Properties

Label 405.3.d.a.404.16
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{20} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.16
Root \(-1.72886 - 0.105167i\) of defining polynomial
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.a.404.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.29340 q^{2} +1.25967 q^{4} +(4.62307 + 1.90452i) q^{5} +6.98084i q^{7} -6.28466 q^{8} +(10.6025 + 4.36783i) q^{10} +18.2517i q^{11} -4.23723i q^{13} +16.0098i q^{14} -19.4519 q^{16} +17.3066 q^{17} -3.96601 q^{19} +(5.82355 + 2.39907i) q^{20} +41.8584i q^{22} +0.575351 q^{23} +(17.7456 + 17.6095i) q^{25} -9.71765i q^{26} +8.79356i q^{28} -20.9881i q^{29} +33.4653 q^{31} -19.4723 q^{32} +39.6910 q^{34} +(-13.2952 + 32.2729i) q^{35} +21.4222i q^{37} -9.09563 q^{38} +(-29.0544 - 11.9693i) q^{40} -50.9227i q^{41} +8.26205i q^{43} +22.9911i q^{44} +1.31951 q^{46} -15.1558 q^{47} +0.267815 q^{49} +(40.6976 + 40.3856i) q^{50} -5.33751i q^{52} -24.5806 q^{53} +(-34.7608 + 84.3789i) q^{55} -43.8723i q^{56} -48.1340i q^{58} -49.8356i q^{59} +62.9347 q^{61} +76.7492 q^{62} +33.1499 q^{64} +(8.06991 - 19.5890i) q^{65} +119.564i q^{67} +21.8006 q^{68} +(-30.4911 + 74.0147i) q^{70} -66.8256i q^{71} -48.9419i q^{73} +49.1296i q^{74} -4.99586 q^{76} -127.412 q^{77} -117.932 q^{79} +(-89.9276 - 37.0466i) q^{80} -116.786i q^{82} +7.32127 q^{83} +(80.0098 + 32.9609i) q^{85} +18.9482i q^{86} -114.706i q^{88} -100.624i q^{89} +29.5794 q^{91} +0.724753 q^{92} -34.7582 q^{94} +(-18.3351 - 7.55336i) q^{95} +4.14812i q^{97} +0.614205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 4 q^{10} + 52 q^{16} - 8 q^{19} - 4 q^{25} - 56 q^{31} + 8 q^{34} + 68 q^{40} + 116 q^{46} + 80 q^{49} + 36 q^{55} + 100 q^{61} + 140 q^{64} + 108 q^{70} + 192 q^{76} + 256 q^{79} + 148 q^{85}+ \cdots - 436 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.29340 1.14670 0.573349 0.819311i \(-0.305644\pi\)
0.573349 + 0.819311i \(0.305644\pi\)
\(3\) 0 0
\(4\) 1.25967 0.314918
\(5\) 4.62307 + 1.90452i 0.924614 + 0.380905i
\(6\) 0 0
\(7\) 6.98084i 0.997263i 0.866814 + 0.498632i \(0.166164\pi\)
−0.866814 + 0.498632i \(0.833836\pi\)
\(8\) −6.28466 −0.785583
\(9\) 0 0
\(10\) 10.6025 + 4.36783i 1.06025 + 0.436783i
\(11\) 18.2517i 1.65924i 0.558325 + 0.829622i \(0.311444\pi\)
−0.558325 + 0.829622i \(0.688556\pi\)
\(12\) 0 0
\(13\) 4.23723i 0.325941i −0.986631 0.162970i \(-0.947892\pi\)
0.986631 0.162970i \(-0.0521075\pi\)
\(14\) 16.0098i 1.14356i
\(15\) 0 0
\(16\) −19.4519 −1.21574
\(17\) 17.3066 1.01804 0.509019 0.860756i \(-0.330008\pi\)
0.509019 + 0.860756i \(0.330008\pi\)
\(18\) 0 0
\(19\) −3.96601 −0.208737 −0.104369 0.994539i \(-0.533282\pi\)
−0.104369 + 0.994539i \(0.533282\pi\)
\(20\) 5.82355 + 2.39907i 0.291177 + 0.119954i
\(21\) 0 0
\(22\) 41.8584i 1.90265i
\(23\) 0.575351 0.0250153 0.0125076 0.999922i \(-0.496019\pi\)
0.0125076 + 0.999922i \(0.496019\pi\)
\(24\) 0 0
\(25\) 17.7456 + 17.6095i 0.709823 + 0.704380i
\(26\) 9.71765i 0.373756i
\(27\) 0 0
\(28\) 8.79356i 0.314056i
\(29\) 20.9881i 0.723727i −0.932231 0.361863i \(-0.882141\pi\)
0.932231 0.361863i \(-0.117859\pi\)
\(30\) 0 0
\(31\) 33.4653 1.07953 0.539763 0.841817i \(-0.318514\pi\)
0.539763 + 0.841817i \(0.318514\pi\)
\(32\) −19.4723 −0.608509
\(33\) 0 0
\(34\) 39.6910 1.16738
\(35\) −13.2952 + 32.2729i −0.379863 + 0.922084i
\(36\) 0 0
\(37\) 21.4222i 0.578978i 0.957181 + 0.289489i \(0.0934854\pi\)
−0.957181 + 0.289489i \(0.906515\pi\)
\(38\) −9.09563 −0.239359
\(39\) 0 0
\(40\) −29.0544 11.9693i −0.726361 0.299232i
\(41\) 50.9227i 1.24202i −0.783804 0.621008i \(-0.786723\pi\)
0.783804 0.621008i \(-0.213277\pi\)
\(42\) 0 0
\(43\) 8.26205i 0.192141i 0.995375 + 0.0960703i \(0.0306274\pi\)
−0.995375 + 0.0960703i \(0.969373\pi\)
\(44\) 22.9911i 0.522525i
\(45\) 0 0
\(46\) 1.31951 0.0286850
\(47\) −15.1558 −0.322463 −0.161232 0.986917i \(-0.551547\pi\)
−0.161232 + 0.986917i \(0.551547\pi\)
\(48\) 0 0
\(49\) 0.267815 0.00546560
\(50\) 40.6976 + 40.3856i 0.813953 + 0.807712i
\(51\) 0 0
\(52\) 5.33751i 0.102644i
\(53\) −24.5806 −0.463784 −0.231892 0.972741i \(-0.574492\pi\)
−0.231892 + 0.972741i \(0.574492\pi\)
\(54\) 0 0
\(55\) −34.7608 + 84.3789i −0.632014 + 1.53416i
\(56\) 43.8723i 0.783433i
\(57\) 0 0
\(58\) 48.1340i 0.829897i
\(59\) 49.8356i 0.844671i −0.906440 0.422335i \(-0.861210\pi\)
0.906440 0.422335i \(-0.138790\pi\)
\(60\) 0 0
\(61\) 62.9347 1.03172 0.515858 0.856674i \(-0.327473\pi\)
0.515858 + 0.856674i \(0.327473\pi\)
\(62\) 76.7492 1.23789
\(63\) 0 0
\(64\) 33.1499 0.517968
\(65\) 8.06991 19.5890i 0.124152 0.301370i
\(66\) 0 0
\(67\) 119.564i 1.78453i 0.451511 + 0.892266i \(0.350885\pi\)
−0.451511 + 0.892266i \(0.649115\pi\)
\(68\) 21.8006 0.320598
\(69\) 0 0
\(70\) −30.4911 + 74.0147i −0.435588 + 1.05735i
\(71\) 66.8256i 0.941205i −0.882345 0.470603i \(-0.844037\pi\)
0.882345 0.470603i \(-0.155963\pi\)
\(72\) 0 0
\(73\) 48.9419i 0.670437i −0.942140 0.335218i \(-0.891190\pi\)
0.942140 0.335218i \(-0.108810\pi\)
\(74\) 49.1296i 0.663913i
\(75\) 0 0
