i
\(893\) 256.066 + 443.519i 0.286748 + 0.496662i
\(894\) 0 0
\(895\) 174.425 555.532i 0.194888 0.620706i
\(896\) −460.195 265.694i −0.513611 0.296533i
\(897\) 0 0
\(898\) −709.035 + 409.362i −0.789572 + 0.455859i
\(899\) 1079.76i 1.20106i
\(900\) 0 0
\(901\) −1584.77 −1.75890
\(902\) 116.425 + 201.654i 0.129074 + 0.223563i
\(903\) 0 0
\(904\) 445.777 772.108i 0.493116 0.854101i
\(905\) 216.583 + 68.0025i 0.239318 + 0.0751409i
\(906\) 0 0
\(907\) 999.793 577.230i 1.10231 0.636417i 0.165481 0.986213i \(-0.447082\pi\)
0.936826 + 0.349796i \(0.113749\pi\)
\(908\) −185.322 −0.204099
\(909\) 0 0
\(910\) −101.432 454.945i −0.111464 0.499940i
\(911\) −302.953 + 174.910i −0.332550 + 0.191998i −0.656973 0.753914i \(-0.728163\pi\)
0.324423 + 0.945912i \(0.394830\pi\)
\(912\) 0 0
\(913\) −111.824 64.5619i −0.122480 0.0707140i
\(914\) 229.009 + 132.218i 0.250556 + 0.144659i
\(915\) 0 0
\(916\) −162.021 280.628i −0.176879 0.306363i
\(917\) 394.111 0.429783
\(918\) 0 0
\(919\) −375.011 −0.408064 −0.204032 0.978964i \(-0.565405\pi\)
−0.204032 + 0.978964i \(0.565405\pi\)
\(920\) −698.510 + 641.612i −0.759250 + 0.697404i
\(921\) 0 0
\(922\) 394.932 + 228.014i 0.428342 + 0.247303i
\(923\) 797.445 1381.22i 0.863971 1.49644i
\(924\) 0 0
\(925\) −73.1297 + 104.976i −0.0790591 + 0.113487i
\(926\) 1363.70i 1.47268i
\(927\) 0 0
\(928\) 671.475i 0.723572i
\(929\) 920.884 531.672i 0.991263 0.572306i 0.0856117 0.996329i \(-0.472716\pi\)
0.905652 + 0.424022i \(0.139382\pi\)
\(930\) 0 0
\(931\) −205.541 + 356.007i −0.220774 + 0.382392i
\(932\) −65.3748 + 113.232i −0.0701446 + 0.121494i
\(933\) 0 0
\(934\) −691.058 1196.95i −0.739890 1.28153i
\(935\) 511.980 114.149i 0.547572 0.122084i
\(936\) 0 0
\(937\) 1021.59i 1.09028i −0.838344 0.545141i \(-0.816476\pi\)
0.838344 0.545141i \(-0.183524\pi\)
\(938\) −386.837 670.021i −0.412406 0.714308i
\(939\) 0 0
\(940\) 268.335 + 84.2515i 0.285463 + 0.0896292i
\(941\) 378.485 + 218.519i 0.402216 + 0.232220i 0.687440 0.726241i \(-0.258735\pi\)
−0.285224 + 0.958461i \(0.592068\pi\)
\(942\) 0 0
\(943\) 585.195 337.862i 0.620567 0.358285i
\(944\) 670.424i 0.710195i
\(945\) 0 0
\(946\) 698.759 0.738646
\(947\) −829.222 1436.26i −0.875631 1.51664i −0.856089 0.516828i \(-0.827113\pi\)
−0.0195416 0.999809i \(-0.506221\pi\)
\(948\) 0 0
\(949\) −799.180 + 1384.22i −0.842129 + 1.45861i
\(950\) 53.5949 630.023i 0.0564157 0.663182i
\(951\) 0 0
\(952\) 442.239 255.327i 0.464537 0.268200i
\(953\) −413.980 −0.434397 −0.217198 0.976127i \(-0.569692\pi\)
−0.217198 + 0.976127i \(0.569692\pi\)
\(954\) 0 0
\(955\) −730.104 + 162.781i −0.764507 + 0.170451i
\(956\) 328.337 189.565i 0.343449 0.198290i
\(957\) 0 0
