Properties

Label 45.3.h.a.14.8
Level $45$
Weight $3$
Character 45.14
Analytic conductor $1.226$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(14,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.14"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 14.8
Root \(1.72886 + 0.105167i\) of defining polynomial
Character \(\chi\) \(=\) 45.14
Dual form 45.3.h.a.29.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14670 + 1.98614i) q^{2} +(-0.182154 + 2.99446i) q^{3} +(-0.629835 + 1.09091i) q^{4} +(0.662169 - 4.95596i) q^{5} +(-6.15630 + 3.07197i) q^{6} +(-6.04559 + 3.49042i) q^{7} +6.28466 q^{8} +(-8.93364 - 1.09091i) q^{9} +(10.6025 - 4.36783i) q^{10} +(15.8064 - 9.12584i) q^{11} +(-3.15195 - 2.08473i) q^{12} +(-3.66955 - 2.11862i) q^{13} +(-13.8649 - 8.00492i) q^{14} +(14.7198 + 2.88559i) q^{15} +(9.72596 + 16.8458i) q^{16} -17.3066 q^{17} +(-8.07750 - 18.9944i) q^{18} -3.96601 q^{19} +(4.98943 + 3.84380i) q^{20} +(-9.35072 - 18.7391i) q^{21} +(36.2504 + 20.9292i) q^{22} +(0.287675 - 0.498269i) q^{23} +(-1.14478 + 18.8192i) q^{24} +(-24.1231 - 6.56337i) q^{25} -9.71765i q^{26} +(4.89398 - 26.5528i) q^{27} -8.79356i q^{28} +(-18.1762 + 10.4940i) q^{29} +(11.1480 + 32.5445i) q^{30} +(-16.7326 + 28.9818i) q^{31} +(-9.73615 + 16.8635i) q^{32} +(24.4478 + 48.9941i) q^{33} +(-19.8455 - 34.3734i) q^{34} +(13.2952 + 32.2729i) q^{35} +(6.81680 - 9.05867i) q^{36} -21.4222i q^{37} +(-4.54782 - 7.87705i) q^{38} +(7.01254 - 10.6024i) q^{39} +(4.16151 - 31.1465i) q^{40} +(44.1003 + 25.4613i) q^{41} +(26.4960 - 40.0599i) q^{42} +(-7.15514 + 4.13102i) q^{43} +22.9911i q^{44} +(-11.3221 + 43.5524i) q^{45} +1.31951 q^{46} +(-7.57789 - 13.1253i) q^{47} +(-52.2159 + 26.0555i) q^{48} +(-0.133907 + 0.231934i) q^{49} +(-14.6261 - 55.4380i) q^{50} +(3.15247 - 51.8241i) q^{51} +(4.62242 - 2.66876i) q^{52} +24.5806 q^{53} +(58.3494 - 20.7279i) q^{54} +(-34.7608 - 84.3789i) q^{55} +(-37.9945 + 21.9361i) q^{56} +(0.722424 - 11.8761i) q^{57} +(-41.6853 - 24.0670i) q^{58} +(43.1589 + 24.9178i) q^{59} +(-12.4190 + 14.2405i) q^{60} +(-31.4674 - 54.5031i) q^{61} -76.7492 q^{62} +(57.8168 - 24.5870i) q^{63} +33.1499 q^{64} +(-12.9296 + 16.7833i) q^{65} +(-69.2749 + 104.738i) q^{66} +(103.545 + 59.7818i) q^{67} +(10.9003 - 18.8799i) q^{68} +(1.43965 + 0.952196i) q^{69} +(-48.8530 + 63.4134i) q^{70} -66.8256i q^{71} +(-56.1449 - 6.85598i) q^{72} +48.9419i q^{73} +(42.5475 - 24.5648i) q^{74} +(24.0479 - 71.0401i) q^{75} +(2.49793 - 4.32654i) q^{76} +(-63.7061 + 110.342i) q^{77} +(29.0992 + 1.77011i) q^{78} +(58.9661 + 102.132i) q^{79} +(89.9276 - 37.0466i) q^{80} +(78.6198 + 19.4915i) q^{81} +116.786i q^{82} +(3.66063 + 6.34040i) q^{83} +(26.3320 + 1.60178i) q^{84} +(-11.4599 + 85.7710i) q^{85} +(-16.4096 - 9.47408i) q^{86} +(-28.1132 - 56.3396i) q^{87} +(99.3381 - 57.3529i) q^{88} -100.624i q^{89} +(-99.4842 + 27.4543i) q^{90} +29.5794 q^{91} +(0.362376 + 0.627654i) q^{92} +(-83.7371 - 55.3845i) q^{93} +(17.3791 - 30.1015i) q^{94} +(-2.62617 + 19.6554i) q^{95} +(-48.7237 - 32.2263i) q^{96} +(-3.59238 + 2.07406i) q^{97} -0.614205 q^{98} +(-151.164 + 64.2837i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} - 12 q^{5} + 12 q^{6} - 18 q^{9} + 4 q^{10} - 24 q^{11} + 30 q^{14} + 24 q^{15} - 26 q^{16} - 8 q^{19} + 144 q^{20} - 96 q^{21} - 102 q^{24} + 2 q^{25} - 114 q^{29} - 48 q^{30} + 28 q^{31}+ \cdots - 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14670 + 1.98614i 0.573349 + 0.993070i 0.996219 + 0.0868795i \(0.0276895\pi\)
−0.422870 + 0.906191i \(0.638977\pi\)
\(3\) −0.182154 + 2.99446i −0.0607179 + 0.998155i
\(4\) −0.629835 + 1.09091i −0.157459 + 0.272727i
\(5\) 0.662169 4.95596i 0.132434 0.991192i
\(6\) −6.15630 + 3.07197i −1.02605 + 0.511994i
\(7\) −6.04559 + 3.49042i −0.863655 + 0.498632i −0.865235 0.501367i \(-0.832831\pi\)
0.00157923 + 0.999999i \(0.499497\pi\)
\(8\) 6.28466 0.785583
\(9\) −8.93364 1.09091i −0.992627 0.121212i
\(10\) 10.6025 4.36783i 1.06025 0.436783i
\(11\) 15.8064 9.12584i 1.43695 0.829622i 0.439311 0.898335i \(-0.355222\pi\)
0.997636 + 0.0687126i \(0.0218892\pi\)
\(12\) −3.15195 2.08473i −0.262663 0.173728i
\(13\) −3.66955 2.11862i −0.282273 0.162970i 0.352179 0.935933i \(-0.385441\pi\)
−0.634452 + 0.772962i \(0.718774\pi\)
\(14\) −13.8649 8.00492i −0.990352 0.571780i
\(15\) 14.7198 + 2.88559i 0.981322 + 0.192373i
\(16\) 9.72596 + 16.8458i 0.607872 + 1.05287i
\(17\) −17.3066 −1.01804 −0.509019 0.860756i \(-0.669992\pi\)
−0.509019 + 0.860756i \(0.669992\pi\)
\(18\) −8.07750 18.9944i −0.448750 1.05524i
\(19\) −3.96601 −0.208737 −0.104369 0.994539i \(-0.533282\pi\)
−0.104369 + 0.994539i \(0.533282\pi\)
\(20\) 4.98943 + 3.84380i 0.249472 + 0.192190i
\(21\) −9.35072 18.7391i −0.445272 0.892338i
\(22\) 36.2504 + 20.9292i 1.64775 + 0.951327i
\(23\) 0.287675 0.498269i 0.0125076 0.0216639i −0.859704 0.510793i \(-0.829352\pi\)
0.872211 + 0.489129i \(0.162685\pi\)
\(24\) −1.14478 + 18.8192i −0.0476990 + 0.784134i
\(25\) −24.1231 6.56337i −0.964923 0.262535i
\(26\) 9.71765i 0.373756i
\(27\) 4.89398 26.5528i 0.181258 0.983435i
\(28\) 8.79356i 0.314056i
\(29\) −18.1762 + 10.4940i −0.626766 + 0.361863i −0.779498 0.626404i \(-0.784526\pi\)
0.152733 + 0.988268i \(0.451193\pi\)
\(30\) 11.1480 + 32.5445i 0.371601 + 1.08482i
\(31\) −16.7326 + 28.9818i −0.539763 + 0.934897i 0.459154 + 0.888357i \(0.348153\pi\)
−0.998916 + 0.0465398i \(0.985181\pi\)
\(32\) −9.73615 + 16.8635i −0.304255 + 0.526985i
\(33\) 24.4478 + 48.9941i 0.740843 + 1.48467i
\(34\) −19.8455 34.3734i −0.583691 1.01098i
\(35\) 13.2952 + 32.2729i 0.379863 + 0.922084i
\(36\) 6.81680 9.05867i 0.189355 0.251630i
\(37\) 21.4222i 0.578978i −0.957181 0.289489i \(-0.906515\pi\)
0.957181 0.289489i \(-0.0934854\pi\)
\(38\) −4.54782 7.87705i −0.119679 0.207291i
\(39\) 7.01254 10.6024i 0.179809 0.271857i
\(40\) 4.16151 31.1465i 0.104038 0.778663i
\(41\) 44.1003 + 25.4613i 1.07562 + 0.621008i 0.929711 0.368290i \(-0.120057\pi\)
0.145907 + 0.989298i \(0.453390\pi\)
\(42\) 26.4960 40.0599i 0.630857 0.953808i
\(43\) −7.15514 + 4.13102i −0.166399 + 0.0960703i −0.580887 0.813984i \(-0.697294\pi\)
0.414488 + 0.910055i \(0.363961\pi\)
\(44\) 22.9911i 0.522525i
\(45\) −11.3221 + 43.5524i −0.251602 + 0.967831i
\(46\) 1.31951 0.0286850
\(47\) −7.57789 13.1253i −0.161232 0.279262i 0.774079 0.633089i \(-0.218213\pi\)
−0.935311 + 0.353828i \(0.884880\pi\)
\(48\) −52.2159 + 26.0555i −1.08783 + 0.542823i
\(49\) −0.133907 + 0.231934i −0.00273280 + 0.00473335i
\(50\) −14.6261 55.4380i −0.292522 1.10876i
\(51\) 3.15247 51.8241i 0.0618131 1.01616i
\(52\) 4.62242 2.66876i 0.0888927 0.0513222i
\(53\) 24.5806 0.463784 0.231892 0.972741i \(-0.425508\pi\)
0.231892 + 0.972741i \(0.425508\pi\)
\(54\) 58.3494 20.7279i 1.08054 0.383850i
\(55\) −34.7608 84.3789i −0.632014 1.53416i
\(56\) −37.9945 + 21.9361i −0.678473 + 0.391717i
\(57\) 0.722424 11.8761i 0.0126741 0.208352i
\(58\) −41.6853 24.0670i −0.718711 0.414948i
\(59\) 43.1589 + 24.9178i 0.731506 + 0.422335i 0.818973 0.573832i \(-0.194544\pi\)
−0.0874668 + 0.996167i \(0.527877\pi\)
\(60\) −12.4190 + 14.2405i −0.206983 + 0.237342i
\(61\) −31.4674 54.5031i −0.515858 0.893493i −0.999831 0.0184097i \(-0.994140\pi\)
0.483972 0.875083i \(-0.339194\pi\)
\(62\) −76.7492 −1.23789
\(63\) 57.8168 24.5870i 0.917728 0.390270i
\(64\) 33.1499 0.517968
\(65\) −12.9296 + 16.7833i −0.198917 + 0.258204i
\(66\) −69.2749 + 104.738i −1.04962 + 1.58694i
\(67\) 103.545 + 59.7818i 1.54545 + 0.892266i 0.998480 + 0.0551129i \(0.0175519\pi\)
0.546969 + 0.837153i \(0.315781\pi\)
\(68\) 10.9003 18.8799i 0.160299 0.277646i
\(69\) 1.43965 + 0.952196i 0.0208644 + 0.0137999i
