Properties

Label 135.3.h.a.44.8
Level $135$
Weight $3$
Character 135.44
Analytic conductor $3.678$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(44,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.8
Root \(1.72886 + 0.105167i\) of defining polynomial
Character \(\chi\) \(=\) 135.44
Dual form 135.3.h.a.89.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14670 + 1.98614i) q^{2} +(-0.629835 + 1.09091i) q^{4} +(3.96090 - 3.05143i) q^{5} +(6.04559 - 3.49042i) q^{7} +6.28466 q^{8} +(10.6025 + 4.36783i) q^{10} +(-15.8064 + 9.12584i) q^{11} +(3.66955 + 2.11862i) q^{13} +(13.8649 + 8.00492i) q^{14} +(9.72596 + 16.8458i) q^{16} -17.3066 q^{17} -3.96601 q^{19} +(0.834115 + 6.24287i) q^{20} +(-36.2504 - 20.9292i) q^{22} +(0.287675 - 0.498269i) q^{23} +(6.37749 - 24.1729i) q^{25} +9.71765i q^{26} +8.79356i q^{28} +(18.1762 - 10.4940i) q^{29} +(-16.7326 + 28.9818i) q^{31} +(-9.73615 + 16.8635i) q^{32} +(-19.8455 - 34.3734i) q^{34} +(13.2952 - 32.2729i) q^{35} +21.4222i q^{37} +(-4.54782 - 7.87705i) q^{38} +(24.8929 - 19.1772i) q^{40} +(-44.1003 - 25.4613i) q^{41} +(7.15514 - 4.13102i) q^{43} -22.9911i q^{44} +1.31951 q^{46} +(-7.57789 - 13.1253i) q^{47} +(-0.133907 + 0.231934i) q^{49} +(55.3238 - 15.0524i) q^{50} +(-4.62242 + 2.66876i) q^{52} +24.5806 q^{53} +(-34.7608 + 84.3789i) q^{55} +(37.9945 - 21.9361i) q^{56} +(41.6853 + 24.0670i) q^{58} +(-43.1589 - 24.9178i) q^{59} +(-31.4674 - 54.5031i) q^{61} -76.7492 q^{62} +33.1499 q^{64} +(20.9995 - 2.80576i) q^{65} +(-103.545 - 59.7818i) q^{67} +(10.9003 - 18.8799i) q^{68} +(79.3442 - 10.6012i) q^{70} +66.8256i q^{71} -48.9419i q^{73} +(-42.5475 + 24.5648i) q^{74} +(2.49793 - 4.32654i) q^{76} +(-63.7061 + 110.342i) q^{77} +(58.9661 + 102.132i) q^{79} +(89.9276 + 37.0466i) q^{80} -116.786i q^{82} +(3.66063 + 6.34040i) q^{83} +(-68.5499 + 52.8101i) q^{85} +(16.4096 + 9.47408i) q^{86} +(-99.3381 + 57.3529i) q^{88} +100.624i q^{89} +29.5794 q^{91} +(0.362376 + 0.627654i) q^{92} +(17.3791 - 30.1015i) q^{94} +(-15.7090 + 12.1020i) q^{95} +(3.59238 - 2.07406i) q^{97} -0.614205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} + 12 q^{5} + 4 q^{10} + 24 q^{11} - 30 q^{14} - 26 q^{16} - 8 q^{19} - 144 q^{20} + 2 q^{25} + 114 q^{29} + 28 q^{31} - 4 q^{34} - 34 q^{40} - 102 q^{41} + 116 q^{46} - 40 q^{49} + 408 q^{50}+ \cdots + 762 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14670 + 1.98614i 0.573349 + 0.993070i 0.996219 + 0.0868795i \(0.0276895\pi\)
−0.422870 + 0.906191i \(0.638977\pi\)
\(3\) 0 0
\(4\) −0.629835 + 1.09091i −0.157459 + 0.272727i
\(5\) 3.96090 3.05143i 0.792180 0.610287i
\(6\) 0 0
\(7\) 6.04559 3.49042i 0.863655 0.498632i −0.00157923 0.999999i \(-0.500503\pi\)
0.865235 + 0.501367i \(0.167169\pi\)
\(8\) 6.28466 0.785583
\(9\) 0 0
\(10\) 10.6025 + 4.36783i 1.06025 + 0.436783i
\(11\) −15.8064 + 9.12584i −1.43695 + 0.829622i −0.997636 0.0687126i \(-0.978111\pi\)
−0.439311 + 0.898335i \(0.644778\pi\)
\(12\) 0 0
\(13\) 3.66955 + 2.11862i 0.282273 + 0.162970i 0.634452 0.772962i \(-0.281226\pi\)
−0.352179 + 0.935933i \(0.614559\pi\)
\(14\) 13.8649 + 8.00492i 0.990352 + 0.571780i
\(15\) 0 0
\(16\) 9.72596 + 16.8458i 0.607872 + 1.05287i
\(17\) −17.3066 −1.01804 −0.509019 0.860756i \(-0.669992\pi\)
−0.509019 + 0.860756i \(0.669992\pi\)
\(18\) 0 0
\(19\) −3.96601 −0.208737 −0.104369 0.994539i \(-0.533282\pi\)
−0.104369 + 0.994539i \(0.533282\pi\)
\(20\) 0.834115 + 6.24287i 0.0417057 + 0.312144i
\(21\) 0 0
\(22\) −36.2504 20.9292i −1.64775 0.951327i
\(23\) 0.287675 0.498269i 0.0125076 0.0216639i −0.859704 0.510793i \(-0.829352\pi\)
0.872211 + 0.489129i \(0.162685\pi\)
\(24\) 0 0
\(25\) 6.37749 24.1729i 0.255100 0.966915i
\(26\) 9.71765i 0.373756i
\(27\) 0 0
\(28\) 8.79356i 0.314056i
\(29\) 18.1762 10.4940i 0.626766 0.361863i −0.152733 0.988268i \(-0.548807\pi\)
0.779498 + 0.626404i \(0.215474\pi\)
\(30\) 0 0
\(31\) −16.7326 + 28.9818i −0.539763 + 0.934897i 0.459154 + 0.888357i \(0.348153\pi\)
−0.998916 + 0.0465398i \(0.985181\pi\)
\(32\) −9.73615 + 16.8635i −0.304255 + 0.526985i
\(33\) 0 0
\(34\) −19.8455 34.3734i −0.583691 1.01098i
\(35\) 13.2952 32.2729i 0.379863 0.922084i
\(36\) 0 0
\(37\) 21.4222i 0.578978i 0.957181 + 0.289489i \(0.0934854\pi\)
−0.957181 + 0.289489i \(0.906515\pi\)
\(38\) −4.54782 7.87705i −0.119679 0.207291i
\(39\) 0 0
\(40\) 24.8929 19.1772i 0.622323 0.479431i
\(41\) −44.1003 25.4613i −1.07562 0.621008i −0.145907 0.989298i \(-0.546610\pi\)
−0.929711 + 0.368290i \(0.879943\pi\)
\(42\) 0 0
\(43\) 7.15514 4.13102i 0.166399 0.0960703i −0.414488 0.910055i \(-0.636039\pi\)
0.580887 + 0.813984i \(0.302706\pi\)
\(44\) 22.9911i 0.522525i
\(45\) 0 0
\(46\) 1.31951 0.0286850
\(47\) −7.57789 13.1253i −0.161232 0.279262i 0.774079 0.633089i \(-0.218213\pi\)
−0.935311 + 0.353828i \(0.884880\pi\)
\(48\) 0 0
\(49\) −0.133907 + 0.231934i −0.00273280 + 0.00473335i
\(50\) 55.3238 15.0524i 1.10648 0.301048i
\(51\) 0 0
\(52\) −4.62242 + 2.66876i −0.0888927 + 0.0513222i
\(53\) 24.5806 0.463784 0.231892 0.972741i \(-0.425508\pi\)
0.231892 + 0.972741i \(0.425508\pi\)
\(54\) 0 0
\(55\) −34.7608 + 84.3789i −0.632014 + 1.53416i
\(56\) 37.9945 21.9361i 0.678473 0.391717i
\(57\) 0 0
\(58\) 41.6853 + 24.0670i 0.718711 + 0.414948i
\(59\) −43.1589 24.9178i −0.731506 0.422335i 0.0874668 0.996167i \(-0.472123\pi\)
−0.818973 + 0.573832i \(0.805456\pi\)
\(60\) 0 0
\(61\) −31.4674 54.5031i −0.515858 0.893493i −0.999831 0.0184097i \(-0.994140\pi\)
0.483972 0.875083i \(-0.339194\pi\)
\(62\) −76.7492 −1.23789
\(63\) 0 0
\(64\) 33.1499 0.517968
\(65\) 20.9995 2.80576i 0.323070 0.0431656i
\(66\) 0 0
\(67\) −103.545 59.7818i −1.54545 0.892266i −0.998480 0.0551129i \(-0.982448\pi\)
−0.546969 0.837153i \(-0.684219\pi\)
\(68\) 10.9003 18.8799i 0.160299 0.277646i
\(69\) 0 0
\(70\) 79.3442 10.6012i 1.13349 0.151446i
\(71\) 66.8256i 0.941205i 0.882345 + 0.470603i \(0.155963\pi\)
−0.882345 + 0.470603i \(0.844037\pi\)
\(72\) 0 0
\(73\) 48.9419i 0.670437i −0.942140 0.335218i \(-0.891190\pi\)
0.942140 0.335218i \(-0.108810\pi\)