\(76\) −4.99586 −0.0657350
\(77\) −127.412 −1.65470
\(78\) 0 0
\(79\) −117.932 −1.49281 −0.746407 0.665490i \(-0.768223\pi\)
−0.746407 + 0.665490i \(0.768223\pi\)
\(80\) −89.9276 37.0466i −1.12409 0.463083i
\(81\) 0 0
\(82\) 116.786i 1.42422i
\(83\) 7.32127 0.0882080 0.0441040 0.999027i \(-0.485957\pi\)
0.0441040 + 0.999027i \(0.485957\pi\)
\(84\) 0 0
\(85\) 80.0098 + 32.9609i 0.941292 + 0.387775i
\(86\) 18.9482i 0.220327i
\(87\) 0 0
\(88\) 114.706i 1.30347i
\(89\) 100.624i 1.13060i −0.824884 0.565302i \(-0.808759\pi\)
0.824884 0.565302i \(-0.191241\pi\)
\(90\) 0 0
\(91\) 29.5794 0.325049
\(92\) 0.724753 0.00787774
\(93\) 0 0
\(94\) −34.7582 −0.369768
\(95\) −18.3351 7.55336i −0.193001 0.0795091i
\(96\) 0 0
\(97\) 4.14812i 0.0427642i 0.999771 + 0.0213821i \(0.00680665\pi\)
−0.999771 + 0.0213821i \(0.993193\pi\)
\(98\) 0.614205 0.00626740
\(99\) 0 0
\(100\) 22.3536 + 22.1822i 0.223536 + 0.221822i
\(101\) 161.965i 1.60362i −0.597582 0.801808i \(-0.703872\pi\)
0.597582 0.801808i \(-0.296128\pi\)
\(102\) 0 0
\(103\) 164.143i 1.59363i −0.604226 0.796813i \(-0.706518\pi\)
0.604226 0.796813i \(-0.293482\pi\)
\(104\) 26.6296i 0.256054i
\(105\) 0 0
\(106\) −56.3730 −0.531821
\(107\) −48.4086 −0.452416 −0.226208 0.974079i \(-0.572633\pi\)
−0.226208 + 0.974079i \(0.572633\pi\)
\(108\) 0 0
\(109\) 23.7458 0.217851 0.108925 0.994050i \(-0.465259\pi\)
0.108925 + 0.994050i \(0.465259\pi\)
\(110\) −79.7203 + 193.514i −0.724730 + 1.75922i
\(111\) 0 0
\(112\) 135.791i 1.21242i
\(113\) 112.794 0.998180 0.499090 0.866550i \(-0.333668\pi\)
0.499090 + 0.866550i \(0.333668\pi\)
\(114\) 0 0
\(115\) 2.65989 + 1.09577i 0.0231295 + 0.00952843i
\(116\) 26.4381i 0.227914i
\(117\) 0 0
\(118\) 114.293i 0.968582i
\(119\) 120.815i 1.01525i
\(120\) 0 0
\(121\) −212.124 −1.75309
\(122\) 144.334 1.18307
\(123\) 0 0
\(124\) 42.1552 0.339962
\(125\) 48.5013 + 115.207i 0.388011 + 0.921655i
\(126\) 0 0
\(127\) 97.5047i 0.767754i 0.923384 + 0.383877i \(0.125411\pi\)
−0.923384 + 0.383877i \(0.874589\pi\)
\(128\) 153.915 1.20246
\(129\) 0 0
\(130\) 18.5075 44.9254i 0.142365 0.345580i
\(131\) 20.5419i 0.156808i −0.996922 0.0784041i \(-0.975018\pi\)
0.996922 0.0784041i \(-0.0249825\pi\)
\(132\) 0 0
\(133\) 27.6861i 0.208166i
\(134\) 274.207i 2.04632i
\(135\) 0 0
\(136\) −108.766 −0.799753
\(137\) −19.6714 −0.143587 −0.0717935 0.997420i \(-0.522872\pi\)
−0.0717935 + 0.997420i \(0.522872\pi\)
\(138\) 0 0
\(139\) 108.043 0.777287 0.388644 0.921388i \(-0.372944\pi\)
0.388644 + 0.921388i \(0.372944\pi\)
\(140\) −16.7476 + 40.6533i −0.119625 + 0.290380i
\(141\) 0 0
\(142\) 153.258i 1.07928i
\(143\) 77.3366 0.540816
\(144\) 0 0
\(145\) 39.9723 97.0294i 0.275671 0.669168i
\(146\) 112.243i 0.768789i
\(147\) 0 0
\(148\) 26.9849i 0.182330i
\(149\) 226.960i 1.52322i 0.648034 + 0.761612i \(0.275592\pi\)
−0.648034 + 0.761612i \(0.724408\pi\)
\(150\) 0 0
\(151\) 55.8282 0.369723 0.184862 0.982765i \(-0.440816\pi\)
0.184862 + 0.982765i \(0.440816\pi\)
\(152\) 24.9250 0.163980
\(153\) 0 0
\(154\) −292.207 −1.89745
\(155\) 154.712 + 63.7355i 0.998145 + 0.411197i
\(156\) 0 0
\(157\) 68.3997i 0.435667i 0.975986 + 0.217833i \(0.0698990\pi\)
−0.975986 + 0.217833i \(0.930101\pi\)
\(158\) −270.466 −1.71181
\(159\) 0 0
\(160\) −90.0218 37.0855i −0.562636 0.231784i
\(161\) 4.01644i 0.0249468i
\(162\) 0 0
\(163\) 80.5043i 0.493892i −0.969029 0.246946i \(-0.920573\pi\)
0.969029 0.246946i \(-0.0794269\pi\)
\(164\) 64.1458i 0.391133i
\(165\) 0 0
\(166\) 16.7906 0.101148
\(167\) 74.8228 0.448041 0.224020 0.974584i \(-0.428082\pi\)
0.224020 + 0.974584i \(0.428082\pi\)
\(168\) 0 0
\(169\) 151.046 0.893763
\(170\) 183.494 + 75.5924i 1.07938 + 0.444661i
\(171\) 0 0
\(172\) 10.4075i 0.0605085i
\(173\) −318.424 −1.84060 −0.920301 0.391212i \(-0.872056\pi\)
−0.920301 + 0.391212i \(0.872056\pi\)
\(174\) 0 0
\(175\) −122.929 + 123.879i −0.702453 + 0.707880i
\(176\) 355.030i 2.01722i
\(177\) 0 0
\(178\) 230.770i 1.29646i
\(179\) 3.14738i 0.0175831i 0.999961 + 0.00879155i \(0.00279847\pi\)
−0.999961 + 0.00879155i \(0.997202\pi\)
\(180\) 0 0
\(181\) −0.833264 −0.00460367 −0.00230183 0.999997i \(-0.500733\pi\)
−0.00230183 + 0.999997i \(0.500733\pi\)
\(182\) 67.8374 0.372733
\(183\) 0 0
\(184\) −3.61589 −0.0196516
\(185\) −40.7991 + 99.0363i −0.220536 + 0.535331i
\(186\) 0 0
\(187\) 315.875i 1.68917i
\(188\) −19.0913 −0.101549
\(189\) 0 0
\(190\) −42.0498 17.3229i −0.221315 0.0911729i
\(191\) 57.5187i 0.301145i 0.988599 + 0.150573i \(0.0481117\pi\)
−0.988599 + 0.150573i \(0.951888\pi\)
\(192\) 0 0
\(193\) 36.3611i 0.188400i 0.995553 + 0.0941999i \(0.0300293\pi\)
−0.995553 + 0.0941999i \(0.969971\pi\)
\(194\) 9.51330i 0.0490376i
\(195\) 0 0
\(196\) 0.337358 0.00172121
\(197\) −151.285 −0.767943 −0.383972 0.923345i \(-0.625444\pi\)
−0.383972 + 0.923345i \(0.625444\pi\)
\(198\) 0 0
\(199\) 268.742 1.35046 0.675232 0.737605i \(-0.264043\pi\)
0.675232 + 0.737605i \(0.264043\pi\)
\(200\) −111.525 110.670i −0.557625 0.553349i
\(201\) 0 0
\(202\) 371.451i 1.83886i
\(203\) 146.515 0.721746
