Properties

Label 405.3.d.a.404.11
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{20} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.11
Root \(-0.315300 - 1.70311i\) of defining polynomial
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.a.404.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.528791 q^{2} -3.72038 q^{4} +(-3.86156 - 3.17622i) q^{5} -2.76658i q^{7} -4.08247 q^{8} +(-2.04196 - 1.67955i) q^{10} +9.22820i q^{11} +13.5883i q^{13} -1.46294i q^{14} +12.7227 q^{16} +12.2161 q^{17} +20.2664 q^{19} +(14.3665 + 11.8167i) q^{20} +4.87979i q^{22} -2.37127 q^{23} +(4.82331 + 24.5303i) q^{25} +7.18539i q^{26} +10.2927i q^{28} -34.9123i q^{29} +29.4466 q^{31} +23.0576 q^{32} +6.45977 q^{34} +(-8.78726 + 10.6833i) q^{35} +64.3630i q^{37} +10.7167 q^{38} +(15.7647 + 12.9668i) q^{40} +39.8597i q^{41} +67.5964i q^{43} -34.3324i q^{44} -1.25391 q^{46} -93.3802 q^{47} +41.3460 q^{49} +(2.55053 + 12.9714i) q^{50} -50.5538i q^{52} -9.82656 q^{53} +(29.3108 - 35.6353i) q^{55} +11.2945i q^{56} -18.4613i q^{58} -58.5035i q^{59} -15.5057 q^{61} +15.5711 q^{62} -38.6984 q^{64} +(43.1595 - 52.4722i) q^{65} +15.5649i q^{67} -45.4486 q^{68} +(-4.64663 + 5.64925i) q^{70} +53.1970i q^{71} -23.6547i q^{73} +34.0346i q^{74} -75.3988 q^{76} +25.5306 q^{77} +34.5385 q^{79} +(-49.1297 - 40.4102i) q^{80} +21.0775i q^{82} +75.3460 q^{83} +(-47.1733 - 38.8010i) q^{85} +35.7444i q^{86} -37.6739i q^{88} -29.1344i q^{89} +37.5932 q^{91} +8.82203 q^{92} -49.3786 q^{94} +(-78.2601 - 64.3706i) q^{95} -62.3713i q^{97} +21.8634 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 36 q^{4} + 4 q^{10} + 52 q^{16} - 8 q^{19} - 4 q^{25} - 56 q^{31} + 8 q^{34} + 68 q^{40} + 116 q^{46} + 80 q^{49} + 36 q^{55} + 100 q^{61} + 140 q^{64} + 108 q^{70} + 192 q^{76} + 256 q^{79} + 148 q^{85}+ \cdots - 436 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.528791 0.264396 0.132198 0.991223i \(-0.457797\pi\)
0.132198 + 0.991223i \(0.457797\pi\)
\(3\) 0 0
\(4\) −3.72038 −0.930095
\(5\) −3.86156 3.17622i −0.772312 0.635243i
\(6\) 0 0
\(7\) 2.76658i 0.395226i −0.980280 0.197613i \(-0.936681\pi\)
0.980280 0.197613i \(-0.0633189\pi\)
\(8\) −4.08247 −0.510309
\(9\) 0 0
\(10\) −2.04196 1.67955i −0.204196 0.167955i
\(11\) 9.22820i 0.838928i 0.907772 + 0.419464i \(0.137782\pi\)
−0.907772 + 0.419464i \(0.862218\pi\)
\(12\) 0 0
\(13\) 13.5883i 1.04526i 0.852561 + 0.522628i \(0.175048\pi\)
−0.852561 + 0.522628i \(0.824952\pi\)
\(14\) 1.46294i 0.104496i
\(15\) 0 0
\(16\) 12.7227 0.795172
\(17\) 12.2161 0.718595 0.359297 0.933223i \(-0.383016\pi\)
0.359297 + 0.933223i \(0.383016\pi\)
\(18\) 0 0
\(19\) 20.2664 1.06665 0.533327 0.845909i \(-0.320941\pi\)
0.533327 + 0.845909i \(0.320941\pi\)