\(74\) −42.5475 + 24.5648i −0.574966 + 0.331957i
\(75\) 0 0
\(76\) 2.49793 4.32654i 0.0328675 0.0569282i
\(77\) −63.7061 + 110.342i −0.827352 + 1.43302i
\(78\) 0 0
\(79\) 58.9661 + 102.132i 0.746407 + 1.29281i 0.949535 + 0.313662i \(0.101556\pi\)
−0.203128 + 0.979152i \(0.565111\pi\)
\(80\) 89.9276 + 37.0466i 1.12409 + 0.463083i
\(81\) 0 0
\(82\) 116.786i 1.42422i
\(83\) 3.66063 + 6.34040i 0.0441040 + 0.0763904i 0.887235 0.461318i \(-0.152623\pi\)
−0.843131 + 0.537709i \(0.819290\pi\)
\(84\) 0 0
\(85\) −68.5499 + 52.8101i −0.806469 + 0.621295i
\(86\) 16.4096 + 9.47408i 0.190809 + 0.110164i
\(87\) 0 0
\(88\) −99.3381 + 57.3529i −1.12884 + 0.651737i
\(89\) 100.624i 1.13060i 0.824884 + 0.565302i \(0.191241\pi\)
−0.824884 + 0.565302i \(0.808759\pi\)
\(90\) 0 0
\(91\) 29.5794 0.325049
\(92\) 0.362376 + 0.627654i 0.00393887 + 0.00682233i
\(93\) 0 0
\(94\) 17.3791 30.1015i 0.184884 0.320229i
\(95\) −15.7090 + 12.1020i −0.165358 + 0.127390i
\(96\) 0 0
\(97\) 3.59238 2.07406i 0.0370349 0.0213821i −0.481368 0.876518i \(-0.659860\pi\)
0.518403 + 0.855136i \(0.326527\pi\)
\(98\) −0.614205 −0.00626740
\(99\) 0 0
\(100\) 22.3536 + 22.1822i 0.223536 + 0.221822i
\(101\) 140.266 80.9826i 1.38877 0.801808i 0.395595 0.918425i \(-0.370538\pi\)
0.993177 + 0.116617i \(0.0372050\pi\)
\(102\) 0 0
\(103\) 142.152 + 82.0717i 1.38012 + 0.796813i 0.992173 0.124869i \(-0.0398509\pi\)
0.387947 + 0.921682i \(0.373184\pi\)
\(104\) 23.0619 + 13.3148i 0.221749 + 0.128027i
\(105\) 0 0
\(106\) 28.1865 + 48.8205i 0.265910 + 0.460570i
\(107\) 48.4086 0.452416 0.226208 0.974079i \(-0.427367\pi\)
0.226208 + 0.974079i \(0.427367\pi\)
\(108\) 0 0
\(109\) 23.7458 0.217851 0.108925 0.994050i \(-0.465259\pi\)
0.108925 + 0.994050i \(0.465259\pi\)
\(110\) −207.448 + 27.7173i −1.88589 + 0.251976i
\(111\) 0 0
\(112\) 117.598 + 67.8954i 1.04998 + 0.606209i
\(113\) 56.3972 97.6828i 0.499090 0.864449i −0.500909 0.865500i \(-0.667001\pi\)
0.999999 + 0.00105049i \(0.000334381\pi\)
\(114\) 0 0
\(115\) −0.380980 2.85142i −0.00331287 0.0247949i
\(116\) 26.4381i 0.227914i
\(117\) 0 0
\(118\) 114.293i 0.968582i
\(119\) −104.629 + 60.4074i −0.879233 + 0.507626i
\(120\) 0 0
\(121\) 106.062 183.705i 0.876546 1.51822i
\(122\) 72.1672 124.997i 0.591534 1.02457i
\(123\) 0 0
\(124\) −21.0776 36.5075i −0.169981 0.294415i
\(125\) −48.5013 115.207i −0.388011 0.921655i
\(126\) 0 0
\(127\) 97.5047i 0.767754i 0.923384 + 0.383877i \(0.125411\pi\)
−0.923384 + 0.383877i \(0.874589\pi\)
\(128\) 76.9576 + 133.294i 0.601231 + 1.04136i
\(129\) 0 0
\(130\) 29.6528 + 38.4907i 0.228098 + 0.296082i
\(131\) −17.7898 10.2709i −0.135800 0.0784041i 0.430561 0.902562i \(-0.358316\pi\)
−0.566361 + 0.824157i \(0.691649\pi\)
\(132\) 0 0
\(133\) −23.9769 + 13.8430i −0.180277 + 0.104083i
\(134\) 274.207i 2.04632i
\(135\) 0 0
\(136\) −108.766 −0.799753
\(137\) −9.83571 17.0360i −0.0717935 0.124350i 0.827894 0.560885i \(-0.189539\pi\)
−0.899687 + 0.436535i \(0.856206\pi\)
\(138\) 0 0
\(139\) −54.0215 + 93.5679i −0.388644 + 0.673150i −0.992267 0.124119i \(-0.960390\pi\)
0.603624 + 0.797269i \(0.293723\pi\)
\(140\) 26.8330 + 34.8304i 0.191664 + 0.248789i
\(141\) 0 0
\(142\) −132.725 + 76.6288i −0.934683 + 0.539639i
\(143\) −77.3366 −0.540816
\(144\) 0 0
\(145\) 39.9723 97.0294i 0.275671 0.669168i
\(146\) 97.2054 56.1216i 0.665791 0.384394i
\(147\) 0 0
\(148\) −23.3696 13.4925i −0.157903 0.0911652i
\(149\) 196.553 + 113.480i 1.31915 + 0.761612i 0.983592 0.180408i \(-0.0577417\pi\)
0.335558 + 0.942019i \(0.391075\pi\)
\(150\) 0 0
\(151\) −27.9141 48.3486i −0.184862 0.320190i 0.758668 0.651477i \(-0.225850\pi\)
−0.943530 + 0.331288i \(0.892517\pi\)
\(152\) −24.9250 −0.163980
\(153\) 0 0
\(154\) −292.207 −1.89745
\(155\) 22.1597 + 165.853i 0.142966 + 1.07002i
\(156\) 0 0
\(157\) −59.2359 34.1999i −0.377299 0.217833i 0.299344 0.954145i \(-0.403232\pi\)
−0.676642 + 0.736312i \(0.736566\pi\)
\(158\) −135.233 + 234.230i −0.855904 + 1.48247i
\(159\) 0 0
\(160\) 12.8940 + 96.5039i 0.0805872 + 0.603150i
\(161\) 4.01644i 0.0249468i
\(162\) 0 0
\(163\) 80.5043i 0.493892i −0.969029 0.246946i \(-0.920573\pi\)
0.969029 0.246946i \(-0.0794269\pi\)
\(164\) 55.5519 32.0729i 0.338731 0.195566i
\(165\) 0 0
\(166\) −8.39529 + 14.5411i −0.0505740 + 0.0875968i
\(167\) 37.4114 64.7985i 0.224020 0.388015i −0.732005 0.681300i \(-0.761415\pi\)
0.956025 + 0.293285i \(0.0947484\pi\)
\(168\) 0 0
\(169\) −75.5229 130.810i −0.446881 0.774021i
\(170\) −183.494 75.5924i −1.07938 0.444661i
\(171\) 0 0
\(172\) 10.4075i 0.0605085i
\(173\) −159.212 275.763i −0.920301 1.59401i −0.798950 0.601398i \(-0.794611\pi\)
−0.121351 0.992610i \(-0.538723\pi\)
\(174\) 0 0
\(175\) −45.8178 168.399i −0.261816 0.962282i
\(176\) −307.465 177.515i −1.74696 1.00861i
\(177\) 0 0
\(178\) −199.853 + 115.385i −1.12277 + 0.648232i
\(179\) 3.14738i 0.0175831i −0.999961 0.00879155i \(-0.997202\pi\)
0.999961 0.00879155i \(-0.00279847\pi\)
\(180\) 0 0
\(181\) −0.833264 −0.00460367 −0.00230183 0.999997i \(-0.500733\pi\)
−0.00230183 + 0.999997i \(0.500733\pi\)
\(182\) 33.9187 + 58.7489i 0.186367 + 0.322796i
\(183\) 0 0
\(184\) 1.80794 3.13145i 0.00982578 0.0170188i
\(185\) 65.3684 + 84.8512i 0.353343 + 0.458655i
\(186\) 0 0
\(187\) 273.556 157.938i 1.46287 0.844586i
\(188\) 19.0913 0.101549
\(189\) 0 0
\(190\) −42.0498 17.3229i −0.221315 0.0911729i
\(191\) −49.8127 + 28.7594i −0.260799 + 0.150573i −0.624699 0.780866i \(-0.714778\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(192\) 0 0
\(193\) −31.4897 18.1806i −0.163159 0.0941999i 0.416197 0.909274i \(-0.363363\pi\)
−0.579356 + 0.815075i \(0.696696\pi\)
\(194\) 8.23876 + 4.75665i 0.0424678 + 0.0245188i
\(195\) 0 0
\(196\) −0.168679 0.292161i −0.000860607 0.00149062i
\(197\) 151.285 0.767943 0.383972 0.923345i \(-0.374556\pi\)
0.383972 + 0.923345i \(0.374556\pi\)
\(198\) 0 0
\(199\) 268.742 1.35046 0.675232 0.737605i \(-0.264043\pi\)
0.675232 + 0.737605i \(0.264043\pi\)
\(200\) 40.0804 151.918i 0.200402 0.759592i
\(201\) 0 0
\(202\) 321.686 + 185.725i 1.59250 + 0.919432i