\(70\) −48.8530 + 63.4134i −0.697900 + 0.905906i
\(71\) 66.8256i 0.941205i −0.882345 0.470603i \(-0.844037\pi\)
0.882345 0.470603i \(-0.155963\pi\)
\(72\) −56.1449 6.85598i −0.779791 0.0952220i
\(73\) 48.9419i 0.670437i 0.942140 + 0.335218i \(0.108810\pi\)
−0.942140 + 0.335218i \(0.891190\pi\)
\(74\) 42.5475 24.5648i 0.574966 0.331957i
\(75\) 24.0479 71.0401i 0.320638 0.947202i
\(76\) 2.49793 4.32654i 0.0328675 0.0569282i
\(77\) −63.7061 + 110.342i −0.827352 + 1.43302i
\(78\) 29.0992 + 1.77011i 0.373066 + 0.0226937i
\(79\) 58.9661 + 102.132i 0.746407 + 1.29281i 0.949535 + 0.313662i \(0.101556\pi\)
−0.203128 + 0.979152i \(0.565111\pi\)
\(80\) 89.9276 37.0466i 1.12409 0.463083i
\(81\) 78.6198 + 19.4915i 0.970615 + 0.240636i
\(82\) 116.786i 1.42422i
\(83\) 3.66063 + 6.34040i 0.0441040 + 0.0763904i 0.887235 0.461318i \(-0.152623\pi\)
−0.843131 + 0.537709i \(0.819290\pi\)
\(84\) 26.3320 + 1.60178i 0.313476 + 0.0190688i
\(85\) −11.4599 + 85.7710i −0.134823 + 1.00907i
\(86\) −16.4096 9.47408i −0.190809 0.110164i
\(87\) −28.1132 56.3396i −0.323140 0.647581i
\(88\) 99.3381 57.3529i 1.12884 0.651737i
\(89\) 100.624i 1.13060i −0.824884 0.565302i \(-0.808759\pi\)
0.824884 0.565302i \(-0.191241\pi\)
\(90\) −99.4842 + 27.4543i −1.10538 + 0.305047i
\(91\) 29.5794 0.325049
\(92\) 0.362376 + 0.627654i 0.00393887 + 0.00682233i
\(93\) −83.7371 55.3845i −0.900399 0.595532i
\(94\) 17.3791 30.1015i 0.184884 0.320229i
\(95\) −2.62617 + 19.6554i −0.0276439 + 0.206899i
\(96\) −48.7237 32.2263i −0.507539 0.335691i
\(97\) −3.59238 + 2.07406i −0.0370349 + 0.0213821i −0.518403 0.855136i \(-0.673473\pi\)
0.481368 + 0.876518i \(0.340140\pi\)
\(98\) −0.614205 −0.00626740
\(99\) −151.164 + 64.2837i −1.52691 + 0.649330i
\(100\) 22.3536 22.1822i 0.223536 0.221822i
\(101\) −140.266 + 80.9826i −1.38877 + 0.801808i −0.993177 0.116617i \(-0.962795\pi\)
−0.395595 + 0.918425i \(0.629462\pi\)
\(102\) 106.545 53.1654i 1.04456 0.521229i
\(103\) −142.152 82.0717i −1.38012 0.796813i −0.387947 0.921682i \(-0.626816\pi\)
−0.992173 + 0.124869i \(0.960149\pi\)
\(104\) −23.0619 13.3148i −0.221749 0.128027i
\(105\) −99.0620 + 33.9333i −0.943447 + 0.323175i
\(106\) 28.1865 + 48.8205i 0.265910 + 0.460570i
\(107\) 48.4086 0.452416 0.226208 0.974079i \(-0.427367\pi\)
0.226208 + 0.974079i \(0.427367\pi\)
\(108\) 25.8842 + 22.0627i 0.239668 + 0.204285i
\(109\) 23.7458 0.217851 0.108925 0.994050i \(-0.465259\pi\)
0.108925 + 0.994050i \(0.465259\pi\)
\(110\) 127.728 165.797i 1.16116 1.50724i
\(111\) 64.1480 + 3.90213i 0.577910 + 0.0351544i
\(112\) −117.598 67.8954i −1.04998 0.606209i
\(113\) 56.3972 97.6828i 0.499090 0.864449i −0.500909 0.865500i \(-0.667001\pi\)
0.999999 + 0.00105049i \(0.000334381\pi\)
\(114\) 24.4160 12.1834i 0.214175 0.106872i
\(115\) −2.27891 1.75565i −0.0198166 0.0152665i
\(116\) 26.4381i 0.227914i
\(117\) 30.4712 + 22.9301i 0.260438 + 0.195984i
\(118\) 114.293i 0.968582i
\(119\) 104.629 60.4074i 0.879233 0.507626i
\(120\) 92.5092 + 18.1350i 0.770910 + 0.151125i
\(121\) 106.062 183.705i 0.876546 1.51822i
\(122\) 72.1672 124.997i 0.591534 1.02457i
\(123\) −84.2761 + 127.419i −0.685171 + 1.03593i
\(124\) −21.0776 36.5075i −0.169981 0.294415i
\(125\) −48.5013 + 115.207i −0.388011 + 0.921655i
\(126\) 115.132 + 86.6385i 0.913744 + 0.687607i
\(127\) 97.5047i 0.767754i −0.923384 0.383877i \(-0.874589\pi\)
0.923384 0.383877i \(-0.125411\pi\)
\(128\) 76.9576 + 133.294i 0.601231 + 1.04136i
\(129\) −11.0669 22.1783i −0.0857897 0.171925i
\(130\) −48.1603 6.43473i −0.370464 0.0494979i
\(131\) 17.7898 + 10.2709i 0.135800 + 0.0784041i 0.566361 0.824157i \(-0.308351\pi\)
−0.430561 + 0.902562i \(0.641684\pi\)
\(132\) −68.8461 4.18792i −0.521561 0.0317267i
\(133\) 23.9769 13.8430i 0.180277 0.104083i
\(134\) 274.207i 2.04632i
\(135\) −128.354 41.8368i −0.950769 0.309902i
\(136\) −108.766 −0.799753
\(137\) −9.83571 17.0360i −0.0717935 0.124350i 0.827894 0.560885i \(-0.189539\pi\)
−0.899687 + 0.436535i \(0.856206\pi\)
\(138\) −0.240353 + 3.95122i −0.00174169 + 0.0286320i
\(139\) −54.0215 + 93.5679i −0.388644 + 0.673150i −0.992267 0.124119i \(-0.960390\pi\)
0.603624 + 0.797269i \(0.293723\pi\)
\(140\) −43.5805 5.82282i −0.311290 0.0415916i
\(141\) 40.6836 20.3009i 0.288536 0.143978i
\(142\) 132.725 76.6288i 0.934683 0.539639i
\(143\) −77.3366 −0.540816
\(144\) −68.5109 161.105i −0.475770 1.11878i
\(145\) 39.9723 + 97.0294i 0.275671 + 0.669168i
\(146\) −97.2054 + 56.1216i −0.665791 + 0.384394i
\(147\) −0.670127 0.443228i −0.00455869 0.00301516i
\(148\) 23.3696 + 13.4925i 0.157903 + 0.0911652i
\(149\) −196.553 113.480i −1.31915 0.761612i −0.335558 0.942019i \(-0.608925\pi\)
−0.983592 + 0.180408i \(0.942258\pi\)
\(150\) 168.671 33.6992i 1.12448 0.224661i
\(151\) −27.9141 48.3486i −0.184862 0.320190i 0.758668 0.651477i \(-0.225850\pi\)
−0.943530 + 0.331288i \(0.892517\pi\)
\(152\) −24.9250 −0.163980
\(153\) 154.611 + 18.8799i 1.01053 + 0.123398i
\(154\) −292.207 −1.89745
\(155\) 132.553 + 102.117i 0.855179 + 0.658821i
\(156\) 7.14951 + 14.3278i 0.0458302 + 0.0918449i
\(157\) 59.2359 + 34.1999i 0.377299 + 0.217833i 0.676642 0.736312i \(-0.263434\pi\)
−0.299344 + 0.954145i \(0.596768\pi\)
\(158\) −135.233 + 234.230i −0.855904 + 1.48247i
\(159\) −4.47744 + 73.6057i −0.0281600 + 0.462929i
\(160\) 77.1279 + 59.4185i 0.482049 + 0.371365i
\(161\) 4.01644i 0.0249468i
\(162\) 51.4404 + 178.501i 0.317533 + 1.10186i
\(163\) 80.5043i 0.493892i 0.969029 + 0.246946i \(0.0794269\pi\)
−0.969029 + 0.246946i \(0.920573\pi\)
\(164\) −55.5519 + 32.0729i −0.338731 + 0.195566i
\(165\) 259.001 88.7200i 1.56971 0.537697i
\(166\) −8.39529 + 14.5411i −0.0505740 + 0.0875968i
\(167\) 37.4114 64.7985i 0.224020 0.388015i −0.732005 0.681300i \(-0.761415\pi\)
0.956025 + 0.293285i \(0.0947484\pi\)
\(168\) −58.7661 117.769i −0.349798 0.701006i
\(169\) −75.5229 130.810i −0.446881 0.774021i
\(170\) −183.494 + 75.5924i −1.07938 + 0.444661i
\(171\) 35.4309 + 4.32654i 0.207198 + 0.0253014i
\(172\) 10.4075i 0.0605085i
\(173\) −159.212 275.763i −0.920301 1.59401i −0.798950 0.601398i \(-0.794611\pi\)
−0.121351 0.992610i \(-0.538723\pi\)
\(174\) 79.6609 120.441i 0.457821 0.692191i
\(175\) 168.747 44.5203i 0.964269 0.254402i
\(176\) 307.465 + 177.515i 1.74696 + 1.00861i
\(177\) −82.4770 + 124.699i −0.465972 + 0.704513i
\(178\) 199.853 115.385i 1.12277 0.648232i
\(179\) 3.14738i 0.0175831i 0.999961 + 0.00879155i \(0.00279847\pi\)
−0.999961 + 0.00879155i \(0.997202\pi\)
\(180\) −40.3805 39.7821i −0.224336 0.221012i
\(181\) −0.833264 −0.00460367 −0.00230183 0.999997i \(-0.500733\pi\)
−0.00230183 + 0.999997i \(0.500733\pi\)
\(182\) 33.9187 + 58.7489i 0.186367 + 0.322796i
\(183\) 168.939 84.3000i 0.923166 0.460656i
\(184\) 1.80794 3.13145i 0.00982578 0.0170188i
\(185\) −106.168 14.1851i −0.573878 0.0766763i
\(186\) 13.9802 229.823i 0.0751622 1.23561i
\(187\) −273.556 + 157.938i −1.46287 + 0.844586i
\(188\) 19.0913 0.101549
\(189\) 63.0934 + 177.609i 0.333827 + 0.939731i
\(190\) −42.0498 + 17.3229i −0.221315 + 0.0911729i
\(191\) 49.8127 28.7594i 0.260799 0.150573i −0.363900 0.931438i \(-0.618555\pi\)
0.624699 + 0.780866i \(0.285222\pi\)
\(192\) −6.03839 + 99.2663i −0.0314499 + 0.517012i
\(193\) 31.4897 + 18.1806i 0.163159 + 0.0941999i 0.579356 0.815075i \(-0.303304\pi\)
−0.416197 + 0.909274i \(0.636637\pi\)
\(194\) −8.23876 4.75665i −0.0424678 0.0245188i
\(195\) −47.9017 41.7745i −0.245650 0.214228i
\(196\) −0.168679 0.292161i −0.000860607 0.00149062i
\(197\) 151.285 0.767943 0.383972 0.923345i \(-0.374556\pi\)
0.383972 + 0.923345i \(0.374556\pi\)
\(198\) −301.016 226.520i −1.52028 1.14404i
\(199\) 268.742 1.35046 0.675232 0.737605i \(-0.264043\pi\)