\(204\) 0 0
\(205\) 96.9834 235.419i 0.473090 1.14839i
\(206\) 376.446i 1.82741i
\(207\) 0 0
\(208\) 82.4222i 0.396261i
\(209\) 72.3864i 0.346346i
\(210\) 0 0
\(211\) 357.665 1.69510 0.847548 0.530718i \(-0.178078\pi\)
0.847548 + 0.530718i \(0.178078\pi\)
\(212\) −30.9634 −0.146054
\(213\) 0 0
\(214\) −111.020 −0.518785
\(215\) −15.7353 + 38.1960i −0.0731873 + 0.177656i
\(216\) 0 0
\(217\) 233.616i 1.07657i
\(218\) 54.4584 0.249809
\(219\) 0 0
\(220\) −43.7871 + 106.290i −0.199032 + 0.483134i
\(221\) 73.3322i 0.331820i
\(222\) 0 0
\(223\) 357.273i 1.60212i 0.598582 + 0.801062i \(0.295731\pi\)
−0.598582 + 0.801062i \(0.704269\pi\)
\(224\) 135.933i 0.606844i
\(225\) 0 0
\(226\) 258.682 1.14461
\(227\) 128.800 0.567403 0.283701 0.958913i \(-0.408438\pi\)
0.283701 + 0.958913i \(0.408438\pi\)
\(228\) 0 0
\(229\) −253.105 −1.10526 −0.552631 0.833426i \(-0.686376\pi\)
−0.552631 + 0.833426i \(0.686376\pi\)
\(230\) 6.10018 + 2.51304i 0.0265225 + 0.0109262i
\(231\) 0 0
\(232\) 131.903i 0.568548i
\(233\) −96.3566 −0.413548 −0.206774 0.978389i \(-0.566296\pi\)
−0.206774 + 0.978389i \(0.566296\pi\)
\(234\) 0 0
\(235\) −70.0663 28.8646i −0.298154 0.122828i
\(236\) 62.7764i 0.266002i
\(237\) 0 0
\(238\) 277.077i 1.16419i
\(239\) 109.392i 0.457706i −0.973461 0.228853i \(-0.926502\pi\)
0.973461 0.228853i \(-0.0734976\pi\)
\(240\) 0 0
\(241\) −313.624 −1.30134 −0.650672 0.759359i \(-0.725513\pi\)
−0.650672 + 0.759359i \(0.725513\pi\)
\(242\) −486.485 −2.01027
\(243\) 0 0
\(244\) 79.2770 0.324906
\(245\) 1.23813 + 0.510059i 0.00505357 + 0.00208187i
\(246\) 0 0
\(247\) 16.8049i 0.0680360i
\(248\) −210.318 −0.848057
\(249\) 0 0
\(250\) 111.233 + 264.215i 0.444931 + 1.05686i
\(251\) 192.888i 0.768478i −0.923234 0.384239i \(-0.874464\pi\)
0.923234 0.384239i \(-0.125536\pi\)
\(252\) 0 0
\(253\) 10.5011i 0.0415064i
\(254\) 223.617i 0.880382i
\(255\) 0 0
\(256\) 220.389 0.860894
\(257\) 373.514 1.45336 0.726680 0.686976i \(-0.241062\pi\)
0.726680 + 0.686976i \(0.241062\pi\)
\(258\) 0 0
\(259\) −149.545 −0.577394
\(260\) 10.1654 24.6757i 0.0390978 0.0949066i
\(261\) 0 0
\(262\) 47.1107i 0.179812i
\(263\) 201.579 0.766460 0.383230 0.923653i \(-0.374812\pi\)
0.383230 + 0.923653i \(0.374812\pi\)
\(264\) 0 0
\(265\) −113.638 46.8143i −0.428822 0.176658i
\(266\) 63.4952i 0.238704i
\(267\) 0 0
\(268\) 150.611i 0.561980i
\(269\) 7.31695i 0.0272006i 0.999908 + 0.0136003i \(0.00432924\pi\)
−0.999908 + 0.0136003i \(0.995671\pi\)
\(270\) 0 0
\(271\) −93.8451 −0.346292 −0.173146 0.984896i \(-0.555393\pi\)
−0.173146 + 0.984896i \(0.555393\pi\)
\(272\) −336.647 −1.23767
\(273\) 0 0
\(274\) −45.1144 −0.164651
\(275\) −321.403 + 323.887i −1.16874 + 1.17777i
\(276\) 0 0
\(277\) 266.869i 0.963428i −0.876329 0.481714i \(-0.840014\pi\)
0.876329 0.481714i \(-0.159986\pi\)
\(278\) 247.785 0.891314
\(279\) 0 0
\(280\) 83.5558 202.825i 0.298414 0.724374i
\(281\) 6.31405i 0.0224699i 0.999937 + 0.0112350i \(0.00357628\pi\)
−0.999937 + 0.0112350i \(0.996424\pi\)
\(282\) 0 0
\(283\) 346.480i 1.22431i 0.790738 + 0.612155i \(0.209697\pi\)
−0.790738 + 0.612155i \(0.790303\pi\)
\(284\) 84.1782i 0.296402i
\(285\) 0 0
\(286\) 177.364 0.620152
\(287\) 355.483 1.23862
\(288\) 0 0
\(289\) 10.5195 0.0363996
\(290\) 91.6724 222.527i 0.316112 0.767334i
\(291\) 0 0
\(292\) 61.6506i 0.211132i
\(293\) −106.692 −0.364137 −0.182068 0.983286i \(-0.558279\pi\)
−0.182068 + 0.983286i \(0.558279\pi\)
\(294\) 0 0
\(295\) 94.9130 230.393i 0.321739 0.780994i
\(296\) 134.631i 0.454835i
\(297\) 0 0
\(298\) 520.510i 1.74668i
\(299\) 2.43789i 0.00815349i
\(300\) 0 0
\(301\) −57.6761 −0.191615
\(302\) 128.036 0.423961
\(303\) 0 0
\(304\) 77.1465 0.253771
\(305\) 290.952 + 119.861i 0.953940 + 0.392986i
\(306\) 0 0
\(307\) 161.083i 0.524702i 0.964973 + 0.262351i \(0.0844978\pi\)
−0.964973 + 0.262351i \(0.915502\pi\)
\(308\) −160.497 −0.521095
\(309\) 0 0
\(310\) 354.817 + 146.171i 1.14457 + 0.471519i
\(311\) 17.3745i 0.0558667i −0.999610 0.0279333i \(-0.991107\pi\)
0.999610 0.0279333i \(-0.00889261\pi\)
\(312\) 0 0
\(313\) 348.475i 1.11334i 0.830734 + 0.556670i \(0.187921\pi\)
−0.830734 + 0.556670i \(0.812079\pi\)
\(314\) 156.868i 0.499579i
\(315\) 0 0
\(316\) −148.556 −0.470113
\(317\) 296.850 0.936437 0.468218 0.883613i \(-0.344896\pi\)
0.468218 + 0.883613i \(0.344896\pi\)
\(318\) 0 0
\(319\) 383.068 1.20084
\(320\) 153.254 + 63.1348i 0.478920 + 0.197296i
\(321\) 0 0
\(322\) 9.21128i 0.0286065i
\(323\) −68.6383 −0.212502
\(324\) 0 0
\(325\) 74.6155 75.1921i 0.229586 0.231360i
\(326\) 184.628i 0.566345i
\(327\) 0 0
\(328\) 320.032i 0.975707i
\(329\) 105.800i 0.321581i
\(330\) 0 0
\(331\) 202.694 0.612367 0.306184 0.951972i \(-0.400948\pi\)
0.306184 + 0.951972i \(0.400948\pi\)
\(332\) 9.22238 0.0277783
\(333\) 0 0
\(334\) 171.598 0.513768
\(335\) −227.712 + 552.751i −0.679737 + 1.65000i
\(336\) 0 0
\(337\) 32.7607i 0.0972129i −0.998818 0.0486064i \(-0.984522\pi\)
0.998818 0.0486064i \(-0.0154780\pi\)
\(338\) 346.408 1.02488
\(339\) 0 0
\(340\) 100.786 + 41.5199i 0.296429 + 0.122117i