\(203\) 73.2573 126.885i 0.360873 0.625051i
\(204\) 0 0
\(205\) −252.371 + 33.7194i −1.23108 + 0.164485i
\(206\) 376.446i 1.82741i
\(207\) 0 0
\(208\) 82.4222i 0.396261i
\(209\) 62.6884 36.1932i 0.299945 0.173173i
\(210\) 0 0
\(211\) −178.833 + 309.747i −0.847548 + 1.46800i 0.0358410 + 0.999358i \(0.488589\pi\)
−0.883389 + 0.468640i \(0.844744\pi\)
\(212\) −15.4817 + 26.8151i −0.0730269 + 0.126486i
\(213\) 0 0
\(214\) 55.5100 + 96.1462i 0.259393 + 0.449281i
\(215\) 15.7353 38.1960i 0.0731873 0.177656i
\(216\) 0 0
\(217\) 233.616i 1.07657i
\(218\) 27.2292 + 47.1624i 0.124905 + 0.216341i
\(219\) 0 0
\(220\) −70.1559 91.0655i −0.318890 0.413934i
\(221\) −63.5075 36.6661i −0.287364 0.165910i
\(222\) 0 0
\(223\) 309.408 178.637i 1.38748 0.801062i 0.394449 0.918918i \(-0.370936\pi\)
0.993031 + 0.117856i \(0.0376023\pi\)
\(224\) 135.933i 0.606844i
\(225\) 0 0
\(226\) 258.682 1.14461
\(227\) 64.4002 + 111.544i 0.283701 + 0.491385i 0.972293 0.233764i \(-0.0751042\pi\)
−0.688592 + 0.725149i \(0.741771\pi\)
\(228\) 0 0
\(229\) 126.552 219.195i 0.552631 0.957184i −0.445453 0.895305i \(-0.646957\pi\)
0.998084 0.0618791i \(-0.0197093\pi\)
\(230\) 5.22644 4.02639i 0.0227237 0.0175061i
\(231\) 0 0
\(232\) 114.231 65.9515i 0.492377 0.284274i
\(233\) 96.3566 0.413548 0.206774 0.978389i \(-0.433704\pi\)
0.206774 + 0.978389i \(0.433704\pi\)
\(234\) 0 0
\(235\) −70.0663 28.8646i −0.298154 0.122828i
\(236\) 54.3659 31.3882i 0.230364 0.133001i
\(237\) 0 0
\(238\) −239.955 138.538i −1.00822 0.582094i
\(239\) −94.7361 54.6959i −0.396385 0.228853i 0.288538 0.957469i \(-0.406831\pi\)
−0.684923 + 0.728615i \(0.740164\pi\)
\(240\) 0 0
\(241\) 156.812 + 271.606i 0.650672 + 1.12700i 0.982960 + 0.183819i \(0.0588460\pi\)
−0.332288 + 0.943178i \(0.607821\pi\)
\(242\) 486.485 2.01027
\(243\) 0 0
\(244\) 79.2770 0.324906
\(245\) 0.177338 + 1.32728i 0.000723830 + 0.00541746i
\(246\) 0 0
\(247\) −14.5535 8.40245i −0.0589209 0.0340180i
\(248\) −105.159 + 182.141i −0.424029 + 0.734439i
\(249\) 0 0
\(250\) 173.201 228.438i 0.692802 0.913752i
\(251\) 192.888i 0.768478i 0.923234 + 0.384239i \(0.125536\pi\)
−0.923234 + 0.384239i \(0.874464\pi\)
\(252\) 0 0
\(253\) 10.5011i 0.0415064i
\(254\) −193.658 + 111.809i −0.762433 + 0.440191i
\(255\) 0 0
\(256\) −110.194 + 190.862i −0.430447 + 0.745556i
\(257\) 186.757 323.472i 0.726680 1.25865i −0.231599 0.972811i \(-0.574396\pi\)
0.958279 0.285835i \(-0.0922710\pi\)
\(258\) 0 0
\(259\) 74.7725 + 129.510i 0.288697 + 0.500038i
\(260\) −10.1654 + 24.6757i −0.0390978 + 0.0949066i
\(261\) 0 0
\(262\) 47.1107i 0.179812i
\(263\) 100.790 + 174.573i 0.383230 + 0.663774i 0.991522 0.129939i \(-0.0414783\pi\)
−0.608292 + 0.793713i \(0.708145\pi\)
\(264\) 0 0
\(265\) 97.3612 75.0060i 0.367401 0.283042i
\(266\) −54.9885 31.7476i −0.206724 0.119352i
\(267\) 0 0
\(268\) 130.433 75.3054i 0.486689 0.280990i
\(269\) 7.31695i 0.0272006i −0.999908 0.0136003i \(-0.995671\pi\)
0.999908 0.0136003i \(-0.00432924\pi\)
\(270\) 0 0
\(271\) −93.8451 −0.346292 −0.173146 0.984896i \(-0.555393\pi\)
−0.173146 + 0.984896i \(0.555393\pi\)
\(272\) −168.324 291.545i −0.618837 1.07186i
\(273\) 0 0
\(274\) 22.5572 39.0702i 0.0823255 0.142592i
\(275\) 119.793 + 440.287i 0.435609 + 1.60104i
\(276\) 0 0
\(277\) −231.116 + 133.435i −0.834353 + 0.481714i −0.855341 0.518066i \(-0.826652\pi\)
0.0209878 + 0.999780i \(0.493319\pi\)
\(278\) −247.785 −0.891314
\(279\) 0 0
\(280\) 83.5558 202.825i 0.298414 0.724374i
\(281\) −5.46813 + 3.15703i −0.0194595 + 0.0112350i −0.509698 0.860353i \(-0.670243\pi\)
0.490239 + 0.871588i \(0.336910\pi\)
\(282\) 0 0
\(283\) −300.060 173.240i −1.06028 0.612155i −0.134773 0.990877i \(-0.543030\pi\)
−0.925511 + 0.378722i \(0.876364\pi\)
\(284\) −72.9004 42.0891i −0.256692 0.148201i
\(285\) 0 0
\(286\) −88.6818 153.601i −0.310076 0.537068i
\(287\) −355.483 −1.23862
\(288\) 0 0
\(289\) 10.5195 0.0363996
\(290\) 238.550 31.8728i 0.822587 0.109906i
\(291\) 0 0
\(292\) 53.3910 + 30.8253i 0.182846 + 0.105566i
\(293\) −53.3460 + 92.3980i −0.182068 + 0.315352i −0.942585 0.333967i \(-0.891613\pi\)
0.760516 + 0.649319i \(0.224946\pi\)
\(294\) 0 0
\(295\) −246.983 + 32.9996i −0.837231 + 0.111863i
\(296\) 134.631i 0.454835i
\(297\) 0 0
\(298\) 520.510i 1.74668i
\(299\) 2.11128 1.21895i 0.00706113 0.00407675i
\(300\) 0 0
\(301\) 28.8380 49.9489i 0.0958074 0.165943i
\(302\) 64.0181 110.883i 0.211980 0.367161i
\(303\) 0 0
\(304\) −38.5732 66.8108i −0.126886 0.219772i
\(305\) −290.952 119.861i −0.953940 0.392986i
\(306\) 0 0
\(307\) 161.083i 0.524702i 0.964973 + 0.262351i \(0.0844978\pi\)
−0.964973 + 0.262351i \(0.915502\pi\)
\(308\) −80.2487 138.995i −0.260548 0.451282i
\(309\) 0 0
\(310\) −303.996 + 234.195i −0.980633 + 0.755469i
\(311\) −15.0468 8.68727i −0.0483820 0.0279333i 0.475614 0.879654i \(-0.342226\pi\)
−0.523996 + 0.851721i \(0.675559\pi\)
\(312\) 0 0
\(313\) 301.788 174.238i 0.964180 0.556670i 0.0667232 0.997772i \(-0.478746\pi\)
0.897457 + 0.441102i \(0.145412\pi\)
\(314\) 156.868i 0.499579i
\(315\) 0 0
\(316\) −148.556 −0.470113
\(317\) 148.425 + 257.080i 0.468218 + 0.810978i 0.999340 0.0363175i \(-0.0115628\pi\)
−0.531122 + 0.847295i \(0.678229\pi\)
\(318\) 0 0
\(319\) −191.534 + 331.747i −0.600420 + 1.03996i
\(320\) 131.304 101.155i 0.410324 0.316109i
\(321\) 0 0
\(322\) 7.97720 4.60564i 0.0247739 0.0143032i
\(323\) 68.6383 0.212502
\(324\) 0 0
\(325\) 74.6155 75.1921i 0.229586 0.231360i
\(326\) 159.893 92.3142i 0.490469 0.283172i
\(327\) 0 0
\(328\) −277.156 160.016i −0.844987 0.487853i
\(329\) −91.6256 52.9001i −0.278497 0.160791i
\(330\) 0 0
\(331\) −101.347 175.538i −0.306184 0.530326i 0.671341 0.741149i \(-0.265719\pi\)
−0.977524 + 0.210823i \(0.932385\pi\)
\(332\) −9.22238 −0.0277783
\(333\) 0 0
\(334\) 171.598 0.513768
\(335\) −592.552 + 79.1713i −1.76881 + 0.236332i
\(336\) 0 0
\(337\) 28.3716 + 16.3804i 0.0841888 + 0.0486064i 0.541503 0.840699i \(-0.317855\pi\)
−0.457315 + 0.889305i \(0.651189\pi\)
\(338\) 173.204 299.998i 0.512438 0.887569i