\(20\) 14.3665 + 11.8167i 0.718324 + 0.590836i
\(21\) 0 0
\(22\) 4.87979i 0.221809i
\(23\) −2.37127 −0.103099 −0.0515494 0.998670i \(-0.516416\pi\)
−0.0515494 + 0.998670i \(0.516416\pi\)
\(24\) 0 0
\(25\) 4.82331 + 24.5303i 0.192933 + 0.981212i
\(26\) 7.18539i 0.276361i
\(27\) 0 0
\(28\) 10.2927i 0.367598i
\(29\) 34.9123i 1.20387i −0.798544 0.601936i \(-0.794396\pi\)
0.798544 0.601936i \(-0.205604\pi\)
\(30\) 0 0
\(31\) 29.4466 0.949890 0.474945 0.880015i \(-0.342468\pi\)
0.474945 + 0.880015i \(0.342468\pi\)
\(32\) 23.0576 0.720549
\(33\) 0 0
\(34\) 6.45977 0.189993
\(35\) −8.78726 + 10.6833i −0.251065 + 0.305238i
\(36\) 0 0
\(37\) 64.3630i 1.73954i 0.493457 + 0.869770i \(0.335733\pi\)
−0.493457 + 0.869770i \(0.664267\pi\)
\(38\) 10.7167 0.282019
\(39\) 0 0
\(40\) 15.7647 + 12.9668i 0.394118 + 0.324170i
\(41\) 39.8597i 0.972188i 0.873906 + 0.486094i \(0.161579\pi\)
−0.873906 + 0.486094i \(0.838421\pi\)
\(42\) 0 0
\(43\) 67.5964i 1.57201i 0.618221 + 0.786004i \(0.287854\pi\)
−0.618221 + 0.786004i \(0.712146\pi\)
\(44\) 34.3324i 0.780282i
\(45\) 0 0
\(46\) −1.25391 −0.0272588
\(47\) −93.3802 −1.98681 −0.993406 0.114649i \(-0.963426\pi\)
−0.993406 + 0.114649i \(0.963426\pi\)
\(48\) 0 0
\(49\) 41.3460 0.843796
\(50\) 2.55053 + 12.9714i 0.0510105 + 0.259428i
\(51\) 0 0
\(52\) 50.5538i 0.972188i
\(53\) −9.82656 −0.185407 −0.0927034 0.995694i \(-0.529551\pi\)
−0.0927034 + 0.995694i \(0.529551\pi\)
\(54\) 0 0
\(55\) 29.3108 35.6353i 0.532923 0.647914i
\(56\) 11.2945i 0.201687i
\(57\) 0 0
\(58\) 18.4613i 0.318299i
\(59\) 58.5035i 0.991584i −0.868441 0.495792i \(-0.834878\pi\)
0.868441 0.495792i \(-0.165122\pi\)
\(60\) 0 0
\(61\) −15.5057 −0.254191 −0.127096 0.991890i \(-0.540566\pi\)
−0.127096 + 0.991890i \(0.540566\pi\)
\(62\) 15.5711 0.251147
\(63\) 0 0
\(64\) −38.6984 −0.604662
\(65\) 43.1595 52.4722i 0.663992 0.807264i
\(66\) 0 0
\(67\) 15.5649i 0.232311i 0.993231 + 0.116156i \(0.0370572\pi\)
−0.993231 + 0.116156i \(0.962943\pi\)
\(68\) −45.4486 −0.668361
\(69\) 0 0
\(70\) −4.64663 + 5.64925i −0.0663804 + 0.0807036i
\(71\) 53.1970i 0.749254i 0.927176 + 0.374627i \(0.122229\pi\)
−0.927176 + 0.374627i \(0.877771\pi\)
\(72\) 0 0
\(73\) 23.6547i 0.324037i −0.986788 0.162019i \(-0.948200\pi\)
0.986788 0.162019i \(-0.0518005\pi\)
\(74\) 34.0346i 0.459927i
\(75\) 0 0
\(76\) −75.3988 −0.992090
\(77\) 25.5306 0.331566
\(78\) 0 0
\(79\) 34.5385 0.437196 0.218598 0.975815i \(-0.429852\pi\)
0.218598 + 0.975815i \(0.429852\pi\)
\(80\) −49.1297 40.4102i −0.614121 0.505127i
\(81\) 0 0
\(82\) 21.0775i 0.257042i
\(83\) 75.3460 0.907783 0.453892 0.891057i \(-0.350035\pi\)
0.453892 + 0.891057i \(0.350035\pi\)
\(84\) 0 0
\(85\) −47.1733 38.8010i −0.554980 0.456482i
\(86\) 35.7444i 0.415632i
\(87\) 0 0