\(341\) 610.798i 1.79120i
\(342\) 0 0
\(343\) 343.931i 1.00271i
\(344\) 51.9242i 0.150942i
\(345\) 0 0
\(346\) −730.273 −2.11061
\(347\) −669.391 −1.92908 −0.964540 0.263935i \(-0.914979\pi\)
−0.964540 + 0.263935i \(0.914979\pi\)
\(348\) 0 0
\(349\) 548.274 1.57098 0.785492 0.618871i \(-0.212410\pi\)
0.785492 + 0.618871i \(0.212410\pi\)
\(350\) −281.925 + 284.104i −0.805501 + 0.811726i
\(351\) 0 0
\(352\) 355.402i 1.00967i
\(353\) −20.0111 −0.0566888 −0.0283444 0.999598i \(-0.509024\pi\)
−0.0283444 + 0.999598i \(0.509024\pi\)
\(354\) 0 0
\(355\) 127.271 308.939i 0.358510 0.870252i
\(356\) 126.753i 0.356047i
\(357\) 0 0
\(358\) 7.21818i 0.0201625i
\(359\) 224.934i 0.626556i 0.949661 + 0.313278i \(0.101427\pi\)
−0.949661 + 0.313278i \(0.898573\pi\)
\(360\) 0 0
\(361\) −345.271 −0.956429
\(362\) −1.91100 −0.00527902
\(363\) 0 0
\(364\) 37.2604 0.102364
\(365\) 93.2110 226.262i 0.255373 0.619895i
\(366\) 0 0
\(367\) 50.5726i 0.137800i 0.997624 + 0.0689000i \(0.0219490\pi\)
−0.997624 + 0.0689000i \(0.978051\pi\)
\(368\) −11.1917 −0.0304122
\(369\) 0 0
\(370\) −93.5685 + 227.130i −0.252888 + 0.613864i
\(371\) 171.593i 0.462515i
\(372\) 0 0
\(373\) 282.741i 0.758019i −0.925393 0.379010i \(-0.876265\pi\)
0.925393 0.379010i \(-0.123735\pi\)
\(374\) 724.427i 1.93697i
\(375\) 0 0
\(376\) 95.2490 0.253322
\(377\) −88.9313 −0.235892
\(378\) 0 0
\(379\) −435.602 −1.14935 −0.574673 0.818383i \(-0.694871\pi\)
−0.574673 + 0.818383i \(0.694871\pi\)
\(380\) −23.0962 9.51474i −0.0607796 0.0250388i
\(381\) 0 0
\(382\) 131.913i 0.345323i
\(383\) 312.449 0.815795 0.407897 0.913028i \(-0.366262\pi\)
0.407897 + 0.913028i \(0.366262\pi\)
\(384\) 0 0
\(385\) −589.036 242.660i −1.52996 0.630285i
\(386\) 83.3905i 0.216038i
\(387\) 0 0
\(388\) 5.22527i 0.0134672i
\(389\) 251.407i 0.646290i −0.946349 0.323145i \(-0.895260\pi\)
0.946349 0.323145i \(-0.104740\pi\)
\(390\) 0 0
\(391\) 9.95739 0.0254665
\(392\) −1.68312 −0.00429368
\(393\) 0 0
\(394\) −346.956 −0.880600
\(395\) −545.209 224.605i −1.38028 0.568620i
\(396\) 0 0
\(397\) 237.163i 0.597388i −0.954349 0.298694i \(-0.903449\pi\)
0.954349 0.298694i \(-0.0965510\pi\)
\(398\) 616.333 1.54858
\(399\) 0 0
\(400\) −345.185 342.539i −0.862963 0.856346i
\(401\) 536.897i 1.33890i 0.742859 + 0.669448i \(0.233469\pi\)
−0.742859 + 0.669448i \(0.766531\pi\)
\(402\) 0 0
\(403\) 141.800i 0.351862i
\(404\) 204.023i 0.505007i
\(405\) 0 0
\(406\) 336.016 0.827626
\(407\) −390.991 −0.960666
\(408\) 0 0
\(409\) −41.5034 −0.101475 −0.0507376 0.998712i \(-0.516157\pi\)
−0.0507376 + 0.998712i \(0.516157\pi\)
\(410\) 222.422 539.909i 0.542492 1.31685i
\(411\) 0 0
\(412\) 206.767i 0.501861i
\(413\) 347.894 0.842359
\(414\) 0 0
\(415\) 33.8467 + 13.9435i 0.0815584 + 0.0335989i
\(416\) 82.5086i 0.198338i
\(417\) 0 0
\(418\) 166.011i 0.397155i
\(419\) 734.867i 1.75386i −0.480619 0.876929i \(-0.659588\pi\)
0.480619 0.876929i \(-0.340412\pi\)
\(420\) 0 0
\(421\) −15.3176 −0.0363839 −0.0181920 0.999835i \(-0.505791\pi\)
−0.0181920 + 0.999835i \(0.505791\pi\)
\(422\) 820.269 1.94377
\(423\) 0 0
\(424\) 154.481 0.364341
\(425\) 307.116 + 304.761i 0.722626 + 0.717085i
\(426\) 0 0
\(427\) 439.338i 1.02889i
\(428\) −60.9788 −0.142474
\(429\) 0 0
\(430\) −36.0872 + 87.5987i −0.0839238 + 0.203718i
\(431\) 98.8622i 0.229379i 0.993401 + 0.114689i \(0.0365872\pi\)
−0.993401 + 0.114689i \(0.963413\pi\)
\(432\) 0 0
\(433\) 573.821i 1.32522i −0.748964 0.662610i \(-0.769449\pi\)
0.748964 0.662610i \(-0.230551\pi\)
\(434\) 535.774i 1.23450i
\(435\) 0 0
\(436\) 29.9118 0.0686051
\(437\) −2.28185 −0.00522162
\(438\) 0 0
\(439\) −239.854 −0.546364 −0.273182 0.961962i \(-0.588076\pi\)
−0.273182 + 0.961962i \(0.588076\pi\)
\(440\) 218.460 530.293i 0.496500 1.20521i
\(441\) 0 0
\(442\) 168.180i 0.380497i
\(443\) −366.515 −0.827347 −0.413673 0.910425i \(-0.635754\pi\)
−0.413673 + 0.910425i \(0.635754\pi\)
\(444\) 0 0
\(445\) 191.641 465.191i 0.430653 1.04537i
\(446\) 819.370i 1.83715i
\(447\) 0 0
\(448\) 231.414i 0.516550i
\(449\) 623.682i 1.38905i −0.719470 0.694523i \(-0.755615\pi\)
0.719470 0.694523i \(-0.244385\pi\)
\(450\) 0 0
\(451\) 929.424 2.06081
\(452\) 142.084 0.314344
\(453\) 0 0
\(454\) 295.391 0.650640
\(455\) 136.748 + 56.3348i 0.300545 + 0.123813i
\(456\) 0 0
\(457\) 388.452i 0.850005i −0.905192 0.425002i \(-0.860273\pi\)
0.905192 0.425002i \(-0.139727\pi\)
\(458\) −580.470 −1.26740
\(459\) 0 0
\(460\) 3.35058 + 1.38031i 0.00728387 + 0.00300067i
\(461\) 379.855i 0.823980i 0.911188 + 0.411990i \(0.135166\pi\)
−0.911188 + 0.411990i \(0.864834\pi\)
\(462\) 0 0
\(463\) 382.252i 0.825599i −0.910822 0.412800i \(-0.864551\pi\)
0.910822 0.412800i \(-0.135449\pi\)
\(464\) 408.258i 0.879867i
\(465\) 0 0
\(466\) −220.984 −0.474215
\(467\) −35.3515 −0.0756992 −0.0378496 0.999283i \(-0.512051\pi\)
−0.0378496 + 0.999283i \(0.512051\pi\)
\(468\) 0 0
\(469\) −834.655 −1.77965
\(470\) −160.690 66.1979i −0.341893 0.140847i
\(471\) 0 0
\(472\) 313.200i 0.663559i
\(473\) −150.796 −0.318808
\(474\) 0 0