\(339\) 0 0
\(340\) −14.4357 108.043i −0.0424580 0.317774i
\(341\) 610.798i 1.79120i
\(342\) 0 0
\(343\) 343.931i 1.00271i
\(344\) 44.9677 25.9621i 0.130720 0.0754712i
\(345\) 0 0
\(346\) 365.136 632.435i 1.05531 1.82785i
\(347\) −334.696 + 579.710i −0.964540 + 1.67063i −0.253696 + 0.967284i \(0.581646\pi\)
−0.710845 + 0.703349i \(0.751687\pi\)
\(348\) 0 0
\(349\) −274.137 474.819i −0.785492 1.36051i −0.928705 0.370821i \(-0.879076\pi\)
0.143212 0.989692i \(-0.454257\pi\)
\(350\) 281.925 284.104i 0.805501 0.811726i
\(351\) 0 0
\(352\) 355.402i 1.00967i
\(353\) −10.0056 17.3302i −0.0283444 0.0490939i 0.851505 0.524346i \(-0.175690\pi\)
−0.879850 + 0.475252i \(0.842357\pi\)
\(354\) 0 0
\(355\) 203.914 + 264.690i 0.574405 + 0.745604i
\(356\) −109.771 63.3764i −0.308346 0.178024i
\(357\) 0 0
\(358\) 6.25113 3.60909i 0.0174613 0.0100813i
\(359\) 224.934i 0.626556i −0.949661 0.313278i \(-0.898573\pi\)
0.949661 0.313278i \(-0.101427\pi\)
\(360\) 0 0
\(361\) −345.271 −0.956429
\(362\) −0.955502 1.65498i −0.00263951 0.00457176i
\(363\) 0 0
\(364\) −18.6302 + 32.2684i −0.0511818 + 0.0886495i
\(365\) −149.343 193.854i −0.409159 0.531107i
\(366\) 0 0
\(367\) 43.7972 25.2863i 0.119338 0.0689000i −0.439143 0.898417i \(-0.644718\pi\)
0.558481 + 0.829517i \(0.311384\pi\)
\(368\) 11.1917 0.0304122
\(369\) 0 0
\(370\) −93.5685 + 227.130i −0.252888 + 0.613864i
\(371\) 148.604 85.7966i 0.400550 0.231258i
\(372\) 0 0
\(373\) 244.861 + 141.371i 0.656464 + 0.379010i 0.790928 0.611909i \(-0.209598\pi\)
−0.134464 + 0.990918i \(0.542931\pi\)
\(374\) 627.373 + 362.214i 1.67747 + 0.968486i
\(375\) 0 0
\(376\) −47.6245 82.4881i −0.126661 0.219383i
\(377\) 88.9313 0.235892
\(378\) 0 0
\(379\) −435.602 −1.14935 −0.574673 0.818383i \(-0.694871\pi\)
−0.574673 + 0.818383i \(0.694871\pi\)
\(380\) −3.30811 24.7593i −0.00870554 0.0651560i
\(381\) 0 0
\(382\) −114.240 65.9566i −0.299058 0.172661i
\(383\) 156.225 270.589i 0.407897 0.706499i −0.586757 0.809763i \(-0.699595\pi\)
0.994654 + 0.103265i \(0.0329288\pi\)
\(384\) 0 0
\(385\) 84.3684 + 631.450i 0.219139 + 1.64013i
\(386\) 83.3905i 0.216038i
\(387\) 0 0
\(388\) 5.22527i 0.0134672i
\(389\) 217.725 125.703i 0.559704 0.323145i −0.193323 0.981135i \(-0.561926\pi\)
0.753027 + 0.657990i \(0.228593\pi\)
\(390\) 0 0
\(391\) −4.97869 + 8.62335i −0.0127332 + 0.0220546i
\(392\) −0.841562 + 1.45763i −0.00214684 + 0.00371844i
\(393\) 0 0
\(394\) 173.478 + 300.473i 0.440300 + 0.762622i
\(395\) 545.209 + 224.605i 1.38028 + 0.568620i
\(396\) 0 0
\(397\) 237.163i 0.597388i −0.954349 0.298694i \(-0.903449\pi\)
0.954349 0.298694i \(-0.0965510\pi\)
\(398\) 308.167 + 533.760i 0.774288 + 1.34111i
\(399\) 0 0
\(400\) 469.240 127.670i 1.17310 0.319175i
\(401\) 464.967 + 268.449i 1.15952 + 0.669448i 0.951188 0.308611i \(-0.0998640\pi\)
0.208330 + 0.978059i \(0.433197\pi\)
\(402\) 0 0
\(403\) −122.803 + 70.9001i −0.304721 + 0.175931i
\(404\) 204.023i 0.505007i
\(405\) 0 0
\(406\) 336.016 0.827626
\(407\) −195.496 338.608i −0.480333 0.831962i
\(408\) 0 0
\(409\) 20.7517 35.9430i 0.0507376 0.0878801i −0.839541 0.543296i \(-0.817176\pi\)
0.890279 + 0.455416i \(0.150509\pi\)
\(410\) −356.364 462.577i −0.869182 1.12824i
\(411\) 0 0
\(412\) −179.065 + 103.383i −0.434624 + 0.250930i
\(413\) −347.894 −0.842359
\(414\) 0 0
\(415\) 33.8467 + 13.9435i 0.0815584 + 0.0335989i
\(416\) −71.4546 + 41.2543i −0.171766 + 0.0991690i
\(417\) 0 0
\(418\) 143.769 + 83.0053i 0.343946 + 0.198577i
\(419\) −636.413 367.433i −1.51889 0.876929i −0.999753 0.0222364i \(-0.992921\pi\)
−0.519134 0.854693i \(-0.673745\pi\)
\(420\) 0 0
\(421\) 7.65881 + 13.2655i 0.0181920 + 0.0315094i 0.874978 0.484163i \(-0.160876\pi\)
−0.856786 + 0.515672i \(0.827542\pi\)
\(422\) −820.269 −1.94377
\(423\) 0 0
\(424\) 154.481 0.364341
\(425\) −110.373 + 418.351i −0.259701 + 0.984355i
\(426\) 0 0
\(427\) −380.478 219.669i −0.891048 0.514447i
\(428\) −30.4894 + 52.8092i −0.0712369 + 0.123386i
\(429\) 0 0
\(430\) 93.9063 12.5469i 0.218387 0.0291788i
\(431\) 98.8622i 0.229379i −0.993401 0.114689i \(-0.963413\pi\)
0.993401 0.114689i \(-0.0365872\pi\)
\(432\) 0 0
\(433\) 573.821i 1.32522i −0.748964 0.662610i \(-0.769449\pi\)
0.748964 0.662610i \(-0.230551\pi\)
\(434\) −463.994 + 267.887i −1.06911 + 0.617252i
\(435\) 0 0
\(436\) −14.9559 + 25.9044i −0.0343025 + 0.0594137i
\(437\) −1.14092 + 1.97614i −0.00261081 + 0.00452205i
\(438\) 0 0
\(439\) 119.927 + 207.719i 0.273182 + 0.473165i 0.969675 0.244399i \(-0.0785906\pi\)
−0.696493 + 0.717564i \(0.745257\pi\)
\(440\) −218.460 + 530.293i −0.496500 + 1.20521i
\(441\) 0 0
\(442\) 168.180i 0.380497i
\(443\) −183.257 317.411i −0.413673 0.716503i 0.581615 0.813464i \(-0.302421\pi\)
−0.995288 + 0.0969610i \(0.969088\pi\)
\(444\) 0 0
\(445\) 307.047 + 398.561i 0.689993 + 0.895643i
\(446\) 709.595 + 409.685i 1.59102 + 0.918576i
\(447\) 0 0
\(448\) 200.411 115.707i 0.447346 0.258275i
\(449\) 623.682i 1.38905i 0.719470 + 0.694523i \(0.244385\pi\)
−0.719470 + 0.694523i \(0.755615\pi\)
\(450\) 0 0
\(451\) 929.424 2.06081
\(452\) 71.0418 + 123.048i 0.157172 + 0.272230i
\(453\) 0 0
\(454\) −147.695 + 255.816i −0.325320 + 0.563471i
\(455\) 117.161 90.2598i 0.257497 0.198373i
\(456\) 0 0
\(457\) −336.409 + 194.226i −0.736126 + 0.425002i −0.820659 0.571418i \(-0.806393\pi\)
0.0845333 + 0.996421i \(0.473060\pi\)
\(458\) 580.470 1.26740
\(459\) 0 0
\(460\) 3.35058 + 1.38031i 0.00728387 + 0.00300067i
\(461\) −328.964 + 189.927i −0.713588 + 0.411990i −0.812388 0.583117i \(-0.801833\pi\)
0.0988003 + 0.995107i \(0.468499\pi\)
\(462\) 0 0
\(463\) 331.040 + 191.126i 0.714990 + 0.412800i 0.812906 0.582395i \(-0.197884\pi\)
−0.0979160 + 0.995195i \(0.531218\pi\)
\(464\) 353.562 + 204.129i 0.761987 + 0.439933i
\(465\) 0 0
\(466\) 110.492 + 191.378i 0.237107 + 0.410682i
\(467\) 35.3515 0.0756992 0.0378496 0.999283i \(-0.487949\pi\)
0.0378496 + 0.999283i \(0.487949\pi\)
\(468\) 0 0
\(469\) −834.655 −1.77965
\(470\) −23.0158 172.260i −0.0489698 0.366511i
\(471\) 0 0