\(88\) 37.6739i 0.428112i
\(89\) 29.1344i 0.327352i −0.986514 0.163676i \(-0.947665\pi\)
0.986514 0.163676i \(-0.0523352\pi\)
\(90\) 0 0
\(91\) 37.5932 0.413112
\(92\) 8.82203 0.0958916
\(93\) 0 0
\(94\) −49.3786 −0.525304
\(95\) −78.2601 64.3706i −0.823790 0.677585i
\(96\) 0 0
\(97\) 62.3713i 0.643003i −0.946909 0.321502i \(-0.895812\pi\)
0.946909 0.321502i \(-0.104188\pi\)
\(98\) 21.8634 0.223096
\(99\) 0 0
\(100\) −17.9446 91.2620i −0.179446 0.912620i
\(101\) 137.102i 1.35745i 0.734394 + 0.678723i \(0.237466\pi\)
−0.734394 + 0.678723i \(0.762534\pi\)
\(102\) 0 0
\(103\) 108.803i 1.05634i 0.849137 + 0.528172i \(0.177122\pi\)
−0.849137 + 0.528172i \(0.822878\pi\)
\(104\) 55.4739i 0.533403i
\(105\) 0 0
\(106\) −5.19620 −0.0490207
\(107\) 64.0002 0.598133 0.299067 0.954232i \(-0.403325\pi\)
0.299067 + 0.954232i \(0.403325\pi\)
\(108\) 0 0
\(109\) −14.8135 −0.135904 −0.0679520 0.997689i \(-0.521646\pi\)
−0.0679520 + 0.997689i \(0.521646\pi\)
\(110\) 15.4993 18.8436i 0.140902 0.171306i
\(111\) 0 0
\(112\) 35.1985i 0.314272i
\(113\) 82.8066 0.732802 0.366401 0.930457i \(-0.380590\pi\)
0.366401 + 0.930457i \(0.380590\pi\)
\(114\) 0 0
\(115\) 9.15681 + 7.53166i 0.0796244 + 0.0654927i
\(116\) 129.887i 1.11972i
\(117\) 0 0
\(118\) 30.9361i 0.262170i
\(119\) 33.7969i 0.284007i
\(120\) 0 0
\(121\) 35.8402 0.296200
\(122\) −8.19926 −0.0672070
\(123\) 0 0
\(124\) −109.553 −0.883488
\(125\) 59.2880 110.045i 0.474304 0.880361i
\(126\) 0 0
\(127\) 36.7291i 0.289206i −0.989490 0.144603i \(-0.953810\pi\)
0.989490 0.144603i \(-0.0461904\pi\)
\(128\) −112.694 −0.880418
\(129\) 0 0
\(130\) 22.8223 27.7468i 0.175557 0.213437i
\(131\) 57.9363i 0.442262i 0.975244 + 0.221131i \(0.0709748\pi\)
−0.975244 + 0.221131i \(0.929025\pi\)
\(132\) 0 0
\(133\) 56.0688i 0.421570i
\(134\) 8.23056i 0.0614221i
\(135\) 0 0
\(136\) −49.8719 −0.366705
\(137\) 57.5791 0.420285 0.210143 0.977671i \(-0.432607\pi\)
0.210143 + 0.977671i \(0.432607\pi\)
\(138\) 0 0
\(139\) −60.6491 −0.436325 −0.218162 0.975913i \(-0.570006\pi\)
−0.218162 + 0.975913i \(0.570006\pi\)
\(140\) 32.6919 39.7460i 0.233514 0.283900i
\(141\) 0 0
\(142\) 28.1301i 0.198099i
\(143\) −125.396 −0.876894
\(144\) 0 0
\(145\) −110.889 + 134.816i −0.764751 + 0.929765i
\(146\) 12.5084i 0.0856740i
\(147\) 0 0
\(148\) 239.455i 1.61794i
\(149\) 235.682i 1.58176i 0.611973 + 0.790879i \(0.290376\pi\)
−0.611973 + 0.790879i \(0.709624\pi\)
\(150\) 0 0
\(151\) −14.8368 −0.0982569 −0.0491285 0.998792i \(-0.515644\pi\)
−0.0491285 + 0.998792i \(0.515644\pi\)
\(152\) −82.7371 −0.544323
\(153\) 0 0
\(154\) 13.5003 0.0876646
\(155\) −113.710 93.5287i −0.733612 0.603411i
\(156\) 0 0
\(157\) 147.208i 0.937632i −0.883296 0.468816i \(-0.844681\pi\)