0.675232 + 0.737605i \(0.264043\pi\)
\(200\) −151.605 41.2485i −0.758027 0.206243i
\(201\) −197.876 + 299.173i −0.984456 + 1.48842i
\(202\) −321.686 185.725i −1.59250 0.919432i
\(203\) 73.2573 126.885i 0.360873 0.625051i
\(204\) 54.5497 + 36.0797i 0.267401 + 0.176861i
\(205\) 155.387 201.700i 0.757986 0.983901i
\(206\) 376.446i 1.82741i
\(207\) −3.11355 + 4.13752i −0.0150413 + 0.0199880i
\(208\) 82.4222i 0.396261i
\(209\) −62.6884 + 36.1932i −0.299945 + 0.173173i
\(210\) −180.991 157.840i −0.861860 0.751617i
\(211\) −178.833 + 309.747i −0.847548 + 1.46800i 0.0358410 + 0.999358i \(0.488589\pi\)
−0.883389 + 0.468640i \(0.844744\pi\)
\(212\) −15.4817 + 26.8151i −0.0730269 + 0.126486i
\(213\) 200.107 + 12.1725i 0.939469 + 0.0571480i
\(214\) 55.5100 + 96.1462i 0.259393 + 0.449281i
\(215\) 15.7353 + 38.1960i 0.0731873 + 0.177656i
\(216\) 30.7570 166.875i 0.142394 0.772570i
\(217\) 233.616i 1.07657i
\(218\) 27.2292 + 47.1624i 0.124905 + 0.216341i
\(219\) −146.555 8.91495i −0.669200 0.0407075i
\(220\) 113.943 + 15.2240i 0.517923 + 0.0692000i
\(221\) 63.5075 + 36.6661i 0.287364 + 0.165910i
\(222\) 65.8082 + 131.882i 0.296434 + 0.594061i
\(223\) −309.408 + 178.637i −1.38748 + 0.801062i −0.993031 0.117856i \(-0.962398\pi\)
−0.394449 + 0.918918i \(0.629064\pi\)
\(224\) 135.933i 0.606844i
\(225\) 208.347 + 84.9507i 0.925986 + 0.377559i
\(226\) 258.682 1.14461
\(227\) 64.4002 + 111.544i 0.283701 + 0.491385i 0.972293 0.233764i \(-0.0751042\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(228\) 12.5007 + 8.26807i 0.0548275 + 0.0362634i
\(229\) 126.552 219.195i 0.552631 0.957184i −0.445453 0.895305i \(-0.646957\pi\)
0.998084 0.0618791i \(-0.0197093\pi\)
\(230\) 0.873737 6.53943i 0.00379886 0.0284323i
\(231\) −318.812 210.865i −1.38014 0.912835i
\(232\) −114.231 + 65.9515i −0.492377 + 0.284274i
\(233\) 96.3566 0.413548 0.206774 0.978389i \(-0.433704\pi\)
0.206774 + 0.978389i \(0.433704\pi\)
\(234\) −10.6010 + 86.8140i −0.0453036 + 0.371000i
\(235\) −70.0663 + 28.8646i −0.298154 + 0.122828i
\(236\) −54.3659 + 31.3882i −0.230364 + 0.133001i
\(237\) −316.573 + 157.968i −1.33575 + 0.666533i
\(238\) 239.955 + 138.538i 1.00822 + 0.582094i
\(239\) 94.7361 + 54.6959i 0.396385 + 0.228853i 0.684923 0.728615i \(-0.259836\pi\)
−0.288538 + 0.957469i \(0.593169\pi\)
\(240\) 94.5542 + 276.033i 0.393976 + 1.15014i
\(241\) 156.812 + 271.606i 0.650672 + 1.12700i 0.982960 + 0.183819i \(0.0588460\pi\)
−0.332288 + 0.943178i \(0.607821\pi\)
\(242\) 486.485 2.01027
\(243\) −72.6876 + 231.874i −0.299126 + 0.954214i
\(244\) 79.2770 0.324906
\(245\) 1.06079 + 0.817219i 0.00432974 + 0.00333559i
\(246\) −349.711 21.2730i −1.42159 0.0864756i
\(247\) 14.5535 + 8.40245i 0.0589209 + 0.0340180i
\(248\) −105.159 + 182.141i −0.424029 + 0.734439i
\(249\) −19.6529 + 9.80671i −0.0789274 + 0.0393844i
\(250\) −284.433 + 35.7771i −1.13773 + 0.143109i
\(251\) 192.888i 0.768478i −0.923234 0.384239i \(-0.874464\pi\)
0.923234 0.384239i \(-0.125536\pi\)
\(252\) −9.59295 + 78.5585i −0.0380673 + 0.311740i
\(253\) 10.5011i 0.0415064i
\(254\) 193.658 111.809i 0.762433 0.440191i
\(255\) −254.751 49.9398i −0.999022 0.195842i
\(256\) −110.194 + 190.862i −0.430447 + 0.745556i
\(257\) 186.757 323.472i 0.726680 1.25865i −0.231599 0.972811i \(-0.574396\pi\)
0.958279 0.285835i \(-0.0922710\pi\)
\(258\) 31.3589 47.4122i 0.121546 0.183768i
\(259\) 74.7725 + 129.510i 0.288697 + 0.500038i
\(260\) −10.1654 24.6757i −0.0390978 0.0949066i
\(261\) 173.828 73.9214i 0.666007 0.283224i
\(262\) 47.1107i 0.179812i
\(263\) 100.790 + 174.573i 0.383230 + 0.663774i 0.991522 0.129939i \(-0.0414783\pi\)
−0.608292 + 0.793713i \(0.708145\pi\)
\(264\) 153.646 + 307.911i 0.581994 + 1.16633i
\(265\) 16.2765 121.820i 0.0614207 0.459699i
\(266\) 54.9885 + 31.7476i 0.206724 + 0.119352i
\(267\) 301.315 + 18.3290i 1.12852 + 0.0686480i
\(268\) −130.433 + 75.3054i −0.486689 + 0.280990i
\(269\) 7.31695i 0.0272006i 0.999908 + 0.0136003i \(0.00432924\pi\)
−0.999908 + 0.0136003i \(0.995671\pi\)
\(270\) −64.0894 302.903i −0.237368 1.12186i
\(271\) −93.8451 −0.346292 −0.173146 0.984896i \(-0.555393\pi\)
−0.173146 + 0.984896i \(0.555393\pi\)
\(272\) −168.324 291.545i −0.618837 1.07186i
\(273\) −5.38801 + 88.5746i −0.0197363 + 0.324449i
\(274\) 22.5572 39.0702i 0.0823255 0.142592i
\(275\) −441.196 + 116.400i −1.60435 + 0.423273i
\(276\) −1.94550 + 0.970793i −0.00704890 + 0.00351737i
\(277\) 231.116 133.435i 0.834353 0.481714i −0.0209878 0.999780i \(-0.506681\pi\)
0.855341 + 0.518066i \(0.173348\pi\)
\(278\) −247.785 −0.891314
\(279\) 181.100 240.659i 0.649104 0.862578i
\(280\) 83.5558 + 202.825i 0.298414 + 0.724374i
\(281\) 5.46813 3.15703i 0.0194595 0.0112350i −0.490239 0.871588i \(-0.663090\pi\)
0.509698 + 0.860353i \(0.329757\pi\)
\(282\) 86.9722 + 57.5243i 0.308412 + 0.203987i
\(283\) 300.060 + 173.240i 1.06028 + 0.612155i 0.925511 0.378722i \(-0.123636\pi\)
0.134773 + 0.990877i \(0.456970\pi\)
\(284\) 72.9004 + 42.0891i 0.256692 + 0.148201i
\(285\) −58.3790 11.4443i −0.204839 0.0401553i
\(286\) −88.6818 153.601i −0.310076 0.537068i
\(287\) −355.483 −1.23862
\(288\) 105.376 140.031i 0.365888 0.486220i
\(289\) 10.5195 0.0363996
\(290\) −146.878 + 190.654i −0.506475 + 0.657428i
\(291\) −5.55634 11.1351i −0.0190940 0.0382648i
\(292\) −53.3910 30.8253i −0.182846 0.105566i
\(293\) −53.3460 + 92.3980i −0.182068 + 0.315352i −0.942585 0.333967i \(-0.891613\pi\)
0.760516 + 0.649319i \(0.224946\pi\)
\(294\) 0.111880 1.83922i 0.000380544 0.00625583i
\(295\) 152.070 197.394i 0.515491 0.669131i
\(296\) 134.631i 0.454835i
\(297\) −164.960 464.366i −0.555421 1.56352i
\(298\) 520.510i 1.74668i
\(299\) −2.11128 + 1.21895i −0.00706113 + 0.00407675i
\(300\) 62.3519 + 70.9776i 0.207840 + 0.236592i
\(301\) 28.8380 49.9489i 0.0958074 0.165943i
\(302\) 64.0181 110.883i 0.211980 0.367161i
\(303\) −216.950 434.773i −0.716005 1.43489i
\(304\) −38.5732 66.8108i −0.126886 0.219772i
\(305\) −290.952 + 119.861i −0.953940 + 0.392986i
\(306\) 139.794 + 328.729i 0.456844 + 1.07428i
\(307\) 161.083i 0.524702i −0.964973 0.262351i \(-0.915502\pi\)
0.964973 0.262351i \(-0.0844978\pi\)
\(308\) −80.2487 138.995i −0.260548 0.451282i
\(309\) 271.655 410.721i 0.879141 1.32919i
\(310\) −50.8210 + 380.366i −0.163939 + 1.22699i
\(311\) 15.0468 + 8.68727i 0.0483820 + 0.0279333i 0.523996 0.851721i \(-0.324441\pi\)
−0.475614 + 0.879654i \(0.657774\pi\)
\(312\) 44.0715 66.6327i 0.141255 0.213566i
\(313\) −301.788 + 174.238i −0.964180 + 0.556670i −0.897457 0.441102i \(-0.854588\pi\)
−0.0667232 + 0.997772i \(0.521254\pi\)
\(314\) 156.868i 0.499579i
\(315\) −83.5677 302.819i −0.265294 0.961329i
\(316\) −148.556 −0.470113
\(317\) 148.425 + 257.080i 0.468218 + 0.810978i 0.999340 0.0363175i \(-0.0115628\pi\)
−0.531122 + 0.847295i \(0.678229\pi\)
\(318\) −151.325 + 75.5107i −0.475866 + 0.237455i
\(319\) −191.534 + 331.747i −0.600420 + 1.03996i
\(320\) 21.9509 164.290i 0.0685964 0.513405i
\(321\) −8.81780 + 144.958i −0.0274698 + 0.451582i
\(322\) −7.97720 + 4.60564i −0.0247739 + 0.0143032i
\(323\) 68.6383 0.212502
\(324\) −70.7810 + 73.4904i −0.218460 + 0.226822i
\(325\) 74.6155 + 75.1921i 0.229586 + 0.231360i
\(326\) −159.893 + 92.3142i −0.490469 + 0.283172i
\(327\) −4.32538 + 71.1058i −0.0132275 + 0.217449i
\(328\) 277.156 + 160.016i 0.844987 + 0.487853i
\(329\) 91.6256 + 52.9001i 0.278497 + 0.160791i
\(330\) 473.207 + 412.678i 1.43396 + 1.25054i
\(331\) −101.347 175.538i −0.306184 0.530326i 0.671341 0.741149i \(-0.265719\pi\)
−0.977524 + 0.210823i \(0.932385\pi\)
\(332\) −9.22238 −0.0277783
\(333\) −23.3696 + 191.378i −0.0701790 + 0.574709i
\(334\) 171.598 0.513768
\(335\) 364.841 473.580i 1.08908 1.41367i