\(472\) −271.239 156.600i −0.574659 0.331779i
\(473\) −75.3982 + 130.593i −0.159404 + 0.276096i
\(474\) 0 0
\(475\) −25.2932 + 95.8698i −0.0532488 + 0.201831i
\(476\) 152.187i 0.319720i
\(477\) 0 0
\(478\) 250.879i 0.524851i
\(479\) 501.226 289.383i 1.04640 0.604139i 0.124761 0.992187i \(-0.460184\pi\)
0.921639 + 0.388047i \(0.126850\pi\)
\(480\) 0 0
\(481\) −45.3854 + 78.6098i −0.0943563 + 0.163430i
\(482\) −359.632 + 622.901i −0.746124 + 1.29233i
\(483\) 0 0
\(484\) 133.603 + 231.408i 0.276040 + 0.478115i
\(485\) 7.90020 19.1771i 0.0162891 0.0395404i
\(486\) 0 0
\(487\) 424.778i 0.872235i −0.899890 0.436117i \(-0.856353\pi\)
0.899890 0.436117i \(-0.143647\pi\)
\(488\) −197.762 342.534i −0.405250 0.701913i
\(489\) 0 0
\(490\) −2.43281 + 1.87421i −0.00496491 + 0.00382491i
\(491\) −337.754 195.002i −0.687890 0.397154i 0.114931 0.993373i \(-0.463335\pi\)
−0.802821 + 0.596220i \(0.796669\pi\)
\(492\) 0 0
\(493\) −314.569 + 181.616i −0.638071 + 0.368390i
\(494\) 38.5403i 0.0780168i
\(495\) 0 0
\(496\) −650.964 −1.31243
\(497\) 233.249 + 404.000i 0.469315 + 0.812877i
\(498\) 0 0
\(499\) 308.776 534.816i 0.618790 1.07178i −0.370916 0.928666i \(-0.620956\pi\)
0.989707 0.143110i \(-0.0457103\pi\)
\(500\) 156.228 + 19.6509i 0.312455 + 0.0393019i
\(501\) 0 0
\(502\) −383.102 + 221.184i −0.763152 + 0.440606i
\(503\) 551.752 1.09692 0.548461 0.836176i \(-0.315214\pi\)
0.548461 + 0.836176i \(0.315214\pi\)
\(504\) 0 0
\(505\) 308.467 748.777i 0.610825 1.48273i
\(506\) −20.8567 + 12.0416i −0.0412188 + 0.0237977i
\(507\) 0 0
\(508\) −106.369 61.4119i −0.209387 0.120890i
\(509\) −383.782 221.577i −0.753992 0.435317i 0.0731427 0.997321i \(-0.476697\pi\)
−0.827134 + 0.562004i \(0.810030\pi\)
\(510\) 0 0
\(511\) −170.828 295.882i −0.334301 0.579026i
\(512\) 110.221 0.215276
\(513\) 0 0
\(514\) 856.615 1.66657
\(515\) 813.488 108.691i 1.57959 0.211050i
\(516\) 0 0
\(517\) 239.559 + 138.309i 0.463363 + 0.267523i
\(518\) −171.483 + 297.017i −0.331048 + 0.573393i
\(519\) 0 0
\(520\) 131.975 17.6333i 0.253798 0.0339101i
\(521\) 716.733i 1.37569i 0.725859 + 0.687843i \(0.241442\pi\)
−0.725859 + 0.687843i \(0.758558\pi\)
\(522\) 0 0
\(523\) 417.591i 0.798453i 0.916852 + 0.399227i \(0.130721\pi\)
−0.916852 + 0.399227i \(0.869279\pi\)
\(524\) 22.4093 12.9380i 0.0427658 0.0246908i
\(525\) 0 0
\(526\) −231.150 + 400.364i −0.439449 + 0.761149i
\(527\) 289.586 501.577i 0.549499 0.951760i
\(528\) 0 0
\(529\) 264.334 + 457.841i 0.499687 + 0.865483i
\(530\) 260.616 + 107.364i 0.491729 + 0.202573i
\(531\) 0 0
\(532\) 34.8753i 0.0655552i
\(533\) −107.886 186.863i −0.202412 0.350588i
\(534\) 0 0
\(535\) 191.742 147.716i 0.358395 0.276104i
\(536\) −650.746 375.709i −1.21408 0.700949i
\(537\) 0 0
\(538\) 14.5325 8.39034i 0.0270121 0.0155954i
\(539\) 4.88807i 0.00906877i
\(540\) 0 0
\(541\) −365.297 −0.675225 −0.337612 0.941285i \(-0.609619\pi\)
−0.337612 + 0.941285i \(0.609619\pi\)
\(542\) −107.612 186.389i −0.198546 0.343892i
\(543\) 0 0
\(544\) 168.500 291.851i 0.309743 0.536490i
\(545\) 94.0546 72.4586i 0.172577 0.132952i
\(546\) 0 0
\(547\) 529.651 305.794i 0.968283 0.559039i 0.0695708 0.997577i \(-0.477837\pi\)
0.898712 + 0.438538i \(0.144504\pi\)
\(548\) 24.7795 0.0452181
\(549\) 0 0
\(550\) −737.105 + 742.801i −1.34019 + 1.35055i
\(551\) −72.0870 + 41.6195i −0.130829 + 0.0755344i
\(552\) 0 0
\(553\) 712.970 + 411.633i 1.28928 + 0.744364i
\(554\) −530.040 306.019i −0.956751 0.552381i
\(555\) 0 0
\(556\) −68.0492 117.865i −0.122391 0.211987i
\(557\) −510.888 −0.917214 −0.458607 0.888639i \(-0.651651\pi\)
−0.458607 + 0.888639i \(0.651651\pi\)
\(558\) 0 0
\(559\) 35.0082 0.0626265
\(560\) 672.974 89.9164i 1.20174 0.160565i
\(561\) 0 0
\(562\) −12.5406 7.24031i −0.0223142 0.0128831i
\(563\) 78.8759 136.617i 0.140099 0.242659i −0.787435 0.616398i \(-0.788591\pi\)
0.927534 + 0.373739i \(0.121924\pi\)
\(564\) 0 0
\(565\) −74.6889 559.004i −0.132193 0.989388i
\(566\) 794.615i 1.40391i
\(567\) 0 0
\(568\) 419.976i 0.739395i
\(569\) 152.312 87.9374i 0.267684 0.154547i −0.360151 0.932894i \(-0.617275\pi\)
0.627835 + 0.778347i \(0.283941\pi\)
\(570\) 0 0
\(571\) 294.258 509.670i 0.515338 0.892591i −0.484504 0.874789i \(-0.661000\pi\)
0.999842 0.0178020i \(-0.00566685\pi\)
\(572\) 48.7093 84.3670i 0.0851562 0.147495i
\(573\) 0 0
\(574\) −407.632 706.039i −0.710160 1.23003i
\(575\) −10.2099 10.1316i −0.0177564 0.0176203i
\(576\) 0 0
\(577\) 323.853i 0.561270i 0.959815 + 0.280635i \(0.0905451\pi\)
−0.959815 + 0.280635i \(0.909455\pi\)
\(578\) 12.0627 + 20.8932i 0.0208697 + 0.0361474i
\(579\) 0 0
\(580\) 80.6740 + 104.719i 0.139093 + 0.180549i
\(581\) 44.2614 + 25.5543i 0.0761814 + 0.0439833i
\(582\) 0 0
\(583\) −388.531 + 224.318i −0.666434 + 0.384766i
\(584\) 307.583i 0.526684i
\(585\) 0 0
\(586\) −244.687 −0.417555
\(587\) −515.537 892.937i −0.878258 1.52119i −0.853251 0.521500i \(-0.825373\pi\)
−0.0250065 0.999687i \(-0.507961\pi\)
\(588\) 0 0
\(589\) 66.3618 114.942i 0.112669 0.195148i
\(590\) −348.757 452.702i −0.591113 0.767292i
\(591\) 0 0
\(592\) −360.875 + 208.351i −0.609586 + 0.351945i
\(593\) 193.131 0.325685 0.162842 0.986652i \(-0.447934\pi\)
0.162842 + 0.986652i \(0.447934\pi\)
\(594\) 0 0
\(595\) −230.095 + 558.536i −0.386714 + 0.938716i
\(596\) −247.592 + 142.948i −0.415424 + 0.239845i
\(597\) 0 0
\(598\) 4.84200 + 2.79553i 0.00809699 + 0.00467480i
\(599\) 354.438 + 204.635i 0.591716 + 0.341627i 0.765776 0.643108i \(-0.222355\pi\)
−0.174060 + 0.984735i \(0.555689\pi\)
\(600\) 0 0
\(601\) 520.432 + 901.414i 0.865943 + 1.49986i 0.866108 + 0.499857i \(0.166614\pi\)
−0.000165360 1.00000i \(0.500053\pi\)
\(602\) 132.274 0.219724
\(603\) 0 0
\(604\) 70.3251 0.116432
\(605\) −140.462 1051.28i −0.232169 1.73765i
\(606\) 0 0
\(607\) −589.637 340.427i −0.971396 0.560836i −0.0717342 0.997424i \(-0.522853\pi\)
−0.899661 + 0.436588i \(0.856187\pi\)
\(608\) 38.6137 66.8808i 0.0635093 0.110001i
\(609\) 0 0
\(610\) −95.5737 715.315i −0.156678 1.17265i
\(611\) 64.2185i 0.105104i
\(612\) 0 0