\(475\) −70.3791 69.8394i −0.148167 0.147030i
\(476\) 152.187i 0.319720i
\(477\) 0 0
\(478\) 250.879i 0.524851i
\(479\) 578.766i 1.20828i −0.796879 0.604139i \(-0.793517\pi\)
0.796879 0.604139i \(-0.206483\pi\)
\(480\) 0 0
\(481\) 90.7708 0.188713
\(482\) −719.264 −1.49225
\(483\) 0 0
\(484\) −267.207 −0.552080
\(485\) −7.90020 + 19.1771i −0.0162891 + 0.0395404i
\(486\) 0 0
\(487\) 424.778i 0.872235i −0.899890 0.436117i \(-0.856353\pi\)
0.899890 0.436117i \(-0.143647\pi\)
\(488\) −395.524 −0.810499
\(489\) 0 0
\(490\) 2.83951 + 1.16977i 0.00579493 + 0.00238728i
\(491\) 390.005i 0.794307i −0.917752 0.397154i \(-0.869998\pi\)
0.917752 0.397154i \(-0.130002\pi\)
\(492\) 0 0
\(493\) 363.233i 0.736781i
\(494\) 38.5403i 0.0780168i
\(495\) 0 0
\(496\) −650.964 −1.31243
\(497\) 466.499 0.938630
\(498\) 0 0
\(499\) −617.553 −1.23758 −0.618790 0.785556i \(-0.712377\pi\)
−0.618790 + 0.785556i \(0.712377\pi\)
\(500\) 61.0957 + 145.123i 0.122191 + 0.290245i
\(501\) 0 0
\(502\) 442.368i 0.881212i
\(503\) −551.752 −1.09692 −0.548461 0.836176i \(-0.684786\pi\)
−0.548461 + 0.836176i \(0.684786\pi\)
\(504\) 0 0
\(505\) 308.467 748.777i 0.610825 1.48273i
\(506\) 24.0833i 0.0475954i
\(507\) 0 0
\(508\) 122.824i 0.241779i
\(509\) 443.153i 0.870635i −0.900277 0.435317i \(-0.856636\pi\)
0.900277 0.435317i \(-0.143364\pi\)
\(510\) 0 0
\(511\) 341.656 0.668602
\(512\) −110.221 −0.215276
\(513\) 0 0
\(514\) 856.615 1.66657
\(515\) 312.615 758.847i 0.607020 1.47349i
\(516\) 0 0
\(517\) 276.619i 0.535046i
\(518\) −342.966 −0.662097
\(519\) 0 0
\(520\) −50.7167 + 123.110i −0.0975321 + 0.236751i
\(521\) 716.733i 1.37569i −0.725859 0.687843i \(-0.758558\pi\)
0.725859 0.687843i \(-0.241442\pi\)
\(522\) 0 0
\(523\) 417.591i 0.798453i 0.916852 + 0.399227i \(0.130721\pi\)
−0.916852 + 0.399227i \(0.869279\pi\)
\(524\) 25.8760i 0.0493817i
\(525\) 0 0
\(526\) 462.301 0.878899
\(527\) 579.172 1.09900
\(528\) 0 0
\(529\) −528.669 −0.999374
\(530\) −260.616 107.364i −0.491729 0.202573i
\(531\) 0 0
\(532\) 34.8753i 0.0655552i
\(533\) −215.771 −0.404824
\(534\) 0 0
\(535\) −223.796 92.1953i −0.418311 0.172328i
\(536\) 751.417i 1.40190i
\(537\) 0 0
\(538\) 16.7807i 0.0311908i
\(539\) 4.88807i 0.00906877i
\(540\) 0 0
\(541\) −365.297 −0.675225 −0.337612 0.941285i \(-0.609619\pi\)
−0.337612 + 0.941285i \(0.609619\pi\)
\(542\) −215.224 −0.397092
\(543\) 0 0
\(544\) −337.000 −0.619485
\(545\) 109.778 + 45.2244i 0.201428 + 0.0829805i
\(546\) 0 0
\(547\) 611.588i 1.11808i 0.829142 + 0.559039i \(0.188830\pi\)
−0.829142 + 0.559039i \(0.811170\pi\)
\(548\) −24.7795 −0.0452181
\(549\) 0 0
\(550\) −737.105 + 742.801i −1.34019 + 1.35055i
\(551\) 83.2389i 0.151069i
\(552\) 0 0
\(553\) 823.267i 1.48873i
\(554\) 612.038i 1.10476i
\(555\) 0 0
\(556\) 136.098 0.244781
\(557\) 510.888 0.917214 0.458607 0.888639i \(-0.348349\pi\)
0.458607 + 0.888639i \(0.348349\pi\)
\(558\) 0 0
\(559\) 35.0082 0.0626265
\(560\) 258.617 627.770i 0.461816 1.12102i
\(561\) 0 0
\(562\) 14.4806i 0.0257662i
\(563\) 157.752 0.280199 0.140099 0.990137i \(-0.455258\pi\)
0.140099 + 0.990137i \(0.455258\pi\)
\(564\) 0 0
\(565\) 521.456 + 214.820i 0.922931 + 0.380212i
\(566\) 794.615i 1.40391i
\(567\) 0 0
\(568\) 419.976i 0.739395i
\(569\) 175.875i 0.309095i −0.987985 0.154547i \(-0.950608\pi\)
0.987985 0.154547i \(-0.0493919\pi\)
\(570\) 0 0
\(571\) −588.516 −1.03068 −0.515338 0.856987i \(-0.672334\pi\)
−0.515338 + 0.856987i \(0.672334\pi\)
\(572\) 97.4186 0.170312
\(573\) 0 0
\(574\) 815.264 1.42032
\(575\) 10.2099 + 10.1316i 0.0177564 + 0.0176203i
\(576\) 0 0
\(577\) 323.853i 0.561270i 0.959815 + 0.280635i \(0.0905451\pi\)
−0.959815 + 0.280635i \(0.909455\pi\)
\(578\) 24.1254 0.0417394
\(579\) 0 0
\(580\) 50.3519 122.225i 0.0868137 0.210733i
\(581\) 51.1086i 0.0879667i
\(582\) 0 0
\(583\) 448.637i 0.769532i
\(584\) 307.583i 0.526684i
\(585\) 0 0
\(586\) −244.687 −0.417555
\(587\) −1031.07 −1.75652 −0.878258 0.478187i \(-0.841294\pi\)
−0.878258 + 0.478187i \(0.841294\pi\)
\(588\) 0 0
\(589\) −132.724 −0.225337
\(590\) 217.673 528.383i 0.368938 0.895565i
\(591\) 0 0
\(592\) 416.703i 0.703890i
\(593\) −193.131 −0.325685 −0.162842 0.986652i \(-0.552066\pi\)
−0.162842 + 0.986652i \(0.552066\pi\)
\(594\) 0 0
\(595\) −230.095 + 558.536i −0.386714 + 0.938716i
\(596\) 285.895i 0.479690i
\(597\) 0 0
\(598\) 5.59106i 0.00934960i
\(599\) 409.269i 0.683254i 0.939836 + 0.341627i \(0.110978\pi\)
−0.939836 + 0.341627i \(0.889022\pi\)
\(600\) 0 0
\(601\) −1040.86 −1.73189 −0.865943 0.500143i \(-0.833281\pi\)
−0.865943 + 0.500143i \(0.833281\pi\)
\(602\) −132.274 −0.219724
\(603\) 0 0
\(604\) 70.3251 0.116432
\(605\) −980.665 403.996i −1.62093 0.667761i
\(606\) 0 0
\(607\) 680.854i 1.12167i 0.827927 + 0.560836i \(0.189520\pi\)
−0.827927 + 0.560836i \(0.810480\pi\)
\(608\) 77.2273 0.127019
\(609\) 0 0
\(610\) 667.268 + 274.888i 1.09388 + 0.450637i
\(611\) 64.2185i 0.105104i
\(612\) 0 0
\(613\) 1024.19i 1.67079i −0.549651 0.835395i \(-0.685239\pi\)
0.549651 0.835395i \(-0.314761\pi\)