\(336\) 224.731 339.776i 0.668843 1.01124i
\(337\) −28.3716 16.3804i −0.0841888 0.0486064i 0.457315 0.889305i \(-0.348811\pi\)
−0.541503 + 0.840699i \(0.682145\pi\)
\(338\) 173.204 299.998i 0.512438 0.887569i
\(339\) 282.235 + 186.673i 0.832551 + 0.550657i
\(340\) −86.3502 66.5233i −0.253971 0.195657i
\(341\) 610.798i 1.79120i
\(342\) 32.0354 + 75.3320i 0.0936709 + 0.220269i
\(343\) 343.931i 1.00271i
\(344\) −44.9677 + 25.9621i −0.130720 + 0.0754712i
\(345\) 5.67233 6.50431i 0.0164415 0.0188531i
\(346\) 365.136 632.435i 1.05531 1.82785i
\(347\) −334.696 + 579.710i −0.964540 + 1.67063i −0.253696 + 0.967284i \(0.581646\pi\)
−0.710845 + 0.703349i \(0.751687\pi\)
\(348\) 79.1678 + 4.81579i 0.227494 + 0.0138385i
\(349\) −274.137 474.819i −0.785492 1.36051i −0.928705 0.370821i \(-0.879076\pi\)
0.143212 0.989692i \(-0.454257\pi\)
\(350\) 281.925 + 284.104i 0.805501 + 0.811726i
\(351\) −74.2138 + 87.0682i −0.211435 + 0.248058i
\(352\) 355.402i 1.00967i
\(353\) −10.0056 17.3302i −0.0283444 0.0490939i 0.851505 0.524346i \(-0.175690\pi\)
−0.879850 + 0.475252i \(0.842357\pi\)
\(354\) −342.246 20.8189i −0.966795 0.0588103i
\(355\) −331.185 44.2498i −0.932915 0.124647i
\(356\) 109.771 + 63.3764i 0.308346 + 0.178024i
\(357\) 161.829 + 324.311i 0.453304 + 0.908433i
\(358\) −6.25113 + 3.60909i −0.0174613 + 0.0100813i
\(359\) 224.934i 0.626556i 0.949661 + 0.313278i \(0.101427\pi\)
−0.949661 + 0.313278i \(0.898573\pi\)
\(360\) −71.1554 + 273.712i −0.197654 + 0.760312i
\(361\) −345.271 −0.956429
\(362\) −0.955502 1.65498i −0.00263951 0.00457176i
\(363\) 530.778 + 351.062i 1.46220 + 0.967112i
\(364\) −18.6302 + 32.2684i −0.0511818 + 0.0886495i
\(365\) 242.554 + 32.4078i 0.664531 + 0.0887885i
\(366\) 361.154 + 238.871i 0.986760 + 0.652652i
\(367\) −43.7972 + 25.2863i −0.119338 + 0.0689000i −0.558481 0.829517i \(-0.688616\pi\)
0.439143 + 0.898417i \(0.355282\pi\)
\(368\) 11.1917 0.0304122
\(369\) −366.200 275.572i −0.992413 0.746807i
\(370\) −93.5685 227.130i −0.252888 0.613864i
\(371\) −148.604 + 85.7966i −0.400550 + 0.231258i
\(372\) 113.160 56.4662i 0.304193 0.151791i
\(373\) −244.861 141.371i −0.656464 0.379010i 0.134464 0.990918i \(-0.457069\pi\)
−0.790928 + 0.611909i \(0.790402\pi\)
\(374\) −627.373 362.214i −1.67747 0.968486i
\(375\) −336.148 166.221i −0.896395 0.443256i
\(376\) −47.6245 82.4881i −0.126661 0.219383i
\(377\) 88.9313 0.235892
\(378\) −280.407 + 328.976i −0.741819 + 0.870308i
\(379\) −435.602 −1.14935 −0.574673 0.818383i \(-0.694871\pi\)
−0.574673 + 0.818383i \(0.694871\pi\)
\(380\) −19.7881 15.2446i −0.0520740 0.0401172i
\(381\) 291.974 + 17.7609i 0.766337 + 0.0466164i
\(382\) 114.240 + 65.9566i 0.299058 + 0.172661i
\(383\) 156.225 270.589i 0.407897 0.706499i −0.586757 0.809763i \(-0.699595\pi\)
0.994654 + 0.103265i \(0.0329288\pi\)
\(384\) −413.164 + 206.167i −1.07595 + 0.536892i
\(385\) 504.667 + 388.790i 1.31082 + 1.00984i
\(386\) 83.3905i 0.216038i
\(387\) 68.4280 29.0995i 0.176817 0.0751925i
\(388\) 5.22527i 0.0134672i
\(389\) −217.725 + 125.703i −0.559704 + 0.323145i −0.753027 0.657990i \(-0.771407\pi\)
0.193323 + 0.981135i \(0.438074\pi\)
\(390\) 28.0411 143.042i 0.0719004 0.366775i
\(391\) −4.97869 + 8.62335i −0.0127332 + 0.0220546i
\(392\) −0.841562 + 1.45763i −0.00214684 + 0.00371844i
\(393\) −33.9965 + 51.4000i −0.0865050 + 0.130789i
\(394\) 173.478 + 300.473i 0.440300 + 0.762622i
\(395\) 545.209 224.605i 1.38028 0.568620i
\(396\) 25.0812 205.394i 0.0633362 0.518672i
\(397\) 237.163i 0.597388i 0.954349 + 0.298694i \(0.0965510\pi\)
−0.954349 + 0.298694i \(0.903449\pi\)
\(398\) 308.167 + 533.760i 0.774288 + 1.34111i
\(399\) 37.0850 + 74.3194i 0.0929450 + 0.186264i
\(400\) −124.054 470.209i −0.310136 1.17552i
\(401\) −464.967 268.449i −1.15952 0.669448i −0.208330 0.978059i \(-0.566803\pi\)
−0.951188 + 0.308611i \(0.900136\pi\)
\(402\) −821.103 49.9478i −2.04254 0.124248i
\(403\) 122.803 70.9001i 0.304721 0.175931i
\(404\) 204.023i 0.505007i
\(405\) 148.659 376.730i 0.367059 0.930198i
\(406\) 336.016 0.827626
\(407\) −195.496 338.608i −0.480333 0.831962i
\(408\) 19.8122 325.697i 0.0485593 0.798277i
\(409\) 20.7517 35.9430i 0.0507376 0.0878801i −0.839541 0.543296i \(-0.817176\pi\)
0.890279 + 0.455416i \(0.150509\pi\)
\(410\) 578.786 + 77.3320i 1.41167 + 0.188615i
\(411\) 52.8052 26.3495i 0.128480 0.0641108i
\(412\) 179.065 103.383i 0.434624 0.250930i
\(413\) −347.894 −0.842359
\(414\) −11.7880 1.43946i −0.0284735 0.00347696i
\(415\) 33.8467 13.9435i 0.0815584 0.0335989i
\(416\) 71.4546 41.2543i 0.171766 0.0991690i
\(417\) −270.346 178.809i −0.648311 0.428799i
\(418\) −143.769 83.0053i −0.343946 0.198577i
\(419\) 636.413 + 367.433i 1.51889 + 0.876929i 0.999753 + 0.0222364i \(0.00707866\pi\)
0.519134 + 0.854693i \(0.326255\pi\)
\(420\) 25.3746 129.440i 0.0604157 0.308190i
\(421\) 7.65881 + 13.2655i 0.0181920 + 0.0315094i 0.874978 0.484163i \(-0.160876\pi\)
−0.856786 + 0.515672i \(0.827542\pi\)
\(422\) −820.269 −1.94377
\(423\) 53.3797 + 125.523i 0.126193 + 0.296746i
\(424\) 154.481 0.364341
\(425\) 417.489 + 113.590i 0.982327 + 0.267270i
\(426\) 205.286 + 411.398i 0.481892 + 0.965724i
\(427\) 380.478 + 219.669i 0.891048 + 0.514447i
\(428\) −30.4894 + 52.8092i −0.0712369 + 0.123386i
\(429\) 14.0872 231.582i 0.0328372 0.539818i
\(430\) −57.8191 + 75.0518i −0.134463 + 0.174539i
\(431\) 98.8622i 0.229379i 0.993401 + 0.114689i \(0.0365872\pi\)
−0.993401 + 0.114689i \(0.963413\pi\)
\(432\) 494.902 175.808i 1.14561 0.406962i
\(433\) 573.821i 1.32522i 0.748964 + 0.662610i \(0.230551\pi\)
−0.748964 + 0.662610i \(0.769449\pi\)
\(434\) 463.994 267.887i 1.06911 0.617252i
\(435\) −297.832 + 102.021i −0.684672 + 0.234532i
\(436\) −14.9559 + 25.9044i −0.0343025 + 0.0594137i
\(437\) −1.14092 + 1.97614i −0.00261081 + 0.00452205i
\(438\) −150.348 301.301i −0.343260 0.687902i
\(439\) 119.927 + 207.719i 0.273182 + 0.473165i 0.969675 0.244399i \(-0.0785906\pi\)
−0.696493 + 0.717564i \(0.745257\pi\)
\(440\) −218.460 530.293i −0.496500 1.20521i
\(441\) 1.44930 1.92594i 0.00328639 0.00436720i
\(442\) 168.180i 0.380497i
\(443\) −183.257 317.411i −0.413673 0.716503i 0.581615 0.813464i \(-0.302421\pi\)
−0.995288 + 0.0969610i \(0.969088\pi\)
\(444\) −44.6595 + 67.5218i −0.100585 + 0.152076i
\(445\) −498.688 66.6300i −1.12065 0.149730i
\(446\) −709.595 409.685i −1.59102 0.918576i
\(447\) 375.615 567.901i 0.840303 1.27047i
\(448\) −200.411 + 115.707i −0.447346 + 0.258275i
\(449\) 623.682i 1.38905i −0.719470 0.694523i \(-0.755615\pi\)
0.719470 0.694523i \(-0.244385\pi\)
\(450\) 70.1868 + 511.219i 0.155971 + 1.13604i
\(451\) 929.424 2.06081
\(452\) 71.0418 + 123.048i 0.157172 + 0.272230i
\(453\) 149.863 74.7809i 0.330823 0.165079i
\(454\) −147.695 + 255.816i −0.325320 + 0.563471i
\(455\) 19.5866 146.595i 0.0430475 0.322186i
\(456\) 4.54019 74.6371i 0.00995656 0.163678i
\(457\) 336.409 194.226i 0.736126 0.425002i −0.0845333 0.996421i \(-0.526940\pi\)
0.820659 + 0.571418i \(0.193607\pi\)
\(458\) 580.470 1.26740
\(459\) −84.6983 + 459.539i −0.184528 + 1.00117i
\(460\) 3.35058 1.38031i 0.00728387 0.00300067i
\(461\) 328.964 189.927i 0.713588 0.411990i −0.0988003 0.995107i \(-0.531501\pi\)
0.812388 + 0.583117i \(0.198167\pi\)
\(462\) 53.2266 875.003i 0.115209 1.89395i
\(463\) −331.040 191.126i −0.714990 0.412800i 0.0979160 0.995195i \(-0.468782\pi\)
−0.812906 + 0.582395i \(0.802116\pi\)
\(464\) −353.562 204.129i −0.761987 0.439933i
\(465\) −329.931 + 378.324i −0.709530 + 0.813599i
\(466\) 110.492 + 191.378i 0.237107 + 0.410682i
\(467\) 35.3515 0.0756992 0.0378496 0.999283i \(-0.487949\pi\)
0.0378496 + 0.999283i \(0.487949\pi\)
\(468\) −44.2064 + 18.7991i −0.0944582 + 0.0401690i