\(613\) 1024.19i 1.67079i −0.549651 0.835395i \(-0.685239\pi\)
0.549651 0.835395i \(-0.314761\pi\)
\(614\) −319.934 + 184.714i −0.521066 + 0.300837i
\(615\) 0 0
\(616\) −400.371 + 693.464i −0.649954 + 1.12575i
\(617\) −555.636 + 962.389i −0.900544 + 1.55979i −0.0737542 + 0.997276i \(0.523498\pi\)
−0.826790 + 0.562511i \(0.809835\pi\)
\(618\) 0 0
\(619\) −400.940 694.448i −0.647722 1.12189i −0.983666 0.180005i \(-0.942389\pi\)
0.335944 0.941882i \(-0.390945\pi\)
\(620\) −194.887 80.2857i −0.314333 0.129493i
\(621\) 0 0
\(622\) 39.8467i 0.0640622i
\(623\) 351.220 + 608.330i 0.563755 + 0.976453i
\(624\) 0 0
\(625\) −543.655 308.325i −0.869848 0.493319i
\(626\) 692.121 + 399.596i 1.10562 + 0.638332i
\(627\) 0 0
\(628\) 74.6177 43.0805i 0.118818 0.0685996i
\(629\) 370.746i 0.589421i
\(630\) 0 0
\(631\) −564.192 −0.894124 −0.447062 0.894503i \(-0.647530\pi\)
−0.447062 + 0.894503i \(0.647530\pi\)
\(632\) 370.582 + 641.868i 0.586365 + 1.01561i
\(633\) 0 0
\(634\) −340.398 + 589.587i −0.536905 + 0.929947i
\(635\) 297.529 + 386.207i 0.468550 + 0.608200i
\(636\) 0 0
\(637\) −0.982759 + 0.567396i −0.00154279 + 0.000890731i
\(638\) −878.527 −1.37700
\(639\) 0 0
\(640\) 711.561 + 293.135i 1.11181 + 0.458024i
\(641\) −1043.99 + 602.749i −1.62869 + 0.940327i −0.644210 + 0.764848i \(0.722814\pi\)
−0.984483 + 0.175478i \(0.943853\pi\)
\(642\) 0 0
\(643\) −402.110 232.158i −0.625365 0.361055i 0.153590 0.988135i \(-0.450917\pi\)
−0.778955 + 0.627080i \(0.784250\pi\)
\(644\) 4.38156 + 2.52969i 0.00680366 + 0.00392809i
\(645\) 0 0
\(646\) 78.7074 + 136.325i 0.121838 + 0.211030i
\(647\) −372.702 −0.576046 −0.288023 0.957624i \(-0.592998\pi\)
−0.288023 + 0.957624i \(0.592998\pi\)
\(648\) 0 0
\(649\) 909.583 1.40151
\(650\) 234.904 + 61.9742i 0.361390 + 0.0953450i
\(651\) 0 0
\(652\) 87.8227 + 50.7044i 0.134697 + 0.0777676i
\(653\) −110.705 + 191.747i −0.169533 + 0.293639i −0.938256 0.345943i \(-0.887559\pi\)
0.768723 + 0.639582i \(0.220893\pi\)
\(654\) 0 0
\(655\) −101.805 + 13.6022i −0.155427 + 0.0207667i
\(656\) 990.543i 1.50997i
\(657\) 0 0
\(658\) 242.642i 0.368757i
\(659\) 541.098 312.403i 0.821090 0.474057i −0.0297021 0.999559i \(-0.509456\pi\)
0.850792 + 0.525502i \(0.176123\pi\)
\(660\) 0 0
\(661\) −167.257 + 289.698i −0.253037 + 0.438273i −0.964360 0.264592i \(-0.914763\pi\)
0.711324 + 0.702865i \(0.248096\pi\)
\(662\) 232.428 402.578i 0.351100 0.608124i
\(663\) 0 0
\(664\) 23.0059 + 39.8473i 0.0346474 + 0.0600110i
\(665\) −52.7288 + 127.995i −0.0792915 + 0.192473i
\(666\) 0 0
\(667\) 12.0755i 0.0181042i
\(668\) 47.1260 + 81.6247i 0.0705480 + 0.122193i
\(669\) 0 0
\(670\) −836.724 1086.11i −1.24884 1.62105i
\(671\) 994.773 + 574.333i 1.48252 + 0.855935i
\(672\) 0 0
\(673\) −820.344 + 473.626i −1.21894 + 0.703753i −0.964690 0.263387i \(-0.915160\pi\)
−0.254245 + 0.967140i \(0.581827\pi\)
\(674\) 75.1334i 0.111474i
\(675\) 0 0
\(676\) 190.268 0.281462
\(677\) 504.620 + 874.028i 0.745377 + 1.29103i 0.950018 + 0.312194i \(0.101064\pi\)
−0.204641 + 0.978837i \(0.565603\pi\)
\(678\) 0 0
\(679\) 14.4787 25.0778i 0.0213236 0.0369335i
\(680\) −430.813 + 331.893i −0.633548 + 0.488079i
\(681\) 0 0
\(682\) 1213.13 700.401i 1.77878 1.02698i
\(683\) −697.555 −1.02131 −0.510655 0.859786i \(-0.670597\pi\)
−0.510655 + 0.859786i \(0.670597\pi\)
\(684\) 0 0
\(685\) −90.9424 37.4647i −0.132763 0.0546930i
\(686\) −683.095 + 394.385i −0.995765 + 0.574905i
\(687\) 0 0
\(688\) 139.181 + 80.3563i 0.202298 + 0.116797i
\(689\) 90.1996 + 52.0768i 0.130914 + 0.0755831i
\(690\) 0 0
\(691\) 89.5928 + 155.179i 0.129657 + 0.224572i 0.923544 0.383493i \(-0.125279\pi\)
−0.793887 + 0.608066i \(0.791946\pi\)
\(692\) 401.109 0.579638
\(693\) 0 0
\(694\) −1535.18 −2.21207
\(695\) 71.5427 + 535.456i 0.102939 + 0.770441i
\(696\) 0 0
\(697\) 763.228 + 440.650i 1.09502 + 0.632209i
\(698\) 628.705 1088.95i 0.900723 1.56010i
\(699\) 0 0
\(700\) 212.566 + 56.0809i 0.303665 + 0.0801155i
\(701\) 211.499i 0.301710i −0.988556 0.150855i \(-0.951797\pi\)
0.988556 0.150855i \(-0.0482026\pi\)
\(702\) 0 0
\(703\) 84.9606i 0.120854i
\(704\) −523.982 + 302.521i −0.744292 + 0.429717i
\(705\) 0 0
\(706\) 22.9468 39.7449i 0.0325025 0.0562960i
\(707\) 565.327 979.175i 0.799614 1.38497i
\(708\) 0 0
\(709\) 216.625 + 375.205i 0.305536 + 0.529203i 0.977380 0.211489i \(-0.0678312\pi\)
−0.671845 + 0.740692i \(0.734498\pi\)
\(710\) −291.883 + 708.521i −0.411103 + 0.997916i
\(711\) 0 0
\(712\) 632.387i 0.888184i
\(713\) 9.62715 + 16.6747i 0.0135023 + 0.0233867i
\(714\) 0 0
\(715\) −306.323 + 235.988i −0.428423 + 0.330053i
\(716\) 3.43349 + 1.98233i 0.00479538 + 0.00276861i
\(717\) 0 0
\(718\) 446.750 257.931i 0.622214 0.359236i
\(719\) 588.734i 0.818824i 0.912350 + 0.409412i \(0.134266\pi\)
−0.912350 + 0.409412i \(0.865734\pi\)
\(720\) 0 0
\(721\) 1145.86 1.58927
\(722\) −395.921 685.756i −0.548368 0.949801i
\(723\) 0 0
\(724\) 0.524819 0.909013i 0.000724888 0.00125554i
\(725\) −137.752 506.297i −0.190003 0.698340i
\(726\) 0 0
\(727\) 218.273 126.020i 0.300238 0.173343i −0.342312 0.939587i \(-0.611210\pi\)
0.642550 + 0.766244i \(0.277876\pi\)
\(728\) 185.897 0.255353
\(729\) 0 0
\(730\) 213.770 518.908i 0.292835 0.710833i
\(731\) −123.831 + 71.4941i −0.169400 + 0.0978031i
\(732\) 0 0
\(733\) −166.687 96.2366i −0.227403 0.131291i 0.381970 0.924175i \(-0.375246\pi\)
−0.609374 + 0.792883i \(0.708579\pi\)
\(734\) 100.444 + 57.9916i 0.136845 + 0.0790076i
\(735\) 0 0
\(736\) 5.60170 + 9.70244i 0.00761101 + 0.0131827i
\(737\) 2182.24 2.96097
\(738\) 0 0
\(739\) 811.337 1.09788 0.548942 0.835860i \(-0.315031\pi\)
0.548942 + 0.835860i \(0.315031\pi\)
\(740\) −133.736 + 17.8686i −0.180724 + 0.0241467i
\(741\) 0 0
\(742\) 340.808 + 196.766i 0.459310 + 0.265183i
\(743\) −510.716 + 884.586i −0.687370 + 1.19056i 0.285315 + 0.958434i \(0.407902\pi\)
−0.972686 + 0.232126i \(0.925432\pi\)
\(744\) 0 0
\(745\) 1124.81 150.286i 1.50981 0.201726i
\(746\) 648.438i 0.869219i
\(747\) 0 0
\(748\) 397.899i 0.531950i
\(749\) 292.658 168.966i 0.390732 0.225589i
\(750\) 0 0