0.883296 0.468816i \(-0.155319\pi\)
\(158\) 18.2636 0.115593
\(159\) 0 0
\(160\) −89.0382 73.2358i −0.556488 0.457723i
\(161\) 6.56031i 0.0407473i
\(162\) 0 0
\(163\) 9.62130i 0.0590264i 0.999564 + 0.0295132i \(0.00939571\pi\)
−0.999564 + 0.0295132i \(0.990604\pi\)
\(164\) 148.293i 0.904227i
\(165\) 0 0
\(166\) 39.8423 0.240014
\(167\) −83.0786 −0.497477 −0.248738 0.968571i \(-0.580016\pi\)
−0.248738 + 0.968571i \(0.580016\pi\)
\(168\) 0 0
\(169\) −15.6427 −0.0925605
\(170\) −24.9448 20.5176i −0.146734 0.120692i
\(171\) 0 0
\(172\) 251.484i 1.46212i
\(173\) 0.439157 0.00253848 0.00126924 0.999999i \(-0.499596\pi\)
0.00126924 + 0.999999i \(0.499596\pi\)
\(174\) 0 0
\(175\) 67.8651 13.3441i 0.387801 0.0762519i
\(176\) 117.408i 0.667091i
\(177\) 0 0
\(178\) 15.4060i 0.0865505i
\(179\) 102.699i 0.573740i 0.957970 + 0.286870i \(0.0926148\pi\)
−0.957970 + 0.286870i \(0.907385\pi\)
\(180\) 0 0
\(181\) −120.426 −0.665337 −0.332669 0.943044i \(-0.607949\pi\)
−0.332669 + 0.943044i \(0.607949\pi\)
\(182\) 19.8790 0.109225
\(183\) 0 0
\(184\) 9.68064 0.0526122
\(185\) 204.431 248.542i 1.10503 1.34347i
\(186\) 0 0
\(187\) 112.733i 0.602849i
\(188\) 347.410 1.84792
\(189\) 0 0
\(190\) −41.3833 34.0386i −0.217807 0.179150i
\(191\) 146.365i 0.766307i 0.923685 + 0.383153i \(0.125162\pi\)
−0.923685 + 0.383153i \(0.874838\pi\)
\(192\) 0 0
\(193\) 130.403i 0.675663i 0.941207 + 0.337831i \(0.109693\pi\)
−0.941207 + 0.337831i \(0.890307\pi\)
\(194\) 32.9814i 0.170007i
\(195\) 0 0
\(196\) −153.823 −0.784811
\(197\) −186.652 −0.947470 −0.473735 0.880668i \(-0.657094\pi\)
−0.473735 + 0.880668i \(0.657094\pi\)
\(198\) 0 0
\(199\) 45.1917 0.227094 0.113547 0.993533i \(-0.463779\pi\)
0.113547 + 0.993533i \(0.463779\pi\)
\(200\) −19.6910 100.144i −0.0984551 0.500721i
\(201\) 0 0
\(202\) 72.4984i 0.358903i
\(203\) −96.5877 −0.475802
\(204\) 0 0
\(205\) 126.603 153.921i 0.617576 0.750833i
\(206\) 57.5343i 0.279293i
\(207\) 0 0
\(208\) 172.881i 0.831158i
\(209\) 187.023i 0.894846i
\(210\) 0 0
\(211\) −138.211 −0.655027 −0.327514 0.944846i \(-0.606211\pi\)
−0.327514 + 0.944846i \(0.606211\pi\)
\(212\) 36.5585 0.172446
\(213\) 0 0
\(214\) 33.8428 0.158144
\(215\) 214.701 261.028i 0.998608 1.21408i
\(216\) 0 0
\(217\) 81.4664i 0.375421i
\(218\) −7.83327 −0.0359324
\(219\) 0 0
\(220\) −109.047 + 132.577i −0.495669 + 0.602622i
\(221\) 165.997i 0.751116i
\(222\) 0 0
\(223\) 58.2052i 0.261010i 0.991448 + 0.130505i \(0.0416598\pi\)
−0.991448 + 0.130505i \(0.958340\pi\)
\(224\) 63.7906i 0.284780i
\(225\) 0 0
\(226\) 43.7874 0.193750
\(227\) 374.581 1.65014 0.825069 0.565032i \(-0.191136\pi\)
0.825069 + 0.565032i \(0.191136\pi\)
\(228\) 0 0
\(229\) 67.6836 0.295562 0.147781 0.989020i \(-0.452787\pi\)
0.147781 + 0.989020i \(0.452787\pi\)