\(469\) −834.655 −1.77965
\(470\) −137.674 106.062i −0.292923 0.225665i
\(471\) −113.200 + 171.150i −0.240340 + 0.363376i
\(472\) 271.239 + 156.600i 0.574659 + 0.331779i
\(473\) −75.3982 + 130.593i −0.159404 + 0.276096i
\(474\) −676.760 447.616i −1.42776 0.944337i
\(475\) 95.6723 + 26.0304i 0.201415 + 0.0548008i
\(476\) 152.187i 0.319720i
\(477\) −219.594 26.8151i −0.460365 0.0562161i
\(478\) 250.879i 0.524851i
\(479\) −501.226 + 289.383i −1.04640 + 0.604139i −0.921639 0.388047i \(-0.873150\pi\)
−0.124761 + 0.992187i \(0.539816\pi\)
\(480\) −191.976 + 220.133i −0.399949 + 0.458611i
\(481\) −45.3854 + 78.6098i −0.0943563 + 0.163430i
\(482\) −359.632 + 622.901i −0.746124 + 1.29233i
\(483\) −12.0271 0.731609i −0.0249008 0.00151472i
\(484\) 133.603 + 231.408i 0.276040 + 0.478115i
\(485\) 7.90020 + 19.1771i 0.0162891 + 0.0395404i
\(486\) −543.885 + 121.522i −1.11910 + 0.250045i
\(487\) 424.778i 0.872235i 0.899890 + 0.436117i \(0.143647\pi\)
−0.899890 + 0.436117i \(0.856353\pi\)
\(488\) −197.762 342.534i −0.405250 0.701913i
\(489\) −241.067 14.6642i −0.492980 0.0299881i
\(490\) −0.406708 + 3.04398i −0.000830015 + 0.00621219i
\(491\) 337.754 + 195.002i 0.687890 + 0.397154i 0.802821 0.596220i \(-0.203331\pi\)
−0.114931 + 0.993373i \(0.536665\pi\)
\(492\) −85.9221 172.190i −0.174638 0.349980i
\(493\) 314.569 181.616i 0.638071 0.368390i
\(494\) 38.5403i 0.0780168i
\(495\) 218.491 + 791.731i 0.441396 + 1.59946i
\(496\) −650.964 −1.31243
\(497\) 233.249 + 404.000i 0.469315 + 0.812877i
\(498\) −42.0135 27.7881i −0.0843644 0.0557994i
\(499\) 308.776 534.816i 0.618790 1.07178i −0.370916 0.928666i \(-0.620956\pi\)
0.989707 0.143110i \(-0.0457103\pi\)
\(500\) −95.1321 125.472i −0.190264 0.250943i
\(501\) 187.222 + 123.830i 0.373697 + 0.247167i
\(502\) 383.102 221.184i 0.763152 0.440606i
\(503\) 551.752 1.09692 0.548461 0.836176i \(-0.315214\pi\)
0.548461 + 0.836176i \(0.315214\pi\)
\(504\) 363.359 154.521i 0.720951 0.306589i
\(505\) 308.467 + 748.777i 0.610825 + 1.48273i
\(506\) 20.8567 12.0416i 0.0412188 0.0237977i
\(507\) 405.461 202.323i 0.799727 0.399060i
\(508\) 106.369 + 61.4119i 0.209387 + 0.120890i
\(509\) 383.782 + 221.577i 0.753992 + 0.435317i 0.827134 0.562004i \(-0.189970\pi\)
−0.0731427 + 0.997321i \(0.523303\pi\)
\(510\) −192.935 563.236i −0.378303 1.10439i
\(511\) −170.828 295.882i −0.334301 0.579026i
\(512\) 110.221 0.215276
\(513\) −19.4096 + 105.308i −0.0378354 + 0.205280i
\(514\) 856.615 1.66657
\(515\) −500.873 + 650.156i −0.972569 + 1.26244i
\(516\) 31.1648 + 1.89576i 0.0603968 + 0.00367395i
\(517\) −239.559 138.309i −0.463363 0.267523i
\(518\) −171.483 + 297.017i −0.331048 + 0.573393i
\(519\) 854.765 426.523i 1.64695 0.821818i
\(520\) −81.2584 + 105.477i −0.156266 + 0.202841i
\(521\) 716.733i 1.37569i −0.725859 0.687843i \(-0.758558\pi\)
0.725859 0.687843i \(-0.241442\pi\)
\(522\) 346.146 + 260.481i 0.663116 + 0.499005i
\(523\) 417.591i 0.798453i −0.916852 0.399227i \(-0.869279\pi\)
0.916852 0.399227i \(-0.130721\pi\)
\(524\) −22.4093 + 12.9380i −0.0427658 + 0.0246908i
\(525\) 102.576 + 513.417i 0.195384 + 0.977936i
\(526\) −231.150 + 400.364i −0.439449 + 0.761149i
\(527\) 289.586 501.577i 0.549499 0.951760i
\(528\) −587.569 + 888.359i −1.11282 + 1.68250i
\(529\) 264.334 + 457.841i 0.499687 + 0.865483i
\(530\) 260.616 107.364i 0.491729 0.202573i
\(531\) −358.383 269.689i −0.674920 0.507888i
\(532\) 34.8753i 0.0655552i
\(533\) −107.886 186.863i −0.202412 0.350588i
\(534\) 309.113 + 619.471i 0.578863 + 1.16006i
\(535\) 32.0546 239.911i 0.0599152 0.448431i
\(536\) 650.746 + 375.709i 1.21408 + 0.700949i
\(537\) −9.42471 0.573307i −0.0175507 0.00106761i
\(538\) −14.5325 + 8.39034i −0.0270121 + 0.0155954i
\(539\) 4.88807i 0.00906877i
\(540\) 126.482 113.672i 0.234225 0.210503i
\(541\) −365.297 −0.675225 −0.337612 0.941285i \(-0.609619\pi\)
−0.337612 + 0.941285i \(0.609619\pi\)
\(542\) −107.612 186.389i −0.198546 0.343892i
\(543\) 0.151782 2.49518i 0.000279525 0.00459517i
\(544\) 168.500 291.851i 0.309743 0.536490i
\(545\) 15.7237 117.683i 0.0288508 0.215932i
\(546\) −182.100 + 90.8670i −0.333517 + 0.166423i
\(547\) −529.651 + 305.794i −0.968283 + 0.559039i −0.898712 0.438538i \(-0.855496\pi\)
−0.0695708 + 0.997577i \(0.522163\pi\)
\(548\) 24.7795 0.0452181
\(549\) 221.660 + 521.239i 0.403753 + 0.949433i
\(550\) −737.105 742.801i −1.34019 1.35055i
\(551\) 72.0870 41.6195i 0.130829 0.0755344i
\(552\) 9.04769 + 5.98423i 0.0163908 + 0.0108410i
\(553\) −712.970 411.633i −1.28928 0.744364i
\(554\) 530.040 + 306.019i 0.956751 + 0.552381i
\(555\) 61.8156 315.331i 0.111380 0.568164i
\(556\) −68.0492 117.865i −0.122391 0.211987i
\(557\) −510.888 −0.917214 −0.458607 0.888639i \(-0.651651\pi\)
−0.458607 + 0.888639i \(0.651651\pi\)
\(558\) 685.650 + 83.7262i 1.22876 + 0.150047i
\(559\) 35.0082 0.0626265
\(560\) −414.357 + 537.854i −0.739923 + 0.960453i
\(561\) −423.109 847.923i −0.754206 1.51145i
\(562\) 12.5406 + 7.24031i 0.0223142 + 0.0128831i
\(563\) 78.8759 136.617i 0.140099 0.242659i −0.787435 0.616398i \(-0.788591\pi\)
0.927534 + 0.373739i \(0.121924\pi\)
\(564\) −3.47755 + 57.1682i −0.00616587 + 0.101362i
\(565\) −446.767 344.185i −0.790739 0.609176i
\(566\) 794.615i 1.40391i
\(567\) −543.337 + 156.579i −0.958266 + 0.276153i
\(568\) 419.976i 0.739395i
\(569\) −152.312 + 87.9374i −0.267684 + 0.154547i −0.627835 0.778347i \(-0.716059\pi\)
0.360151 + 0.932894i \(0.382725\pi\)
\(570\) −44.2132 129.072i −0.0775669 0.226442i
\(571\) 294.258 509.670i 0.515338 0.892591i −0.484504 0.874789i \(-0.661000\pi\)
0.999842 0.0178020i \(-0.00566685\pi\)
\(572\) 48.7093 84.3670i 0.0851562 0.147495i
\(573\) 77.0453 + 154.401i 0.134460 + 0.269461i
\(574\) −407.632 706.039i −0.710160 1.23003i
\(575\) −10.2099 + 10.1316i −0.0177564 + 0.0176203i
\(576\) −296.150 36.1635i −0.514148 0.0627838i
\(577\) 323.853i 0.561270i −0.959815 0.280635i \(-0.909455\pi\)
0.959815 0.280635i \(-0.0905451\pi\)
\(578\) 12.0627 + 20.8932i 0.0208697 + 0.0361474i
\(579\) −60.1771 + 90.9831i −0.103933 + 0.157138i
\(580\) −131.026 17.5065i −0.225907 0.0301836i
\(581\) −44.2614 25.5543i −0.0761814 0.0439833i
\(582\) 15.7443 23.8042i 0.0270521 0.0409007i
\(583\) 388.531 224.318i 0.666434 0.384766i
\(584\) 307.583i 0.526684i
\(585\) 133.818 135.831i 0.228748 0.232189i
\(586\) −244.687 −0.417555
\(587\) −515.537 892.937i −0.878258 1.52119i −0.853251 0.521500i \(-0.825373\pi\)
−0.0250065 0.999687i \(-0.507961\pi\)
\(588\) 0.905590 0.451885i 0.00154012 0.000768512i
\(589\) 66.3618 114.942i 0.112669 0.195148i
\(590\) 566.430 + 75.6811i 0.960051 + 0.128273i
\(591\) −27.5571 + 453.017i −0.0466279 + 0.766527i
\(592\) 360.875 208.351i 0.609586 0.351945i
\(593\) 193.131 0.325685 0.162842 0.986652i \(-0.447934\pi\)
0.162842 + 0.986652i \(0.447934\pi\)
\(594\) 733.136 860.121i 1.23424 1.44802i
\(595\) −230.095 558.536i −0.386714 0.938716i
\(596\) 247.592 142.948i 0.415424 0.239845i
\(597\) −48.9525 + 804.740i −0.0819974 + 1.34797i
\(598\) −4.84200 2.79553i −0.00809699 0.00467480i
\(599\) −354.438 204.635i −0.591716 0.341627i 0.174060 0.984735i \(-0.444311\pi\)
−0.765776 + 0.643108i \(0.777645\pi\)
\(600\) 151.133 446.463i 0.251888 0.744106i
\(601\) 520.432 + 901.414i 0.865943 + 1.49986i 0.866108 + 0.499857i \(0.166614\pi\)
−0.000165360 1.00000i \(0.500053\pi\)
\(602\) 132.274 0.219724
\(603\) −859.818 647.027i −1.42590 1.07301i
\(604\) 70.3251 0.116432
\(605\) −840.203 647.283i −1.38877 1.06989i
\(606\) 614.744 929.446i 1.01443 1.53374i
\(607\) 589.637 + 340.427i 0.971396 + 0.560836i 0.899661 0.436588i \(-0.143813\pi\)
0.0717342 + 0.997424i \(0.477147\pi\)
\(608\) 38.6137 66.8808i 0.0635093 0.110001i