\(751\) 477.189 826.515i 0.635404 1.10055i −0.351025 0.936366i \(-0.614167\pi\)
0.986429 0.164186i \(-0.0524999\pi\)
\(752\) 147.404 255.312i 0.196017 0.339511i
\(753\) 0 0
\(754\) 101.977 + 176.630i 0.135249 + 0.234257i
\(755\) −258.098 106.326i −0.341851 0.140829i
\(756\) 0 0
\(757\) 1462.32i 1.93173i 0.259040 + 0.965866i \(0.416594\pi\)
−0.259040 + 0.965866i \(0.583406\pi\)
\(758\) −499.504 865.166i −0.658976 1.14138i
\(759\) 0 0
\(760\) −98.7256 + 76.0571i −0.129902 + 0.100075i
\(761\) 33.0469 + 19.0796i 0.0434256 + 0.0250718i 0.521556 0.853217i \(-0.325352\pi\)
−0.478130 + 0.878289i \(0.658685\pi\)
\(762\) 0 0
\(763\) 143.557 82.8827i 0.188148 0.108627i
\(764\) 72.4546i 0.0948359i
\(765\) 0 0
\(766\) 716.570 0.935470
\(767\) −105.582 182.874i −0.137656 0.238428i
\(768\) 0 0
\(769\) −301.249 + 521.778i −0.391741 + 0.678515i −0.992679 0.120781i \(-0.961460\pi\)
0.600939 + 0.799295i \(0.294794\pi\)
\(770\) −1157.40 + 891.650i −1.50312 + 1.15799i
\(771\) 0 0
\(772\) 39.6666 22.9015i 0.0513816 0.0296652i
\(773\) 394.816 0.510758 0.255379 0.966841i \(-0.417800\pi\)
0.255379 + 0.966841i \(0.417800\pi\)
\(774\) 0 0
\(775\) 593.861 + 589.307i 0.766272 + 0.760397i
\(776\) 22.5769 13.0348i 0.0290940 0.0167974i
\(777\) 0 0
\(778\) 499.329 + 288.288i 0.641811 + 0.370550i
\(779\) 174.902 + 100.980i 0.224521 + 0.129628i
\(780\) 0 0
\(781\) −609.840 1056.27i −0.780845 1.35246i
\(782\) −22.8362 −0.0292024
\(783\) 0 0
\(784\) −5.20950 −0.00664478
\(785\) −338.986 + 45.2922i −0.431830 + 0.0576970i
\(786\) 0 0
\(787\) −713.353 411.855i −0.906421 0.523322i −0.0271429 0.999632i \(-0.508641\pi\)
−0.879278 + 0.476309i \(0.841974\pi\)
\(788\) −95.2845 + 165.038i −0.120919 + 0.209439i
\(789\) 0 0
\(790\) 179.094 + 1340.42i 0.226701 + 1.69673i
\(791\) 787.400i 0.995448i
\(792\) 0 0
\(793\) 266.669i 0.336279i
\(794\) 471.039 271.955i 0.593248 0.342512i
\(795\) 0 0
\(796\) −169.263 + 293.173i −0.212642 + 0.368308i
\(797\) 459.750 796.310i 0.576850 0.999134i −0.418988 0.907992i \(-0.637615\pi\)
0.995838 0.0911420i \(-0.0290517\pi\)
\(798\) 0 0
\(799\) 131.148 + 227.155i 0.164140 + 0.284299i
\(800\) 345.547 + 342.898i 0.431934 + 0.428622i
\(801\) 0 0
\(802\) 1231.32i 1.53531i
\(803\) 446.636 + 773.596i 0.556209 + 0.963383i
\(804\) 0 0
\(805\) −12.2559 15.9087i −0.0152247 0.0197624i
\(806\) −281.635 162.602i −0.349423 0.201740i
\(807\) 0 0
\(808\) 881.525 508.948i 1.09100 0.629887i
\(809\) 1432.18i 1.77031i 0.465300 + 0.885153i \(0.345946\pi\)
−0.465300 + 0.885153i \(0.654054\pi\)
\(810\) 0 0
\(811\) −422.921 −0.521481 −0.260740 0.965409i \(-0.583967\pi\)
−0.260740 + 0.965409i \(0.583967\pi\)
\(812\) 92.2800 + 159.834i 0.113645 + 0.196839i
\(813\) 0 0
\(814\) 448.349 776.563i 0.550797 0.954009i
\(815\) −245.654 318.870i −0.301416 0.391251i
\(816\) 0 0
\(817\) −28.3774 + 16.3837i −0.0347336 + 0.0200535i
\(818\) 95.1837 0.116362
\(819\) 0 0
\(820\) 122.167 296.550i 0.148984 0.361647i
\(821\) 151.022 87.1926i 0.183949 0.106203i −0.405198 0.914229i \(-0.632797\pi\)
0.589147 + 0.808026i \(0.299464\pi\)
\(822\) 0 0
\(823\) −777.136 448.680i −0.944272 0.545176i −0.0529754 0.998596i \(-0.516870\pi\)
−0.891297 + 0.453420i \(0.850204\pi\)
\(824\) 893.380 + 515.793i 1.08420 + 0.625963i
\(825\) 0 0
\(826\) −398.930 690.967i −0.482966 0.836522i
\(827\) −233.440 −0.282273 −0.141137 0.989990i \(-0.545076\pi\)
−0.141137 + 0.989990i \(0.545076\pi\)
\(828\) 0 0
\(829\) −990.934 −1.19534 −0.597668 0.801744i \(-0.703906\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(830\) 11.1182 + 83.2134i 0.0133954 + 0.100257i
\(831\) 0 0
\(832\) 121.645 + 70.2319i 0.146208 + 0.0844134i
\(833\) 2.31748 4.01400i 0.00278209 0.00481873i
\(834\) 0 0
\(835\) −49.5453 370.819i −0.0593357 0.444094i
\(836\) 91.1829i 0.109071i
\(837\) 0 0
\(838\) 1685.34i 2.01115i
\(839\) 301.025 173.797i 0.358790 0.207148i −0.309760 0.950815i \(-0.600249\pi\)
0.668550 + 0.743667i \(0.266915\pi\)
\(840\) 0 0
\(841\) −200.250 + 346.844i −0.238110 + 0.412418i
\(842\) −17.5647 + 30.4229i −0.0208607 + 0.0361318i
\(843\) 0 0
\(844\) −225.270 390.180i −0.266908 0.462298i
\(845\) −698.296 287.671i −0.826386 0.340439i
\(846\) 0 0
\(847\) 1480.81i 1.74829i
\(848\) 239.070 + 414.081i 0.281922 + 0.488303i
\(849\) 0 0
\(850\) −957.468 + 260.506i −1.12643 + 0.306478i
\(851\) 10.6740 + 6.16264i 0.0125429 + 0.00724165i
\(852\) 0 0
\(853\) −1070.74 + 618.192i −1.25526 + 0.724727i −0.972150 0.234359i \(-0.924701\pi\)
−0.283114 + 0.959086i \(0.591368\pi\)
\(854\) 1007.58i 1.17983i
\(855\) 0 0
\(856\) 304.231 0.355411
\(857\) −457.353 792.158i −0.533667 0.924338i −0.999227 0.0393219i \(-0.987480\pi\)
0.465560 0.885017i \(-0.345853\pi\)
\(858\) 0 0
\(859\) −571.510 + 989.884i −0.665320 + 1.15237i 0.313879 + 0.949463i \(0.398371\pi\)
−0.979199 + 0.202905i \(0.934962\pi\)
\(860\) 31.7577 + 41.2229i 0.0369275 + 0.0479336i
\(861\) 0 0
\(862\) 196.354 113.365i 0.227789 0.131514i
\(863\) −1228.14 −1.42311 −0.711554 0.702632i \(-0.752008\pi\)
−0.711554 + 0.702632i \(0.752008\pi\)
\(864\) 0 0
\(865\) −1472.10 606.446i −1.70185 0.701094i
\(866\) 1139.69 657.999i 1.31604 0.759814i
\(867\) 0 0
\(868\) −254.853 147.140i −0.293610 0.169516i
\(869\) −1864.09 1076.23i −2.14510 1.23847i
\(870\) 0 0
\(871\) −253.309 438.745i −0.290826 0.503725i
\(872\) 149.234 0.171140
\(873\) 0 0
\(874\) −5.23318 −0.00598762
\(875\) −695.340 527.203i −0.794674 0.602518i
\(876\) 0 0
\(877\) 1193.15 + 688.864i 1.36049 + 0.785478i 0.989689 0.143235i \(-0.0457504\pi\)
0.370799 + 0.928713i \(0.379084\pi\)
\(878\) −275.040 + 476.383i −0.313257 + 0.542578i
\(879\) 0 0
\(880\) −1759.52 + 235.090i −1.99945 + 0.267148i
\(881\) 1087.45i 1.23434i −0.786831 0.617168i \(-0.788280\pi\)
0.786831 0.617168i \(-0.211720\pi\)
\(882\) 0 0
\(883\) 922.151i 1.04434i 0.852842 + 0.522170i \(0.174877\pi\)
−0.852842 + 0.522170i \(0.825123\pi\)
\(884\) 79.9986 46.1872i 0.0904961 0.0522480i
\(885\) 0 0
\(886\) 420.282 727.949i 0.474359 0.821613i
\(887\) −530.496 + 918.846i −0.598079 + 1.03590i 0.395026 + 0.918670i \(0.370736\pi\)