\(230\) 4.84204 + 3.98268i 0.0210523 + 0.0173160i
\(231\) 0 0
\(232\) 142.528i 0.614346i
\(233\) −282.378 −1.21192 −0.605961 0.795495i \(-0.707211\pi\)
−0.605961 + 0.795495i \(0.707211\pi\)
\(234\) 0 0
\(235\) 360.593 + 296.596i 1.53444 + 1.26211i
\(236\) 217.655i 0.922267i
\(237\) 0 0
\(238\) 17.8715i 0.0750903i
\(239\) 368.390i 1.54138i −0.637209 0.770691i \(-0.719911\pi\)
0.637209 0.770691i \(-0.280089\pi\)
\(240\) 0 0
\(241\) 371.108 1.53987 0.769934 0.638123i \(-0.220289\pi\)
0.769934 + 0.638123i \(0.220289\pi\)
\(242\) 18.9520 0.0783141
\(243\) 0 0
\(244\) 57.6870 0.236422
\(245\) −159.660 131.324i −0.651674 0.536016i
\(246\) 0 0
\(247\) 275.387i 1.11493i
\(248\) −120.215 −0.484737
\(249\) 0 0
\(250\) 31.3510 58.1909i 0.125404 0.232764i
\(251\) 306.449i 1.22091i 0.792049 + 0.610457i \(0.209014\pi\)
−0.792049 + 0.610457i \(0.790986\pi\)
\(252\) 0 0
\(253\) 21.8826i 0.0864924i
\(254\) 19.4220i 0.0764647i
\(255\) 0 0
\(256\) 95.2020 0.371883
\(257\) −305.948 −1.19046 −0.595230 0.803555i \(-0.702939\pi\)
−0.595230 + 0.803555i \(0.702939\pi\)
\(258\) 0 0
\(259\) 178.066 0.687512
\(260\) −160.570 + 195.216i −0.617575 + 0.750832i
\(261\) 0 0
\(262\) 30.6362i 0.116932i
\(263\) −146.685 −0.557739 −0.278869 0.960329i \(-0.589960\pi\)
−0.278869 + 0.960329i \(0.589960\pi\)
\(264\) 0 0
\(265\) 37.9459 + 31.2113i 0.143192 + 0.117778i
\(266\) 29.6487i 0.111461i
\(267\) 0 0
\(268\) 57.9072i 0.216072i
\(269\) 276.133i 1.02652i −0.858234 0.513258i \(-0.828438\pi\)
0.858234 0.513258i \(-0.171562\pi\)
\(270\) 0 0
\(271\) 304.822 1.12480 0.562402 0.826864i \(-0.309877\pi\)
0.562402 + 0.826864i \(0.309877\pi\)
\(272\) 155.422 0.571406
\(273\) 0 0
\(274\) 30.4473 0.111122
\(275\) −226.371 + 44.5105i −0.823166 + 0.161856i
\(276\) 0 0
\(277\) 410.560i 1.48217i 0.671414 + 0.741083i \(0.265687\pi\)
−0.671414 + 0.741083i \(0.734313\pi\)
\(278\) −32.0707 −0.115362
\(279\) 0 0
\(280\) 35.8737 43.6144i 0.128120 0.155766i
\(281\) 103.834i 0.369517i −0.982784 0.184758i \(-0.940850\pi\)
0.982784 0.184758i \(-0.0591502\pi\)
\(282\) 0 0
\(283\) 281.472i 0.994602i 0.867578 + 0.497301i \(0.165676\pi\)
−0.867578 + 0.497301i \(0.834324\pi\)
\(284\) 197.913i 0.696877i
\(285\) 0 0
\(286\) −66.3082 −0.231847
\(287\) 110.275 0.384234
\(288\) 0 0
\(289\) −139.767 −0.483621
\(290\) −58.6371 + 71.2895i −0.202197 + 0.245826i
\(291\) 0 0
\(292\) 88.0045i 0.301385i
\(293\) 408.669 1.39477 0.697387 0.716695i \(-0.254346\pi\)
0.697387 + 0.716695i \(0.254346\pi\)
\(294\) 0 0
\(295\) −185.820 + 225.915i −0.629897 + 0.765813i
\(296\) 262.760i 0.887703i
\(297\) 0 0
\(298\) 124.626i 0.418210i
\(299\) 32.2216i 0.107765i
\(300\) 0 0
\(301\) 187.011 0.621299
\(302\) −7.84557 −0.0259787
\(303\) 0 0