\(609\) 366.609 + 242.479i 0.601986 + 0.398159i
\(610\) −571.694 440.427i −0.937204 0.722011i
\(611\) 64.2185i 0.105104i
\(612\) −117.976 + 156.775i −0.192771 + 0.256169i
\(613\) 1024.19i 1.67079i 0.549651 + 0.835395i \(0.314761\pi\)
−0.549651 + 0.835395i \(0.685239\pi\)
\(614\) 319.934 184.714i 0.521066 0.300837i
\(615\) 575.678 + 502.042i 0.936062 + 0.816328i
\(616\) −400.371 + 693.464i −0.649954 + 1.12575i
\(617\) −555.636 + 962.389i −0.900544 + 1.55979i −0.0737542 + 0.997276i \(0.523498\pi\)
−0.826790 + 0.562511i \(0.809835\pi\)
\(618\) 1127.25 + 68.5711i 1.82404 + 0.110956i
\(619\) −400.940 694.448i −0.647722 1.12189i −0.983666 0.180005i \(-0.942389\pi\)
0.335944 0.941882i \(-0.390945\pi\)
\(620\) −194.887 + 80.2857i −0.314333 + 0.129493i
\(621\) −11.8225 10.0771i −0.0190379 0.0162272i
\(622\) 39.8467i 0.0640622i
\(623\) 351.220 + 608.330i 0.563755 + 0.976453i
\(624\) 246.810 + 15.0135i 0.395530 + 0.0240601i
\(625\) 538.844 + 316.657i 0.862151 + 0.506651i
\(626\) −692.121 399.596i −1.10562 0.638332i
\(627\) −96.9603 194.311i −0.154642 0.309906i
\(628\) −74.6177 + 43.0805i −0.118818 + 0.0685996i
\(629\) 370.746i 0.589421i
\(630\) 505.613 513.219i 0.802561 0.814633i
\(631\) −564.192 −0.894124 −0.447062 0.894503i \(-0.647530\pi\)
−0.447062 + 0.894503i \(0.647530\pi\)
\(632\) 370.582 + 641.868i 0.586365 + 1.01561i
\(633\) −894.953 591.930i −1.41383 0.935118i
\(634\) −340.398 + 589.587i −0.536905 + 0.929947i
\(635\) −483.229 64.5646i −0.760991 0.101677i
\(636\) −77.4768 51.2439i −0.121819 0.0805722i
\(637\) 0.982759 0.567396i 0.00154279 0.000890731i
\(638\) −878.527 −1.37700
\(639\) −72.9004 + 596.996i −0.114085 + 0.934265i
\(640\) 711.561 293.135i 1.11181 0.458024i
\(641\) 1043.99 602.749i 1.62869 0.940327i 0.644210 0.764848i \(-0.277186\pi\)
0.984483 0.175478i \(-0.0561472\pi\)
\(642\) −298.018 + 148.709i −0.464202 + 0.231635i
\(643\) 402.110 + 232.158i 0.625365 + 0.361055i 0.778955 0.627080i \(-0.215750\pi\)
−0.153590 + 0.988135i \(0.549083\pi\)
\(644\) −4.38156 2.52969i −0.00680366 0.00392809i
\(645\) −117.243 + 40.1612i −0.181772 + 0.0622654i
\(646\) 78.7074 + 136.325i 0.121838 + 0.211030i
\(647\) −372.702 −0.576046 −0.288023 0.957624i \(-0.592998\pi\)
−0.288023 + 0.957624i \(0.592998\pi\)
\(648\) 494.099 + 122.498i 0.762499 + 0.189040i
\(649\) 909.583 1.40151
\(650\) −63.7805 + 234.420i −0.0981239 + 0.360645i
\(651\) 699.555 + 42.5541i 1.07459 + 0.0653672i
\(652\) −87.8227 50.7044i −0.134697 0.0777676i
\(653\) −110.705 + 191.747i −0.169533 + 0.293639i −0.938256 0.345943i \(-0.887559\pi\)
0.768723 + 0.639582i \(0.220893\pi\)
\(654\) −146.186 + 72.9461i −0.223526 + 0.111538i
\(655\) 62.6822 81.3644i 0.0956980 0.124220i
\(656\) 990.543i 1.50997i
\(657\) 53.3910 437.229i 0.0812649 0.665493i
\(658\) 242.642i 0.368757i
\(659\) −541.098 + 312.403i −0.821090 + 0.474057i −0.850792 0.525502i \(-0.823877\pi\)
0.0297021 + 0.999559i \(0.490544\pi\)
\(660\) −66.3429 + 338.425i −0.100520 + 0.512765i
\(661\) −167.257 + 289.698i −0.253037 + 0.438273i −0.964360 0.264592i \(-0.914763\pi\)
0.711324 + 0.702865i \(0.248096\pi\)
\(662\) 232.428 402.578i 0.351100 0.608124i
\(663\) −121.363 + 183.492i −0.183052 + 0.276761i
\(664\) 23.0059 + 39.8473i 0.0346474 + 0.0600110i
\(665\) −52.7288 127.995i −0.0792915 0.192473i
\(666\) −406.902 + 173.038i −0.610964 + 0.259816i
\(667\) 12.0755i 0.0181042i
\(668\) 47.1260 + 81.6247i 0.0705480 + 0.122193i
\(669\) −478.562 959.050i −0.715339 1.43356i
\(670\) 1358.96 + 181.571i 2.02830 + 0.271002i
\(671\) −994.773 574.333i −1.48252 0.855935i
\(672\) 407.047 + 24.7607i 0.605725 + 0.0368463i
\(673\) 820.344 473.626i 1.21894 0.703753i 0.254245 0.967140i \(-0.418173\pi\)
0.964690 + 0.263387i \(0.0848396\pi\)
\(674\) 75.1334i 0.111474i
\(675\) −292.333 + 608.413i −0.433086 + 0.901353i
\(676\) 190.268 0.281462
\(677\) 504.620 + 874.028i 0.745377 + 1.29103i 0.950018 + 0.312194i \(0.101064\pi\)
−0.204641 + 0.978837i \(0.565603\pi\)
\(678\) −47.1200 + 774.615i −0.0694985 + 1.14250i
\(679\) 14.4787 25.0778i 0.0213236 0.0369335i
\(680\) −72.0217 + 539.042i −0.105914 + 0.792708i
\(681\) −345.747 + 172.526i −0.507705 + 0.253342i
\(682\) −1213.13 + 700.401i −1.77878 + 1.02698i
\(683\) −697.555 −1.02131 −0.510655 0.859786i \(-0.670597\pi\)
−0.510655 + 0.859786i \(0.670597\pi\)
\(684\) −27.0355 + 35.9268i −0.0395256 + 0.0525245i
\(685\) −90.9424 + 37.4647i −0.132763 + 0.0546930i
\(686\) 683.095 394.385i 0.995765 0.574905i
\(687\) 633.320 + 418.884i 0.921864 + 0.609729i
\(688\) −139.181 80.3563i −0.202298 0.116797i
\(689\) −90.1996 52.0768i −0.130914 0.0755831i
\(690\) 19.4229 + 3.80756i 0.0281492 + 0.00551820i
\(691\) 89.5928 + 155.179i 0.129657 + 0.224572i 0.923544 0.383493i \(-0.125279\pi\)
−0.793887 + 0.608066i \(0.791946\pi\)
\(692\) 401.109 0.579638
\(693\) 689.500 916.260i 0.994950 1.32216i
\(694\) −1535.18 −2.21207
\(695\) 427.947 + 329.686i 0.615752 + 0.474368i
\(696\) −176.682 354.075i −0.253853 0.508729i
\(697\) −763.228 440.650i −1.09502 0.632209i
\(698\) 628.705 1088.95i 0.900723 1.56010i
\(699\) −17.5517 + 288.536i −0.0251098 + 0.412785i
\(700\) −57.7154 + 212.128i −0.0824505 + 0.303040i
\(701\) 211.499i 0.301710i 0.988556 + 0.150855i \(0.0482026\pi\)
−0.988556 + 0.150855i \(0.951797\pi\)
\(702\) −258.030 47.5580i −0.367565 0.0677464i
\(703\) 84.9606i 0.120854i
\(704\) 523.982 302.521i 0.744292 0.429717i
\(705\) −73.6711 215.069i −0.104498 0.305062i
\(706\) 22.9468 39.7449i 0.0325025 0.0562960i
\(707\) 565.327 979.175i 0.799614 1.38497i
\(708\) −84.0879 168.514i −0.118768 0.238015i
\(709\) 216.625 + 375.205i 0.305536 + 0.529203i 0.977380 0.211489i \(-0.0678312\pi\)
−0.671845 + 0.740692i \(0.734498\pi\)
\(710\) −291.883 708.521i −0.411103 0.997916i
\(711\) −415.365 976.740i −0.584199 1.37376i
\(712\) 632.387i 0.888184i
\(713\) 9.62715 + 16.6747i 0.0135023 + 0.0233867i
\(714\) −458.557 + 693.303i −0.642236 + 0.971012i
\(715\) −51.2099 + 383.277i −0.0716223 + 0.536052i
\(716\) −3.43349 1.98233i −0.00479538 0.00276861i
\(717\) −181.042 + 273.721i −0.252499 + 0.381758i
\(718\) −446.750 + 257.931i −0.622214 + 0.359236i
\(719\) 588.734i 0.818824i −0.912350 0.409412i \(-0.865734\pi\)
0.912350 0.409412i \(-0.134266\pi\)
\(720\) −843.795 + 232.859i −1.17194 + 0.323415i
\(721\) 1145.86 1.58927
\(722\) −395.921 685.756i −0.548368 0.949801i
\(723\) −841.879 + 420.094i −1.16442 + 0.581042i
\(724\) 0.524819 0.909013i 0.000724888 0.00125554i
\(725\) 507.342 133.851i 0.699782 0.184622i
\(726\) −88.6151 + 1456.76i −0.122059 + 2.00656i
\(727\) −218.273 + 126.020i −0.300238 + 0.173343i −0.642550 0.766244i \(-0.722124\pi\)
0.342312 + 0.939587i \(0.388790\pi\)
\(728\) 185.897 0.255353
\(729\) −681.098 259.897i −0.934291 0.356512i
\(730\) 213.770 + 518.908i 0.292835 + 0.710833i
\(731\) 123.831 71.4941i 0.169400 0.0978031i
\(732\) −14.4406 + 237.392i −0.0197276 + 0.324306i
\(733\) 166.687 + 96.2366i 0.227403 + 0.131291i 0.609374 0.792883i \(-0.291421\pi\)
−0.381970 + 0.924175i \(0.624754\pi\)
\(734\) −100.444 57.9916i −0.136845 0.0790076i
\(735\) −2.64036 + 3.02763i −0.00359232 + 0.00411922i
\(736\) 5.60170 + 9.70244i 0.00761101 + 0.0131827i
\(737\) 2182.24 2.96097
\(738\) 127.402 1043.32i 0.172632 1.41372i
\(739\) 811.337 1.09788 0.548942 0.835860i \(-0.315031\pi\)
0.548942 + 0.835860i \(0.315031\pi\)
\(740\) 82.3427 106.885i 0.111274 0.144439i
\(741\) −27.8118 + 42.0493i −0.0375328 + 0.0567467i
\(742\) −340.808 196.766i −0.459310 0.265183i
\(743\) −510.716 + 884.586i −0.687370 + 1.19056i 0.285315 + 0.958434i \(0.407902\pi\)
−0.972686 + 0.232126i \(0.925432\pi\)
\(744\) −526.259 348.073i −0.707338 0.467840i