−0.993104 + 0.117233i \(0.962598\pi\)
\(888\) 0 0
\(889\) 340.333 + 589.473i 0.382826 + 0.663075i
\(890\) −439.508 + 1066.87i −0.493829 + 1.19873i
\(891\) 0 0
\(892\) 450.047i 0.504537i
\(893\) 30.0540 + 52.0550i 0.0336551 + 0.0582923i
\(894\) 0 0
\(895\) −9.60401 12.4664i −0.0107307 0.0139290i
\(896\) 930.508 + 537.229i 1.03851 + 0.599586i
\(897\) 0 0
\(898\) −1238.72 + 715.175i −1.37942 + 0.796409i
\(899\) 702.372i 0.781282i
\(900\) 0 0
\(901\) −425.407 −0.472150
\(902\) 1065.77 + 1845.97i 1.18156 + 2.04653i
\(903\) 0 0
\(904\) 354.437 613.903i 0.392077 0.679097i
\(905\) −3.30048 + 2.54265i −0.00364693 + 0.00280956i
\(906\) 0 0
\(907\) 1208.95 697.990i 1.33292 0.769559i 0.347170 0.937802i \(-0.387143\pi\)
0.985745 + 0.168243i \(0.0538095\pi\)
\(908\) −162.246 −0.178685
\(909\) 0 0
\(910\) 313.617 + 129.198i 0.344634 + 0.141976i
\(911\) 1100.06 635.123i 1.20754 0.697171i 0.245315 0.969443i \(-0.421109\pi\)
0.962220 + 0.272272i \(0.0877752\pi\)
\(912\) 0 0
\(913\) −115.723 66.8128i −0.126750 0.0731794i
\(914\) −771.520 445.438i −0.844114 0.487350i
\(915\) 0 0
\(916\) 159.414 + 276.114i 0.174033 + 0.301434i
\(917\) −143.400 −0.156379
\(918\) 0 0
\(919\) 269.489 0.293242 0.146621 0.989193i \(-0.453160\pi\)
0.146621 + 0.989193i \(0.453160\pi\)
\(920\) −2.39433 17.9202i −0.00260253 0.0194785i
\(921\) 0 0
\(922\) −754.445 435.579i −0.818270 0.472428i
\(923\) −141.578 + 245.220i −0.153389 + 0.265677i
\(924\) 0 0
\(925\) 517.836 + 136.620i 0.559823 + 0.147697i
\(926\) 876.657i 0.946713i
\(927\) 0 0
\(928\) 408.686i 0.440395i
\(929\) −958.120 + 553.171i −1.03135 + 0.595447i −0.917370 0.398036i \(-0.869692\pi\)
−0.113976 + 0.993484i \(0.536359\pi\)
\(930\) 0 0
\(931\) 0.531077 0.919853i 0.000570438 0.000988027i
\(932\) −60.6888 + 105.116i −0.0651167 + 0.112785i
\(933\) 0 0
\(934\) 40.5375 + 70.2131i 0.0434021 + 0.0751746i
\(935\) 601.592 1460.31i 0.643414 1.56183i
\(936\) 0 0
\(937\) 130.956i 0.139761i −0.997555 0.0698805i \(-0.977738\pi\)
0.997555 0.0698805i \(-0.0222618\pi\)
\(938\) −957.097 1657.74i −1.02036 1.76731i
\(939\) 0 0
\(940\) 75.6187 58.2558i 0.0804455 0.0619743i
\(941\) 308.082 + 177.871i 0.327398 + 0.189023i 0.654685 0.755901i \(-0.272801\pi\)
−0.327287 + 0.944925i \(0.606134\pi\)
\(942\) 0 0
\(943\) −25.3732 + 14.6492i −0.0269068 + 0.0155347i
\(944\) 969.397i 1.02690i
\(945\) 0 0
\(946\) −345.836 −0.365577
\(947\) −511.335 885.658i −0.539953 0.935225i −0.998906 0.0467648i \(-0.985109\pi\)
0.458953 0.888460i \(-0.348224\pi\)
\(948\) 0 0
\(949\) 103.689 179.595i 0.109261 0.189246i
\(950\) −219.415 + 59.6980i −0.230963 + 0.0628400i
\(951\) 0 0
\(952\) −657.557 + 379.641i −0.690711 + 0.398782i
\(953\) 475.336 0.498778 0.249389 0.968403i \(-0.419770\pi\)
0.249389 + 0.968403i \(0.419770\pi\)
\(954\) 0 0
\(955\) −109.546 + 265.913i −0.114708 + 0.278443i
\(956\) 119.336 68.8988i 0.124829 0.0720699i
\(957\) 0 0
\(958\) 1149.51 + 663.670i 1.19991 + 0.692766i
\(959\) −118.925 68.6616i −0.124010 0.0715971i
\(960\) 0 0
\(961\) −79.4631 137.634i −0.0826880 0.143220i
\(962\) −208.173 −0.216397
\(963\) 0 0
\(964\) −395.063 −0.409816
\(965\) −180.204 + 24.0772i −0.186740 + 0.0249505i
\(966\) 0 0
\(967\) 1084.58 + 626.185i 1.12160 + 0.647554i 0.941808 0.336151i \(-0.109125\pi\)
0.179788 + 0.983705i \(0.442459\pi\)
\(968\) 666.565 1154.52i 0.688600 1.19269i
\(969\) 0 0
\(970\) 47.1475 6.29941i 0.0486057 0.00649424i
\(971\) 280.624i 0.289005i −0.989504 0.144502i \(-0.953842\pi\)
0.989504 0.144502i \(-0.0461581\pi\)
\(972\) 0 0
\(973\) 754.231i 0.775160i
\(974\) 843.669 487.093i 0.866190 0.500095i
\(975\) 0 0
\(976\) 612.100 1060.19i 0.627152 1.08626i
\(977\) 165.797 287.169i 0.169700 0.293929i −0.768614 0.639712i \(-0.779053\pi\)
0.938314 + 0.345783i \(0.112387\pi\)
\(978\) 0 0
\(979\) −918.278 1590.50i −0.937975 1.62462i
\(980\) −1.55963 0.642507i −0.00159146 0.000655619i
\(981\) 0 0
\(982\) 894.436i 0.910831i
\(983\) 6.49145 + 11.2435i 0.00660372 + 0.0114380i 0.869308 0.494270i \(-0.164565\pi\)
−0.862705 + 0.505708i \(0.831231\pi\)
\(984\) 0 0
\(985\) 599.225 461.636i 0.608350 0.468666i
\(986\) −721.432 416.519i −0.731675 0.422433i
\(987\) 0 0
\(988\) 18.3326 10.5843i 0.0185552 0.0107129i
\(989\) 4.75358i 0.00480645i
\(990\) 0 0
\(991\) −1366.83 −1.37924 −0.689619 0.724172i \(-0.742222\pi\)
−0.689619 + 0.724172i \(0.742222\pi\)
\(992\) −325.823 564.342i −0.328451 0.568893i
\(993\) 0 0
\(994\) −534.934 + 926.532i −0.538163 + 0.932125i
\(995\) 1064.46 820.050i 1.06981 0.824171i
\(996\) 0 0
\(997\) −890.111 + 513.906i −0.892789 + 0.515452i −0.874854 0.484387i \(-0.839043\pi\)
−0.0179352 + 0.999839i \(0.505709\pi\)
\(998\) 1416.29 1.41913
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.h.a.44.8 20
3.2 odd 2 45.3.h.a.14.3 20
5.2 odd 4 675.3.j.e.476.3 20
5.3 odd 4 675.3.j.e.476.8 20
5.4 even 2 inner 135.3.h.a.44.3 20
9.2 odd 6 inner 135.3.h.a.89.3 20
9.4 even 3 405.3.d.a.404.5 20
9.5 odd 6 405.3.d.a.404.16 20
9.7 even 3 45.3.h.a.29.8 yes 20
15.2 even 4 225.3.j.e.176.8 20
15.8 even 4 225.3.j.e.176.3 20
15.14 odd 2 45.3.h.a.14.8 yes 20
45.2 even 12 675.3.j.e.251.3 20
45.4 even 6 405.3.d.a.404.15 20
45.7 odd 12 225.3.j.e.101.8 20
45.14 odd 6 405.3.d.a.404.6 20
45.29 odd 6 inner 135.3.h.a.89.8 20
45.34 even 6 45.3.h.a.29.3 yes 20
45.38 even 12 675.3.j.e.251.8 20
45.43 odd 12 225.3.j.e.101.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.3 20 3.2 odd 2
45.3.h.a.14.8 yes 20 15.14 odd 2
45.3.h.a.29.3 yes 20 45.34 even 6
45.3.h.a.29.8 yes 20 9.7 even 3
135.3.h.a.44.3 20 5.4 even 2 inner
135.3.h.a.44.8 20 1.1 even 1 trivial
135.3.h.a.89.3 20 9.2 odd 6 inner
135.3.h.a.89.8 20 45.29 odd 6 inner
225.3.j.e.101.3 20 45.43 odd 12
225.3.j.e.101.8 20 45.7 odd 12
225.3.j.e.176.3 20 15.8 even 4
225.3.j.e.176.8 20 15.2 even 4
405.3.d.a.404.5 20 9.4 even 3
405.3.d.a.404.6 20 45.14 odd 6
405.3.d.a.404.15 20 45.4 even 6
405.3.d.a.404.16 20 9.5 odd 6
675.3.j.e.251.3 20 45.2 even 12
675.3.j.e.251.8 20 45.38 even 12
675.3.j.e.476.3 20 5.2 odd 4
675.3.j.e.476.8 20 5.3 odd 4