\(304\) 257.845 0.848173
\(305\) 59.8761 + 49.2493i 0.196315 + 0.161473i
\(306\) 0 0
\(307\) 174.133i 0.567208i 0.958941 + 0.283604i \(0.0915301\pi\)
−0.958941 + 0.283604i \(0.908470\pi\)
\(308\) −94.9835 −0.308388
\(309\) 0 0
\(310\) −60.1288 49.4572i −0.193964 0.159539i
\(311\) 274.326i 0.882076i 0.897488 + 0.441038i \(0.145390\pi\)
−0.897488 + 0.441038i \(0.854610\pi\)
\(312\) 0 0
\(313\) 213.111i 0.680866i −0.940269 0.340433i \(-0.889426\pi\)
0.940269 0.340433i \(-0.110574\pi\)
\(314\) 77.8424i 0.247906i
\(315\) 0 0
\(316\) −128.496 −0.406634
\(317\) −242.124 −0.763798 −0.381899 0.924204i \(-0.624730\pi\)
−0.381899 + 0.924204i \(0.624730\pi\)
\(318\) 0 0
\(319\) 322.178 1.00996
\(320\) 149.436 + 122.914i 0.466988 + 0.384107i
\(321\) 0 0
\(322\) 3.46904i 0.0107734i
\(323\) 247.577 0.766493
\(324\) 0 0
\(325\) −333.326 + 65.5408i −1.02562 + 0.201664i
\(326\) 5.08766i 0.0156063i
\(327\) 0 0
\(328\) 162.726i 0.496116i
\(329\) 258.344i 0.785240i
\(330\) 0 0
\(331\) −198.929 −0.600995 −0.300498 0.953783i \(-0.597153\pi\)
−0.300498 + 0.953783i \(0.597153\pi\)
\(332\) −280.316 −0.844325
\(333\) 0 0
\(334\) −43.9313 −0.131531
\(335\) 49.4374 60.1047i 0.147574 0.179417i
\(336\) 0 0
\(337\) 315.248i 0.935455i −0.883873 0.467728i \(-0.845073\pi\)
0.883873 0.467728i \(-0.154927\pi\)
\(338\) −8.27174 −0.0244726
\(339\) 0 0
\(340\) 175.502 + 144.354i 0.516184 + 0.424572i
\(341\) 271.739i 0.796889i
\(342\) 0 0
\(343\) 249.950i 0.728716i
\(344\) 275.960i 0.802210i
\(345\) 0 0
\(346\) 0.232222 0.000671163
\(347\) 506.005 1.45823 0.729114 0.684392i \(-0.239932\pi\)
0.729114 + 0.684392i \(0.239932\pi\)
\(348\) 0 0
\(349\) −561.673 −1.60938 −0.804689 0.593696i \(-0.797668\pi\)
−0.804689 + 0.593696i \(0.797668\pi\)
\(350\) 35.8865 7.05624i 0.102533 0.0201607i
\(351\) 0 0
\(352\) 212.780i 0.604488i
\(353\) 241.799 0.684984 0.342492 0.939521i \(-0.388729\pi\)
0.342492 + 0.939521i \(0.388729\pi\)
\(354\) 0 0
\(355\) 168.965 205.424i 0.475958 0.578658i
\(356\) 108.391i 0.304469i
\(357\) 0 0
\(358\) 54.3066i 0.151694i
\(359\) 361.904i 1.00809i 0.863678 + 0.504044i \(0.168155\pi\)
−0.863678 + 0.504044i \(0.831845\pi\)
\(360\) 0 0
\(361\) 49.7285 0.137752
\(362\) −63.6802 −0.175912
\(363\) 0 0
\(364\) −139.861 −0.384234
\(365\) −75.1325 + 91.3441i −0.205842 + 0.250258i
\(366\) 0 0
\(367\) 262.812i 0.716108i −0.933701 0.358054i \(-0.883440\pi\)
0.933701 0.358054i \(-0.116560\pi\)
\(368\) −30.1691 −0.0819812
\(369\) 0 0
\(370\) 108.101 131.427i 0.292165 0.355207i
\(371\) 27.1860i 0.0732776i
\(372\) 0 0
\(373\) 312.640i 0.838178i −0.907945 0.419089i \(-0.862350\pi\)
0.907945 0.419089i \(-0.137650\pi\)
\(374\) 59.6121i 0.159391i
\(375\) 0 0
\(376\) 381.222 1.01389
\(377\) 474.400 1.25835
\(378\) 0 0