\(745\) −692.555 + 898.968i −0.929604 + 1.20667i
\(746\) 648.438i 0.869219i
\(747\) −25.7860 60.6363i −0.0345194 0.0811731i
\(748\) 397.899i 0.531950i
\(749\) −292.658 + 168.966i −0.390732 + 0.225589i
\(750\) −55.3227 858.243i −0.0737637 1.14432i
\(751\) 477.189 826.515i 0.635404 1.10055i −0.351025 0.936366i \(-0.614167\pi\)
0.986429 0.164186i \(-0.0524999\pi\)
\(752\) 147.404 255.312i 0.196017 0.339511i
\(753\) 577.596 + 35.1353i 0.767060 + 0.0466604i
\(754\) 101.977 + 176.630i 0.135249 + 0.234257i
\(755\) −258.098 + 106.326i −0.341851 + 0.140829i
\(756\) −233.493 43.0355i −0.308854 0.0569253i
\(757\) 1462.32i 1.93173i −0.259040 0.965866i \(-0.583406\pi\)
0.259040 0.965866i \(-0.416594\pi\)
\(758\) −499.504 865.166i −0.658976 1.14138i
\(759\) 31.4453 + 1.91282i 0.0414299 + 0.00252019i
\(760\) −16.5046 + 123.527i −0.0217166 + 0.162536i
\(761\) −33.0469 19.0796i −0.0434256 0.0250718i 0.478130 0.878289i \(-0.341315\pi\)
−0.521556 + 0.853217i \(0.674648\pi\)
\(762\) 299.531 + 600.269i 0.393086 + 0.787754i
\(763\) −143.557 + 82.8827i −0.188148 + 0.108627i
\(764\) 72.4546i 0.0948359i
\(765\) 195.947 753.745i 0.256140 0.985288i
\(766\) 716.570 0.935470
\(767\) −105.582 182.874i −0.137656 0.238428i
\(768\) −551.458 364.740i −0.718045 0.474921i
\(769\) −301.249 + 521.778i −0.391741 + 0.678515i −0.992679 0.120781i \(-0.961460\pi\)
0.600939 + 0.799295i \(0.294794\pi\)
\(770\) −193.490 + 1448.16i −0.251286 + 1.88073i
\(771\) 934.608 + 618.158i 1.21220 + 0.801762i
\(772\) −39.6666 + 22.9015i −0.0513816 + 0.0296652i
\(773\) 394.816 0.510758 0.255379 0.966841i \(-0.417800\pi\)
0.255379 + 0.966841i \(0.417800\pi\)
\(774\) 136.262 + 102.539i 0.176049 + 0.132480i
\(775\) 593.861 589.307i 0.766272 0.760397i
\(776\) −22.5769 + 13.0348i −0.0290940 + 0.0167974i
\(777\) −401.433 + 200.313i −0.516644 + 0.257803i
\(778\) −499.329 288.288i −0.641811 0.370550i
\(779\) −174.902 100.980i −0.224521 0.129628i
\(780\) 75.7422 25.9452i 0.0971054 0.0332631i
\(781\) −609.840 1056.27i −0.780845 1.35246i
\(782\) −22.8362 −0.0292024
\(783\) 189.692 + 533.986i 0.242263 + 0.681975i
\(784\) −5.20950 −0.00664478
\(785\) 208.717 270.925i 0.265882 0.345127i
\(786\) −141.071 8.58139i −0.179480 0.0109178i
\(787\) 713.353 + 411.855i 0.906421 + 0.523322i 0.879278 0.476309i \(-0.158026\pi\)
0.0271429 + 0.999632i \(0.491359\pi\)
\(788\) −95.2845 + 165.038i −0.120919 + 0.209439i
\(789\) −541.111 + 270.012i −0.685818 + 0.342220i
\(790\) 1071.29 + 825.308i 1.35606 + 1.04469i
\(791\) 787.400i 0.995448i
\(792\) −950.017 + 404.001i −1.19952 + 0.510103i
\(793\) 266.669i 0.336279i
\(794\) −471.039 + 271.955i −0.593248 + 0.342512i
\(795\) 361.822 + 70.9294i 0.455122 + 0.0892194i
\(796\) −169.263 + 293.173i −0.212642 + 0.368308i
\(797\) 459.750 796.310i 0.576850 0.999134i −0.418988 0.907992i \(-0.637615\pi\)
0.995838 0.0911420i \(-0.0290517\pi\)
\(798\) −105.083 + 158.878i −0.131683 + 0.199095i
\(799\) 131.148 + 227.155i 0.164140 + 0.284299i
\(800\) 345.547 342.898i 0.431934 0.428622i
\(801\) −109.771 + 898.937i −0.137043 + 1.12227i
\(802\) 1231.32i 1.53531i
\(803\) 446.636 + 773.596i 0.556209 + 0.963383i
\(804\) −201.740 404.293i −0.250921 0.502852i
\(805\) 19.9053 + 2.65956i 0.0247271 + 0.00330380i
\(806\) 281.635 + 162.602i 0.349423 + 0.201740i
\(807\) −21.9104 1.33281i −0.0271504 0.00165156i
\(808\) −881.525 + 508.948i −1.09100 + 0.629887i
\(809\) 1432.18i 1.77031i −0.465300 0.885153i \(-0.654054\pi\)
0.465300 0.885153i \(-0.345946\pi\)
\(810\) 918.706 136.738i 1.13420 0.168813i
\(811\) −422.921 −0.521481 −0.260740 0.965409i \(-0.583967\pi\)
−0.260740 + 0.965409i \(0.583967\pi\)
\(812\) 92.2800 + 159.834i 0.113645 + 0.196839i
\(813\) 17.0942 281.016i 0.0210261 0.345653i
\(814\) 448.349 776.563i 0.550797 0.954009i
\(815\) 398.976 + 53.3075i 0.489541 + 0.0654079i
\(816\) 903.682 450.933i 1.10745 0.552614i
\(817\) 28.3774 16.3837i 0.0347336 0.0200535i
\(818\) 95.1837 0.116362
\(819\) −264.252 32.2684i −0.322652 0.0393998i
\(820\) 122.167 + 296.550i 0.148984 + 0.361647i
\(821\) −151.022 + 87.1926i −0.183949 + 0.106203i −0.589147 0.808026i \(-0.700536\pi\)
0.405198 + 0.914229i \(0.367203\pi\)
\(822\) 112.886 + 74.6635i 0.137330 + 0.0908315i
\(823\) 777.136 + 448.680i 0.944272 + 0.545176i 0.891297 0.453420i \(-0.149796\pi\)
0.0529754 + 0.998596i \(0.483130\pi\)
\(824\) −893.380 515.793i −1.08420 0.625963i
\(825\) −268.190 1342.35i −0.325079 1.62709i
\(826\) −398.930 690.967i −0.482966 0.836522i
\(827\) −233.440 −0.282273 −0.141137 0.989990i \(-0.545076\pi\)
−0.141137 + 0.989990i \(0.545076\pi\)
\(828\) −2.55263 6.00255i −0.00308288 0.00724946i
\(829\) −990.934 −1.19534 −0.597668 0.801744i \(-0.703906\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(830\) 66.5058 + 51.2353i 0.0801275 + 0.0617293i
\(831\) 357.467 + 716.374i 0.430165 + 0.862062i
\(832\) −121.645 70.2319i −0.146208 0.0844134i
\(833\) 2.31748 4.01400i 0.00278209 0.00481873i
\(834\) 45.1350 741.984i 0.0541187 0.889669i
\(835\) −296.366 228.317i −0.354929 0.273433i
\(836\) 91.1829i 0.109071i
\(837\) 687.658 + 586.134i 0.821574 + 0.700280i
\(838\) 1685.34i 2.01115i
\(839\) −301.025 + 173.797i −0.358790 + 0.207148i −0.668550 0.743667i \(-0.733085\pi\)
0.309760 + 0.950815i \(0.399751\pi\)
\(840\) −622.571 + 213.260i −0.741156 + 0.253881i
\(841\) −200.250 + 346.844i −0.238110 + 0.412418i
\(842\) −17.5647 + 30.4229i −0.0208607 + 0.0361318i
\(843\) 8.45756 + 16.9492i 0.0100327 + 0.0201058i
\(844\) −225.270 390.180i −0.266908 0.462298i
\(845\) −698.296 + 287.671i −0.826386 + 0.340439i
\(846\) −188.097 + 249.957i −0.222337 + 0.295458i
\(847\) 1480.81i 1.74829i
\(848\) 239.070 + 414.081i 0.281922 + 0.488303i
\(849\) −573.418 + 866.963i −0.675404 + 1.02116i
\(850\) 253.129 + 959.445i 0.297799 + 1.12876i
\(851\) −10.6740 6.16264i −0.0125429 0.00724165i
\(852\) −139.313 + 210.631i −0.163513 + 0.247220i
\(853\) 1070.74 618.192i 1.25526 0.724727i 0.283114 0.959086i \(-0.408632\pi\)
0.972150 + 0.234359i \(0.0752991\pi\)
\(854\) 1007.58i 1.17983i
\(855\) 44.9034 172.729i 0.0525186 0.202022i
\(856\) 304.231 0.355411
\(857\) −457.353 792.158i −0.533667 0.924338i −0.999227 0.0393219i \(-0.987480\pi\)
0.465560 0.885017i \(-0.345853\pi\)
\(858\) 476.108 237.575i 0.554904 0.276894i
\(859\) −571.510 + 989.884i −0.665320 + 1.15237i 0.313879 + 0.949463i \(0.398371\pi\)
−0.979199 + 0.202905i \(0.934962\pi\)
\(860\) −51.5789 6.89149i −0.0599755 0.00801337i
\(861\) 64.7526 1064.48i 0.0752063 1.23633i
\(862\) −196.354 + 113.365i −0.227789 + 0.131514i
\(863\) −1228.14 −1.42311 −0.711554 0.702632i \(-0.752008\pi\)
−0.711554 + 0.702632i \(0.752008\pi\)
\(864\) 400.124 + 341.051i 0.463107 + 0.394735i
\(865\) −1472.10 + 606.446i −1.70185 + 0.701094i
\(866\) −1139.69 + 657.999i −1.31604 + 0.759814i
\(867\) −1.91617 + 31.5003i −0.00221011 + 0.0363325i
\(868\) 254.853 + 147.140i 0.293610 + 0.169516i
\(869\) 1864.09 + 1076.23i 2.14510 + 1.23847i
\(870\) −544.153 474.549i −0.625463 0.545458i
\(871\) −253.309 438.745i −0.290826 0.503725i
\(872\) 149.234 0.171140
\(873\) 34.3556 14.6100i 0.0393535 0.0167354i
\(874\) −5.23318 −0.00598762
\(875\) −108.902 865.783i −0.124459 0.989467i
\(876\) 102.031 154.263i 0.116473 0.176099i
\(877\) −1193.15 688.864i −1.36049 0.785478i −0.370799 0.928713i \(-0.620916\pi\)
−0.989689 + 0.143235i \(0.954250\pi\)
\(878\) −275.040 + 476.383i −0.313257 + 0.542578i
\(879\) −266.965 176.573i −0.303715 0.200880i
\(880\) 1083.35 1406.24i 1.23108 1.59800i
\(881\) 1087.45i 1.23434i 0.786831 + 0.617168i \(0.211720\pi\)
−0.786831 + 0.617168i \(0.788280\pi\)
\(882\) 5.48709 + 0.670040i 0.00622119 + 0.000759683i
\(883\) 922.151i 1.04434i −0.852842 0.522170i \(-0.825123\pi\)