\(614\) 369.428i 0.601675i
\(615\) 0 0
\(616\) 800.743 1.29991
\(617\) −1111.27 −1.80109 −0.900544 0.434765i \(-0.856831\pi\)
−0.900544 + 0.434765i \(0.856831\pi\)
\(618\) 0 0
\(619\) 801.879 1.29544 0.647722 0.761877i \(-0.275722\pi\)
0.647722 + 0.761877i \(0.275722\pi\)
\(620\) 194.887 + 80.2857i 0.314333 + 0.129493i
\(621\) 0 0
\(622\) 39.8467i 0.0640622i
\(623\) 702.439 1.12751
\(624\) 0 0
\(625\) 4.81074 + 624.981i 0.00769719 + 0.999970i
\(626\) 799.192i 1.27666i
\(627\) 0 0
\(628\) 86.1611i 0.137199i
\(629\) 370.746i 0.589421i
\(630\) 0 0
\(631\) −564.192 −0.894124 −0.447062 0.894503i \(-0.647530\pi\)
−0.447062 + 0.894503i \(0.647530\pi\)
\(632\) 741.165 1.17273
\(633\) 0 0
\(634\) 680.796 1.07381
\(635\) −185.700 + 450.771i −0.292441 + 0.709876i
\(636\) 0 0
\(637\) 1.13479i 0.00178146i
\(638\) 878.527 1.37700
\(639\) 0 0
\(640\) 711.561 + 293.135i 1.11181 + 0.458024i
\(641\) 1205.50i 1.88065i 0.340273 + 0.940327i \(0.389481\pi\)
−0.340273 + 0.940327i \(0.610519\pi\)
\(642\) 0 0
\(643\) 464.316i 0.722109i 0.932545 + 0.361055i \(0.117583\pi\)
−0.932545 + 0.361055i \(0.882417\pi\)
\(644\) 5.05938i 0.00785619i
\(645\) 0 0
\(646\) −157.415 −0.243676
\(647\) 372.702 0.576046 0.288023 0.957624i \(-0.407002\pi\)
0.288023 + 0.957624i \(0.407002\pi\)
\(648\) 0 0
\(649\) 909.583 1.40151
\(650\) 171.123 172.445i 0.263266 0.265300i
\(651\) 0 0
\(652\) 101.409i 0.155535i
\(653\) −221.410 −0.339066 −0.169533 0.985525i \(-0.554226\pi\)
−0.169533 + 0.985525i \(0.554226\pi\)
\(654\) 0 0
\(655\) 39.1225 94.9666i 0.0597290 0.144987i
\(656\) 990.543i 1.50997i
\(657\) 0 0
\(658\) 242.642i 0.368757i
\(659\) 624.807i 0.948113i −0.880494 0.474057i \(-0.842789\pi\)
0.880494 0.474057i \(-0.157211\pi\)
\(660\) 0 0
\(661\) 334.515 0.506074 0.253037 0.967457i \(-0.418571\pi\)
0.253037 + 0.967457i \(0.418571\pi\)
\(662\) 464.857 0.702201
\(663\) 0 0
\(664\) −46.0117 −0.0692947
\(665\) 52.7288 127.995i 0.0792915 0.192473i
\(666\) 0 0
\(667\) 12.0755i 0.0181042i
\(668\) 94.2521 0.141096
\(669\) 0 0
\(670\) −522.234 + 1267.68i −0.779453 + 1.89206i
\(671\) 1148.67i 1.71187i
\(672\) 0 0
\(673\) 947.251i 1.40751i −0.710445 0.703753i \(-0.751506\pi\)
0.710445 0.703753i \(-0.248494\pi\)
\(674\) 75.1334i 0.111474i
\(675\) 0 0
\(676\) 190.268 0.281462
\(677\) 1009.24 1.49075 0.745377 0.666643i \(-0.232269\pi\)
0.745377 + 0.666643i \(0.232269\pi\)
\(678\) 0 0
\(679\) −28.9574 −0.0426471
\(680\) −502.835 207.148i −0.739463 0.304630i
\(681\) 0 0
\(682\) 1400.80i 2.05396i
\(683\) 697.555 1.02131 0.510655 0.859786i \(-0.329403\pi\)
0.510655 + 0.859786i \(0.329403\pi\)
\(684\) 0 0
\(685\) −90.9424 37.4647i −0.132763 0.0546930i
\(686\) 788.770i 1.14981i
\(687\) 0 0
\(688\) 160.713i 0.233594i
\(689\) 104.154i 0.151166i
\(690\) 0 0
\(691\) −179.186 −0.259314 −0.129657 0.991559i \(-0.541388\pi\)
−0.129657 + 0.991559i \(0.541388\pi\)
\(692\) −401.109 −0.579638
\(693\) 0 0
\(694\) −1535.18 −2.21207
\(695\) 499.490 + 205.770i 0.718691 + 0.296072i
\(696\) 0 0
\(697\) 881.300i 1.26442i
\(698\) 1257.41 1.80145
\(699\) 0 0
\(700\) −154.850 + 156.047i −0.221215 + 0.222924i
\(701\) 211.499i 0.301710i 0.988556 + 0.150855i \(0.0482026\pi\)
−0.988556 + 0.150855i \(0.951797\pi\)
\(702\) 0 0
\(703\) 84.9606i 0.120854i
\(704\) 605.042i 0.859435i
\(705\) 0 0
\(706\) −45.8935 −0.0650050
\(707\) 1130.65 1.59923
\(708\) 0 0
\(709\) −433.249 −0.611071 −0.305536 0.952181i \(-0.598835\pi\)
−0.305536 + 0.952181i \(0.598835\pi\)
\(710\) 291.883 708.521i 0.411103 0.997916i
\(711\) 0 0
\(712\) 632.387i 0.888184i
\(713\) 19.2543 0.0270046
\(714\) 0 0
\(715\) 357.533 + 147.289i 0.500046 + 0.205999i
\(716\) 3.96466i 0.00553723i
\(717\) 0 0
\(718\) 515.862i 0.718471i
\(719\) 588.734i 0.818824i −0.912350 0.409412i \(-0.865734\pi\)
0.912350 0.409412i \(-0.134266\pi\)
\(720\) 0 0
\(721\) 1145.86 1.58927
\(722\) −791.843 −1.09674
\(723\) 0 0
\(724\) −1.04964 −0.00144978
\(725\) 369.590 372.445i 0.509779 0.513718i
\(726\) 0 0
\(727\) 252.040i 0.346685i 0.984862 + 0.173343i \(0.0554568\pi\)
−0.984862 + 0.173343i \(0.944543\pi\)
\(728\) −185.897 −0.255353
\(729\) 0 0
\(730\) 213.770 518.908i 0.292835 0.710833i
\(731\) 142.988i 0.195606i
\(732\) 0 0
\(733\) 192.473i 0.262583i 0.991344 + 0.131291i \(0.0419124\pi\)
−0.991344 + 0.131291i \(0.958088\pi\)
\(734\) 115.983i 0.158015i
\(735\) 0 0
\(736\) −11.2034 −0.0152220
\(737\) −2182.24 −2.96097
\(738\) 0 0
\(739\) 811.337 1.09788 0.548942 0.835860i \(-0.315031\pi\)
0.548942 + 0.835860i \(0.315031\pi\)
\(740\) −51.3934 + 124.753i −0.0694505 + 0.168585i
\(741\) 0 0
\(742\) 393.531i 0.530365i
\(743\) −1021.43 −1.37474 −0.687370 0.726307i \(-0.741235\pi\)
−0.687370 + 0.726307i \(0.741235\pi\)
\(744\) 0 0
\(745\) −432.251 + 1049.25i −0.580203 + 1.40839i
\(746\) 648.438i 0.869219i
\(747\) 0 0
\(748\) 397.899i 0.531950i
\(749\) 337.933i 0.451178i
\(750\) 0 0
\(751\) −954.377 −1.27081 −0.635404 0.772180i \(-0.719167\pi\)
−0.635404 + 0.772180i \(0.719167\pi\)
\(752\) 294.809 0.392033
\(753\) 0 0
\(754\) −203.955 −0.270497