\(379\) 256.518 0.676830 0.338415 0.940997i \(-0.390109\pi\)
0.338415 + 0.940997i \(0.390109\pi\)
\(380\) 291.157 + 239.483i 0.766203 + 0.630218i
\(381\) 0 0
\(382\) 77.3963i 0.202608i
\(383\) −38.8290 −0.101381 −0.0506906 0.998714i \(-0.516142\pi\)
−0.0506906 + 0.998714i \(0.516142\pi\)
\(384\) 0 0
\(385\) −98.5879 81.0906i −0.256073 0.210625i
\(386\) 68.9559i 0.178642i
\(387\) 0 0
\(388\) 232.045i 0.598054i
\(389\) 307.000i 0.789203i −0.918852 0.394601i \(-0.870883\pi\)
0.918852 0.394601i \(-0.129117\pi\)
\(390\) 0 0
\(391\) −28.9677 −0.0740862
\(392\) −168.794 −0.430597
\(393\) 0 0
\(394\) −98.6997 −0.250507
\(395\) −133.372 109.702i −0.337652 0.277726i
\(396\) 0 0
\(397\) 47.0129i 0.118420i −0.998246 0.0592102i \(-0.981142\pi\)
0.998246 0.0592102i \(-0.0188582\pi\)
\(398\) 23.8970 0.0600426
\(399\) 0 0
\(400\) 61.3658 + 312.093i 0.153414 + 0.780232i
\(401\) 568.644i 1.41806i −0.705176 0.709032i \(-0.749132\pi\)
0.705176 0.709032i \(-0.250868\pi\)
\(402\) 0 0
\(403\) 400.130i 0.992878i
\(404\) 510.072i 1.26255i
\(405\) 0 0
\(406\) −51.0747 −0.125800
\(407\) −593.955 −1.45935
\(408\) 0 0
\(409\) −562.140 −1.37443 −0.687213 0.726456i \(-0.741166\pi\)
−0.687213 + 0.726456i \(0.741166\pi\)
\(410\) 66.9466 81.3919i 0.163284 0.198517i
\(411\) 0 0
\(412\) 404.790i 0.982501i
\(413\) −161.855 −0.391900
\(414\) 0 0
\(415\) −290.953 239.315i −0.701092 0.576663i
\(416\) 313.314i 0.753158i
\(417\) 0 0
\(418\) 98.8960i 0.236593i
\(419\) 208.057i 0.496557i 0.968689 + 0.248279i \(0.0798648\pi\)
−0.968689 + 0.248279i \(0.920135\pi\)
\(420\) 0 0
\(421\) −394.471 −0.936987 −0.468493 0.883467i \(-0.655203\pi\)
−0.468493 + 0.883467i \(0.655203\pi\)
\(422\) −73.0846 −0.173186
\(423\) 0 0
\(424\) 40.1166 0.0946147
\(425\) 58.9221 + 299.665i 0.138640 + 0.705094i
\(426\) 0 0
\(427\) 42.8977i 0.100463i
\(428\) −238.105 −0.556321
\(429\) 0 0
\(430\) 113.532 138.029i 0.264027 0.320998i
\(431\) 216.515i 0.502355i −0.967941 0.251177i \(-0.919182\pi\)
0.967941 0.251177i \(-0.0808177\pi\)
\(432\) 0 0
\(433\) 614.024i 1.41807i −0.705173 0.709035i \(-0.749131\pi\)
0.705173 0.709035i \(-0.250869\pi\)
\(434\) 43.0787i 0.0992597i
\(435\) 0 0
\(436\) 55.1120 0.126404
\(437\) −48.0572 −0.109971
\(438\) 0 0
\(439\) 519.701 1.18383 0.591915 0.806000i \(-0.298372\pi\)
0.591915 + 0.806000i \(0.298372\pi\)
\(440\) −119.660 + 145.480i −0.271955 + 0.330636i
\(441\) 0 0
\(442\) 87.7775i 0.198592i
\(443\) 501.649 1.13239 0.566196 0.824271i \(-0.308415\pi\)
0.566196 + 0.824271i \(0.308415\pi\)
\(444\) 0 0
\(445\) −92.5370 + 112.504i −0.207948 + 0.252818i
\(446\) 30.7784i 0.0690099i
\(447\) 0 0
\(448\) 107.062i 0.238978i
\(449\) 166.389i 0.370576i 0.982684 + 0.185288i \(0.0593218\pi\)
−0.982684 + 0.185288i \(0.940678\pi\)