0.852842 0.522170i \(-0.174877\pi\)
\(884\) −79.9986 + 46.1872i −0.0904961 + 0.0522480i
\(885\) 563.389 + 491.324i 0.636597 + 0.555169i
\(886\) 420.282 727.949i 0.474359 0.821613i
\(887\) −530.496 + 918.846i −0.598079 + 1.03590i 0.395026 + 0.918670i \(0.370736\pi\)
−0.993104 + 0.117233i \(0.962598\pi\)
\(888\) 403.149 + 24.5236i 0.453996 + 0.0276167i
\(889\) 340.333 + 589.473i 0.382826 + 0.663075i
\(890\) −439.508 1066.87i −0.493829 1.19873i
\(891\) 1420.58 409.381i 1.59436 0.459462i
\(892\) 450.047i 0.504537i
\(893\) 30.0540 + 52.0550i 0.0336551 + 0.0582923i
\(894\) 1558.65 + 94.8129i 1.74346 + 0.106055i
\(895\) 15.5983 + 2.08409i 0.0174282 + 0.00232860i
\(896\) −930.508 537.229i −1.03851 0.599586i
\(897\) −3.26552 6.54419i −0.00364049 0.00729564i
\(898\) 1238.72 715.175i 1.37942 0.796409i
\(899\) 702.372i 0.781282i
\(900\) −223.897 + 173.782i −0.248775 + 0.193091i
\(901\) −425.407 −0.472150
\(902\) 1065.77 + 1845.97i 1.18156 + 2.04653i
\(903\) 144.317 + 95.4529i 0.159820 + 0.105706i
\(904\) 354.437 613.903i 0.392077 0.679097i
\(905\) −0.551761 + 4.12962i −0.000609681 + 0.00456312i
\(906\) 320.373 + 211.898i 0.353612 + 0.233883i
\(907\) −1208.95 + 697.990i −1.33292 + 0.769559i −0.985745 0.168243i \(-0.946191\pi\)
−0.347170 + 0.937802i \(0.612857\pi\)
\(908\) −162.246 −0.178685
\(909\) 1341.43 570.452i 1.47572 0.627560i
\(910\) 313.617 129.198i 0.344634 0.141976i
\(911\) −1100.06 + 635.123i −1.20754 + 0.697171i −0.962220 0.272272i \(-0.912225\pi\)
−0.245315 + 0.969443i \(0.578891\pi\)
\(912\) 207.089 103.336i 0.227071 0.113307i
\(913\) 115.723 + 66.8128i 0.126750 + 0.0731794i
\(914\) 771.520 + 445.438i 0.844114 + 0.487350i
\(915\) −305.921 893.078i −0.334340 0.976041i
\(916\) 159.414 + 276.114i 0.174033 + 0.301434i
\(917\) −143.400 −0.156379
\(918\) −1009.83 + 358.730i −1.10003 + 0.390773i
\(919\) 269.489 0.293242 0.146621 0.989193i \(-0.453160\pi\)
0.146621 + 0.989193i \(0.453160\pi\)
\(920\) −14.3222 11.0336i −0.0155676 0.0119931i
\(921\) 482.359 + 29.3420i 0.523734 + 0.0318588i
\(922\) 754.445 + 435.579i 0.818270 + 0.472428i
\(923\) −141.578 + 245.220i −0.153389 + 0.265677i
\(924\) 430.833 214.983i 0.466269 0.232666i
\(925\) −140.602 + 516.769i −0.152002 + 0.558669i
\(926\) 876.657i 0.946713i
\(927\) 1180.41 + 888.274i 1.27336 + 0.958225i
\(928\) 408.686i 0.440395i
\(929\) 958.120 553.171i 1.03135 0.595447i 0.113976 0.993484i \(-0.463641\pi\)
0.917370 + 0.398036i \(0.130308\pi\)
\(930\) −1129.74 221.467i −1.21477 0.238136i
\(931\) 0.531077 0.919853i 0.000570438 0.000988027i
\(932\) −60.6888 + 105.116i −0.0651167 + 0.112785i
\(933\) −28.7545 + 43.4747i −0.0308194 + 0.0465966i
\(934\) 40.5375 + 70.2131i 0.0434021 + 0.0751746i
\(935\) 601.592 + 1460.31i 0.643414 + 1.56183i
\(936\) 191.501 + 144.108i 0.204596 + 0.153961i
\(937\) 130.956i 0.139761i 0.997555 + 0.0698805i \(0.0222618\pi\)
−0.997555 + 0.0698805i \(0.977738\pi\)
\(938\) −957.097 1657.74i −1.02036 1.76731i
\(939\) −466.777 935.433i −0.497100 0.996201i
\(940\) 12.6417 94.6157i 0.0134486 0.100655i
\(941\) −308.082 177.871i −0.327398 0.189023i 0.327287 0.944925i \(-0.393866\pi\)
−0.654685 + 0.755901i \(0.727199\pi\)
\(942\) −469.735 28.5740i −0.498657 0.0303334i
\(943\) 25.3732 14.6492i 0.0269068 0.0155347i
\(944\) 969.397i 1.02690i
\(945\) 922.002 195.081i 0.975663 0.206435i
\(946\) −345.836 −0.365577
\(947\) −511.335 885.658i −0.539953 0.935225i −0.998906 0.0467648i \(-0.985109\pi\)
0.458953 0.888460i \(-0.348224\pi\)
\(948\) 27.0600 444.845i 0.0285443 0.469246i
\(949\) 103.689 179.595i 0.109261 0.189246i
\(950\) 58.0073 + 219.868i 0.0610603 + 0.231440i
\(951\) −796.853 + 397.626i −0.837911 + 0.418114i
\(952\) 657.557 379.641i 0.690711 0.398782i
\(953\) 475.336 0.498778 0.249389 0.968403i \(-0.419770\pi\)
0.249389 + 0.968403i \(0.419770\pi\)
\(954\) −198.550 466.893i −0.208123 0.489406i
\(955\) −109.546 265.913i −0.114708 0.278443i
\(956\) −119.336 + 68.8988i −0.124829 + 0.0720699i
\(957\) −958.515 633.971i −1.00158 0.662456i
\(958\) −1149.51 663.670i −1.19991 0.692766i
\(959\) 118.925 + 68.6616i 0.124010 + 0.0715971i
\(960\) 487.961 + 95.6571i 0.508293 + 0.0996428i
\(961\) −79.4631 137.634i −0.0826880 0.143220i
\(962\) −208.173 −0.216397
\(963\) −432.465 52.8092i −0.449081 0.0548382i
\(964\) −395.063 −0.409816
\(965\) 110.954 144.023i 0.114978 0.149247i
\(966\) −12.3384 24.7264i −0.0127726 0.0255967i
\(967\) −1084.58 626.185i −1.12160 0.647554i −0.179788 0.983705i \(-0.557541\pi\)
−0.941808 + 0.336151i \(0.890875\pi\)
\(968\) 666.565 1154.52i 0.688600 1.19269i
\(969\) −12.5027 + 205.535i −0.0129027 + 0.212110i
\(970\) −29.0292 + 37.6812i −0.0299270 + 0.0388466i
\(971\) 280.624i 0.289005i 0.989504 + 0.144502i \(0.0461581\pi\)
−0.989504 + 0.144502i \(0.953842\pi\)
\(972\) −207.172 225.338i −0.213139 0.231829i
\(973\) 754.231i 0.775160i
\(974\) −843.669 + 487.093i −0.866190 + 0.500095i
\(975\) −238.752 + 209.737i −0.244873 + 0.215115i
\(976\) 612.100 1060.19i 0.627152 1.08626i
\(977\) 165.797 287.169i 0.169700 0.293929i −0.768614 0.639712i \(-0.779053\pi\)
0.938314 + 0.345783i \(0.112387\pi\)
\(978\) −247.306 495.609i −0.252870 0.506758i
\(979\) −918.278 1590.50i −0.937975 1.62462i
\(980\) −1.55963 + 0.642507i −0.00159146 + 0.000655619i
\(981\) −212.136 25.9044i −0.216245 0.0264061i
\(982\) 894.436i 0.910831i
\(983\) 6.49145 + 11.2435i 0.00660372 + 0.0114380i 0.869308 0.494270i \(-0.164565\pi\)
−0.862705 + 0.505708i \(0.831231\pi\)
\(984\) −529.647 + 800.785i −0.538259 + 0.813806i
\(985\) 100.176 749.762i 0.101702 0.761179i
\(986\) 721.432 + 416.519i 0.731675 + 0.422433i
\(987\) −175.097 + 264.734i −0.177404 + 0.268221i
\(988\) −18.3326 + 10.5843i −0.0185552 + 0.0107129i
\(989\) 4.75358i 0.00480645i
\(990\) −1321.95 + 1341.83i −1.33530 + 1.35538i
\(991\) −1366.83 −1.37924 −0.689619 0.724172i \(-0.742222\pi\)
−0.689619 + 0.724172i \(0.742222\pi\)
\(992\) −325.823 564.342i −0.328451 0.568893i
\(993\) 544.102 271.505i 0.547938 0.273418i
\(994\) −534.934 + 926.532i −0.538163 + 0.932125i
\(995\) 177.953 1331.88i 0.178847 1.33857i
\(996\) 1.67989 27.6161i 0.00168664 0.0277270i
\(997\) 890.111 513.906i 0.892789 0.515452i 0.0179352 0.999839i \(-0.494291\pi\)
0.874854 + 0.484387i \(0.160957\pi\)
\(998\) 1416.29 1.41913
\(999\) −568.818 104.840i −0.569388 0.104945i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.h.a.14.8 yes 20
3.2 odd 2 135.3.h.a.44.3 20
5.2 odd 4 225.3.j.e.176.3 20
5.3 odd 4 225.3.j.e.176.8 20
5.4 even 2 inner 45.3.h.a.14.3 20
9.2 odd 6 inner 45.3.h.a.29.3 yes 20
9.4 even 3 405.3.d.a.404.6 20
9.5 odd 6 405.3.d.a.404.15 20
9.7 even 3 135.3.h.a.89.8 20
15.2 even 4 675.3.j.e.476.8 20
15.8 even 4 675.3.j.e.476.3 20
15.14 odd 2 135.3.h.a.44.8 20
45.2 even 12 225.3.j.e.101.3 20
45.4 even 6 405.3.d.a.404.16 20
45.7 odd 12 675.3.j.e.251.8 20
45.14 odd 6 405.3.d.a.404.5 20
45.29 odd 6 inner 45.3.h.a.29.8 yes 20
45.34 even 6 135.3.h.a.89.3 20
45.38 even 12 225.3.j.e.101.8 20
45.43 odd 12 675.3.j.e.251.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.3 20 5.4 even 2 inner
45.3.h.a.14.8 yes 20 1.1 even 1 trivial
45.3.h.a.29.3 yes 20 9.2 odd 6 inner
45.3.h.a.29.8 yes 20 45.29 odd 6 inner
135.3.h.a.44.3 20 3.2 odd 2
135.3.h.a.44.8 20 15.14 odd 2
135.3.h.a.89.3 20 45.34 even 6
135.3.h.a.89.8 20 9.7 even 3
225.3.j.e.101.3 20 45.2 even 12
225.3.j.e.101.8 20 45.38 even 12
225.3.j.e.176.3 20 5.2 odd 4
225.3.j.e.176.8 20 5.3 odd 4
405.3.d.a.404.5 20 45.14 odd 6
405.3.d.a.404.6 20 9.4 even 3
405.3.d.a.404.15 20 9.5 odd 6
405.3.d.a.404.16 20 45.4 even 6
675.3.j.e.251.3 20 45.43 odd 12
675.3.j.e.251.8 20 45.7 odd 12
675.3.j.e.476.3 20 15.8 even 4
675.3.j.e.476.8 20 15.2 even 4