\(958\) 1068.93 + 617.146i 1.11579 + 0.644202i
\(959\) −57.3810 33.1289i −0.0598342 0.0345453i
\(960\) 0 0
\(961\) 21.3614 + 36.9991i 0.0222283 + 0.0385006i
\(962\) −138.421 −0.143889
\(963\) 0 0
\(964\) −194.999 −0.202281
\(965\) −479.629 522.162i −0.497025 0.541101i
\(966\) 0 0
\(967\) −88.8900 51.3207i −0.0919235 0.0530720i 0.453334 0.891341i \(-0.350235\pi\)
−0.545257 + 0.838269i \(0.683568\pi\)
\(968\) 320.224 554.644i 0.330810 0.572980i
\(969\) 0 0
\(970\) −554.237 603.387i −0.571379 0.622048i
\(971\) 997.502i 1.02729i 0.858002 + 0.513647i \(0.171706\pi\)
−0.858002 + 0.513647i \(0.828294\pi\)
\(972\) 0 0
\(973\) 193.428i 0.198795i
\(974\) −1118.37 + 645.693i −1.14823 + 0.662929i
\(975\) 0 0
\(976\) 168.301 291.506i 0.172440 0.298674i
\(977\) −630.932 + 1092.81i −0.645785 + 1.11853i 0.338335 + 0.941026i \(0.390136\pi\)
−0.984120 + 0.177506i \(0.943197\pi\)
\(978\) 0 0
\(979\) −148.375 256.993i −0.151558 0.262506i
\(980\) 49.1274 + 220.346i 0.0501300 + 0.224843i
\(981\) 0 0
\(982\) 609.855i 0.621033i
\(983\) 518.098 + 897.372i 0.527058 + 0.912891i 0.999503 + 0.0315308i \(0.0100382\pi\)
−0.472445 + 0.881360i \(0.656628\pi\)
\(984\) 0 0
\(985\) −577.829 181.426i −0.586628 0.184189i
\(986\) 1642.47 + 948.279i 1.66579 + 0.961744i
\(987\) 0 0
\(988\) 138.146 79.7587i 0.139824 0.0807274i
\(989\) 2027.78i 2.05034i
\(990\) 0 0
\(991\) −1503.88 −1.51754 −0.758770 0.651358i \(-0.774200\pi\)
−0.758770 + 0.651358i \(0.774200\pi\)
\(992\) 285.527 + 494.548i 0.287830 + 0.498536i
\(993\) 0 0
\(994\) 530.024 918.029i 0.533224 0.923571i
\(995\) 122.697 + 38.5241i 0.123313 + 0.0387177i
\(996\) 0 0
\(997\) 289.976 167.418i 0.290849 0.167922i −0.347476 0.937689i \(-0.612961\pi\)
0.638325 + 0.769767i \(0.279628\pi\)
\(998\) −1416.77 −1.41961
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.134.5 48
3.2 odd 2 inner 405.3.h.k.134.20 48
5.4 even 2 inner 405.3.h.k.134.19 48
9.2 odd 6 inner 405.3.h.k.269.19 48
9.4 even 3 405.3.d.b.404.20 yes 24
9.5 odd 6 405.3.d.b.404.5 24
9.7 even 3 inner 405.3.h.k.269.6 48
15.14 odd 2 inner 405.3.h.k.134.6 48
45.4 even 6 405.3.d.b.404.6 yes 24
45.14 odd 6 405.3.d.b.404.19 yes 24
45.29 odd 6 inner 405.3.h.k.269.5 48
45.34 even 6 inner 405.3.h.k.269.20 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.5 24 9.5 odd 6
405.3.d.b.404.6 yes 24 45.4 even 6
405.3.d.b.404.19 yes 24 45.14 odd 6
405.3.d.b.404.20 yes 24 9.4 even 3
405.3.h.k.134.5 48 1.1 even 1 trivial
405.3.h.k.134.6 48 15.14 odd 2 inner
405.3.h.k.134.19 48 5.4 even 2 inner
405.3.h.k.134.20 48 3.2 odd 2 inner
405.3.h.k.269.5 48 45.29 odd 6 inner
405.3.h.k.269.6 48 9.7 even 3 inner
405.3.h.k.269.19 48 9.2 odd 6 inner
405.3.h.k.269.20 48 45.34 even 6 inner