\(755\) 258.098 + 106.326i 0.341851 + 0.140829i
\(756\) 0 0
\(757\) 1462.32i 1.93173i 0.259040 + 0.965866i \(0.416594\pi\)
−0.259040 + 0.965866i \(0.583406\pi\)
\(758\) −999.008 −1.31795
\(759\) 0 0
\(760\) 115.230 + 47.4703i 0.151619 + 0.0624610i
\(761\) 38.1592i 0.0501435i 0.999686 + 0.0250718i \(0.00798143\pi\)
−0.999686 + 0.0250718i \(0.992019\pi\)
\(762\) 0 0
\(763\) 165.765i 0.217255i
\(764\) 72.4546i 0.0948359i
\(765\) 0 0
\(766\) 716.570 0.935470
\(767\) −211.165 −0.275313
\(768\) 0 0
\(769\) 602.497 0.783481 0.391741 0.920076i \(-0.371873\pi\)
0.391741 + 0.920076i \(0.371873\pi\)
\(770\) −1350.89 556.515i −1.75441 0.722747i
\(771\) 0 0
\(772\) 45.8031i 0.0593304i
\(773\) −394.816 −0.510758 −0.255379 0.966841i \(-0.582200\pi\)
−0.255379 + 0.966841i \(0.582200\pi\)
\(774\) 0 0
\(775\) 593.861 + 589.307i 0.766272 + 0.760397i
\(776\) 26.0696i 0.0335948i
\(777\) 0 0
\(778\) 576.576i 0.741100i
\(779\) 201.960i 0.259255i
\(780\) 0 0
\(781\) 1219.68 1.56169
\(782\) 22.8362 0.0292024
\(783\) 0 0
\(784\) −5.20950 −0.00664478
\(785\) −130.269 + 316.217i −0.165948 + 0.402824i
\(786\) 0 0
\(787\) 823.709i 1.04664i 0.852135 + 0.523322i \(0.175308\pi\)
−0.852135 + 0.523322i \(0.824692\pi\)
\(788\) −190.569 −0.241839
\(789\) 0 0
\(790\) −1250.38 515.108i −1.58276 0.652036i
\(791\) 787.400i 0.995448i
\(792\) 0 0
\(793\) 266.669i 0.336279i
\(794\) 543.909i 0.685024i
\(795\) 0 0
\(796\) 338.527 0.425285
\(797\) 919.499 1.15370 0.576850 0.816850i \(-0.304282\pi\)
0.576850 + 0.816850i \(0.304282\pi\)
\(798\) 0 0
\(799\) −262.296 −0.328280
\(800\) −345.547 342.898i −0.431934 0.428622i
\(801\) 0 0
\(802\) 1231.32i 1.53531i
\(803\) 893.272 1.11242
\(804\) 0 0
\(805\) −7.64940 + 18.5683i −0.00950236 + 0.0230662i
\(806\) 325.204i 0.403479i
\(807\) 0 0
\(808\) 1017.90i 1.25977i
\(809\) 1432.18i 1.77031i −0.465300 0.885153i \(-0.654054\pi\)
0.465300 0.885153i \(-0.345946\pi\)
\(810\) 0 0
\(811\) −422.921 −0.521481 −0.260740 0.965409i \(-0.583967\pi\)
−0.260740 + 0.965409i \(0.583967\pi\)
\(812\) 184.560 0.227291
\(813\) 0 0
\(814\) −896.698 −1.10159
\(815\) 153.322 372.177i 0.188126 0.456659i
\(816\) 0 0
\(817\) 32.7674i 0.0401069i
\(818\) −95.1837 −0.116362
\(819\) 0 0
\(820\) 122.167 296.550i 0.148984 0.361647i
\(821\) 174.385i 0.212406i −0.994344 0.106203i \(-0.966131\pi\)
0.994344 0.106203i \(-0.0338693\pi\)
\(822\) 0 0
\(823\) 897.360i 1.09035i 0.838322 + 0.545176i \(0.183537\pi\)
−0.838322 + 0.545176i \(0.816463\pi\)
\(824\) 1031.59i 1.25193i
\(825\) 0 0
\(826\) 797.860 0.965932
\(827\) 233.440 0.282273 0.141137 0.989990i \(-0.454924\pi\)
0.141137 + 0.989990i \(0.454924\pi\)
\(828\) 0 0
\(829\) −990.934 −1.19534 −0.597668 0.801744i \(-0.703906\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(830\) 77.6240 + 31.9781i 0.0935229 + 0.0385278i
\(831\) 0 0
\(832\) 140.464i 0.168827i
\(833\) 4.63497 0.00556419
\(834\) 0 0
\(835\) 345.911 + 142.502i 0.414265 + 0.170661i
\(836\) 91.1829i 0.109071i
\(837\) 0 0
\(838\) 1685.34i 2.01115i
\(839\) 347.594i 0.414295i −0.978310 0.207148i \(-0.933582\pi\)
0.978310 0.207148i \(-0.0664181\pi\)
\(840\) 0 0
\(841\) 400.501 0.476219
\(842\) −35.1294 −0.0417214
\(843\) 0 0
\(844\) 450.541 0.533816
\(845\) 698.296 + 287.671i 0.826386 + 0.340439i
\(846\) 0 0
\(847\) 1480.81i 1.74829i
\(848\) 478.139 0.563843
\(849\) 0 0
\(850\) 704.339 + 698.938i 0.828634 + 0.822281i
\(851\) 12.3253i 0.0144833i
\(852\) 0 0
\(853\) 1236.38i 1.44945i −0.689036 0.724727i \(-0.741966\pi\)
0.689036 0.724727i \(-0.258034\pi\)
\(854\) 1007.58i 1.17983i
\(855\) 0 0
\(856\) 304.231 0.355411
\(857\) −914.705 −1.06733 −0.533667 0.845695i \(-0.679186\pi\)
−0.533667 + 0.845695i \(0.679186\pi\)
\(858\) 0 0
\(859\) 1143.02 1.33064 0.665320 0.746559i \(-0.268295\pi\)
0.665320 + 0.746559i \(0.268295\pi\)
\(860\) −19.8213 + 48.1144i −0.0230480 + 0.0559470i
\(861\) 0 0
\(862\) 226.730i 0.263028i
\(863\) 1228.14 1.42311 0.711554 0.702632i \(-0.247992\pi\)
0.711554 + 0.702632i \(0.247992\pi\)
\(864\) 0 0
\(865\) −1472.10 606.446i −1.70185 0.701094i
\(866\) 1316.00i 1.51963i
\(867\) 0 0
\(868\) 294.279i 0.339031i
\(869\) 2152.46i 2.47694i
\(870\) 0 0
\(871\) 506.619 0.581652
\(872\) −149.234 −0.171140
\(873\) 0 0
\(874\) −5.23318 −0.00598762
\(875\) −804.241 + 338.580i −0.919133 + 0.386949i
\(876\) 0 0
\(877\) 1377.73i 1.57096i −0.618889 0.785478i \(-0.712417\pi\)
0.618889 0.785478i \(-0.287583\pi\)
\(878\) −550.080 −0.626515
\(879\) 0 0
\(880\) 676.164 1641.33i 0.768368 1.86515i
\(881\) 1087.45i 1.23434i 0.786831 + 0.617168i \(0.211720\pi\)
−0.786831 + 0.617168i \(0.788280\pi\)
\(882\) 0 0
\(883\) 922.151i 1.04434i 0.852842 + 0.522170i \(0.174877\pi\)
−0.852842 + 0.522170i \(0.825123\pi\)
\(884\) 92.3744i 0.104496i
\(885\) 0 0
\(886\) −840.564 −0.948717
\(887\) −1060.99 −1.19616 −0.598079 0.801437i \(-0.704069\pi\)
−0.598079 + 0.801437i \(0.704069\pi\)
\(888\) 0 0
\(889\) −680.665 −0.765653
\(890\) 439.508 1066.87i 0.493829 1.19873i
\(891\) 0 0
\(892\) 450.047i 0.504537i
\(893\) 60.1080 0.0673102
\(894\) 0 0
\(895\) −5.99425 + 14.5505i −0.00669749 + 0.0162576i
\(896\) 1074.46i 1.19917i
\(897\) 0 0
\(898\) 1430.35i 1.59282i
\(899\) 702.372i 0.781282i
\(900\) 0 0
\(901\) −425.407 −0.472150
\(902\) 2131.54 2.36313
\(903\) 0 0
\(904\) −708.875 −0.784153
\(905\) −3.85224 1.58697i −0.00425661 0.00175356i
\(906\) 0 0
\(907\) 1395.98i 1.53912i 0.638576 + 0.769559i \(0.279524\pi\)
−0.638576 + 0.769559i \(0.720476\pi\)
\(908\) 162.246 0.178685
\(909\) 0 0
\(910\) 313.617 + 129.198i 0.344634 + 0.141976i
\(911\) 1270.25i 1.39434i −0.716905 0.697171i \(-0.754442\pi\)
0.716905 0.697171i \(-0.245558\pi\)
\(912\) 0 0
\(913\) 133.626i 0.146359i
\(914\) 890.875i 0.974699i
\(915\) 0 0
\(916\) −318.829 −0.348066
\(917\) 143.400 0.156379
\(918\) 0 0
\(919\) 269.489 0.293242 0.146621 0.989193i \(-0.453160\pi\)
0.146621 + 0.989193i \(0.453160\pi\)
\(920\) −16.7165 6.88655i −0.0181701 0.00748538i
\(921\) 0 0
\(922\) 871.158i 0.944857i
\(923\) −283.155 −0.306777
\(924\) 0 0
\(925\) −377.234 + 380.149i −0.407821 + 0.410972i
\(926\) 876.657i 0.946713i
\(927\) 0 0
\(928\) 408.686i 0.440395i
\(929\) 1106.34i 1.19089i 0.803394 + 0.595447i \(0.203025\pi\)
−0.803394 + 0.595447i \(0.796975\pi\)
\(930\) 0 0
\(931\) −1.06215 −0.00114088
\(932\) −121.378 −0.130233
\(933\) 0 0
\(934\) −81.0751 −0.0868042
\(935\) −601.592 + 1460.31i −0.643414 + 1.56183i
\(936\) 0 0
\(937\) 130.956i 0.139761i −0.997555 0.0698805i \(-0.977738\pi\)
0.997555 0.0698805i \(-0.0222618\pi\)
\(938\) −1914.19 −2.04072
\(939\) 0 0
\(940\) −88.2604 36.3598i −0.0938940 0.0386807i
\(941\) 355.742i 0.378047i 0.981973 + 0.189023i \(0.0605322\pi\)
−0.981973 + 0.189023i \(0.939468\pi\)
\(942\) 0 0
\(943\) 29.2984i 0.0310694i
\(944\) 969.397i 1.02690i
\(945\) 0 0
\(946\) −345.836 −0.365577
\(947\) −1022.67 −1.07991 −0.539953 0.841695i \(-0.681558\pi\)
−0.539953 + 0.841695i \(0.681558\pi\)
\(948\) 0 0
\(949\) −207.378 −0.218523
\(950\) −161.407 160.170i −0.169902 0.168600i
\(951\) 0 0
\(952\) 759.281i 0.797564i
\(953\) −475.336 −0.498778 −0.249389 0.968403i \(-0.580230\pi\)
−0.249389 + 0.968403i \(0.580230\pi\)
\(954\) 0 0
\(955\) −109.546 + 265.913i −0.114708 + 0.278443i
\(956\) 137.798i 0.144140i
\(957\) 0 0
\(958\) 1327.34i 1.38553i
\(959\) 137.323i 0.143194i
\(960\) 0 0
\(961\) 158.926 0.165376
\(962\) 208.173 0.216397
\(963\) 0 0
\(964\) −395.063 −0.409816
\(965\) −69.2507 + 168.100i −0.0717624 + 0.174197i
\(966\) 0 0
\(967\) 1252.37i 1.29511i −0.762020 0.647554i \(-0.775792\pi\)
0.762020 0.647554i \(-0.224208\pi\)
\(968\) 1333.13 1.37720
\(969\) 0 0
\(970\) −18.1183 + 43.9806i −0.0186787 + 0.0453409i
\(971\) 280.624i 0.289005i 0.989504 + 0.144502i \(0.0461581\pi\)
−0.989504 + 0.144502i \(0.953842\pi\)
\(972\) 0 0
\(973\) 754.231i 0.775160i
\(974\) 974.185i 1.00019i
\(975\) 0 0
\(976\) −1224.20 −1.25430
\(977\) 331.594 0.339400 0.169700 0.985496i \(-0.445720\pi\)
0.169700 + 0.985496i \(0.445720\pi\)
\(978\) 0 0
\(979\) 1836.56 1.87595
\(980\) 1.55963 + 0.642507i 0.00159146 + 0.000655619i
\(981\) 0 0
\(982\) 894.436i 0.910831i
\(983\) 12.9829 0.0132074 0.00660372 0.999978i \(-0.497898\pi\)
0.00660372 + 0.999978i \(0.497898\pi\)
\(984\) 0 0
\(985\) −699.401 288.126i −0.710051 0.292513i
\(986\) 833.037i 0.844866i
\(987\) 0 0
\(988\) 21.1686i 0.0214257i
\(989\) 4.75358i 0.00480645i
\(990\) 0 0
\(991\) −1366.83 −1.37924 −0.689619 0.724172i \(-0.742222\pi\)
−0.689619 + 0.724172i \(0.742222\pi\)
\(992\) −651.646 −0.656902
\(993\) 0 0
\(994\) 1069.87 1.07633
\(995\) 1242.42 + 511.826i 1.24866 + 0.514398i
\(996\) 0 0
\(997\) 1027.81i 1.03090i −0.856918 0.515452i \(-0.827624\pi\)
0.856918 0.515452i \(-0.172376\pi\)
\(998\) −1416.29 −1.41913
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.a.404.16 20
3.2 odd 2 inner 405.3.d.a.404.5 20
5.4 even 2 inner 405.3.d.a.404.6 20
9.2 odd 6 135.3.h.a.44.8 20
9.4 even 3 135.3.h.a.89.3 20
9.5 odd 6 45.3.h.a.29.8 yes 20
9.7 even 3 45.3.h.a.14.3 20
15.14 odd 2 inner 405.3.d.a.404.15 20
45.2 even 12 675.3.j.e.476.3 20
45.4 even 6 135.3.h.a.89.8 20
45.7 odd 12 225.3.j.e.176.8 20
45.13 odd 12 675.3.j.e.251.8 20
45.14 odd 6 45.3.h.a.29.3 yes 20
45.22 odd 12 675.3.j.e.251.3 20
45.23 even 12 225.3.j.e.101.3 20
45.29 odd 6 135.3.h.a.44.3 20
45.32 even 12 225.3.j.e.101.8 20
45.34 even 6 45.3.h.a.14.8 yes 20
45.38 even 12 675.3.j.e.476.8 20
45.43 odd 12 225.3.j.e.176.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.3 20 9.7 even 3
45.3.h.a.14.8 yes 20 45.34 even 6
45.3.h.a.29.3 yes 20 45.14 odd 6
45.3.h.a.29.8 yes 20 9.5 odd 6
135.3.h.a.44.3 20 45.29 odd 6
135.3.h.a.44.8 20 9.2 odd 6
135.3.h.a.89.3 20 9.4 even 3
135.3.h.a.89.8 20 45.4 even 6
225.3.j.e.101.3 20 45.23 even 12
225.3.j.e.101.8 20 45.32 even 12
225.3.j.e.176.3 20 45.43 odd 12
225.3.j.e.176.8 20 45.7 odd 12
405.3.d.a.404.5 20 3.2 odd 2 inner
405.3.d.a.404.6 20 5.4 even 2 inner
405.3.d.a.404.15 20 15.14 odd 2 inner
405.3.d.a.404.16 20 1.1 even 1 trivial
675.3.j.e.251.3 20 45.22 odd 12
675.3.j.e.251.8 20 45.13 odd 12
675.3.j.e.476.3 20 45.2 even 12
675.3.j.e.476.8 20 45.38 even 12