\(450\) 0 0
\(451\) −367.834 −0.815596
\(452\) −308.072 −0.681575
\(453\) 0 0
\(454\) 198.075 0.436289
\(455\) −145.169 119.404i −0.319052 0.262427i
\(456\) 0 0
\(457\) 832.042i 1.82066i −0.413883 0.910330i \(-0.635828\pi\)
0.413883 0.910330i \(-0.364172\pi\)
\(458\) 35.7905 0.0781452
\(459\) 0 0
\(460\) −34.0668 28.0207i −0.0740582 0.0609145i
\(461\) 434.267i 0.942012i −0.882130 0.471006i \(-0.843891\pi\)
0.882130 0.471006i \(-0.156109\pi\)
\(462\) 0 0
\(463\) 174.053i 0.375924i −0.982176 0.187962i \(-0.939812\pi\)
0.982176 0.187962i \(-0.0601882\pi\)
\(464\) 444.180i 0.957285i
\(465\) 0 0
\(466\) −149.319 −0.320427
\(467\) −134.443 −0.287886 −0.143943 0.989586i \(-0.545978\pi\)
−0.143943 + 0.989586i \(0.545978\pi\)
\(468\) 0 0
\(469\) 43.0615 0.0918155
\(470\) 190.679 + 156.837i 0.405699 + 0.333696i
\(471\) 0 0
\(472\) 238.839i 0.506014i
\(473\) −623.793 −1.31880
\(474\) 0 0
\(475\) 97.7514 + 497.142i 0.205792 + 1.04661i
\(476\) 125.737i 0.264154i
\(477\) 0 0
\(478\) 194.802i 0.407535i
\(479\) 712.567i 1.48761i 0.668395 + 0.743806i \(0.266982\pi\)
−0.668395 + 0.743806i \(0.733018\pi\)
\(480\) 0 0
\(481\) −874.586 −1.81827
\(482\) 196.239 0.407134
\(483\) 0 0
\(484\) −133.339 −0.275494
\(485\) −198.105 + 240.851i −0.408463 + 0.496599i
\(486\) 0 0
\(487\) 208.661i 0.428462i 0.976783 + 0.214231i \(0.0687246\pi\)
−0.976783 + 0.214231i \(0.931275\pi\)
\(488\) 63.3014 0.129716
\(489\) 0 0
\(490\) −84.4269 69.4429i −0.172300 0.141720i
\(491\) 411.573i 0.838233i −0.907932 0.419117i \(-0.862340\pi\)
0.907932 0.419117i \(-0.137660\pi\)
\(492\) 0 0
\(493\) 426.493i 0.865096i
\(494\) 145.622i 0.294782i
\(495\) 0 0
\(496\) 374.641 0.755326
\(497\) 147.174 0.296125
\(498\) 0 0
\(499\) −334.598 −0.670537 −0.335269 0.942123i \(-0.608827\pi\)
−0.335269 + 0.942123i \(0.608827\pi\)
\(500\) −220.574 + 409.410i −0.441148 + 0.818819i
\(501\) 0 0
\(502\) 162.048i 0.322804i
\(503\) −85.4624 −0.169905 −0.0849527 0.996385i \(-0.527074\pi\)
−0.0849527 + 0.996385i \(0.527074\pi\)
\(504\) 0 0
\(505\) 435.466 529.428i 0.862309 1.04837i
\(506\) 11.5713i 0.0228682i
\(507\) 0 0
\(508\) 136.646i 0.268989i
\(509\) 164.144i 0.322483i 0.986915 + 0.161241i \(0.0515498\pi\)
−0.986915 + 0.161241i \(0.948450\pi\)
\(510\) 0 0
\(511\) −65.4427 −0.128068
\(512\) 501.116 0.978743
\(513\) 0 0
\(514\) −161.783 −0.314752
\(515\) 345.583 420.151i 0.671035 0.815828i
\(516\) 0 0
\(517\) 861.731i 1.66679i
\(518\) 94.1595 0.181775
\(519\) 0 0
\(520\) −176.197 + 214.216i −0.338841 + 0.411954i
\(521\) 954.386i 1.83184i −0.401366 0.915918i \(-0.631464\pi\)
0.401366 0.915918i \(-0.368536\pi\)
\(522\) 0 0
\(523\) 53.5836i 0.102454i 0.998687 + 0.0512271i \(0.0163132\pi\)
−0.998687 + 0.0512271i \(0.983687\pi\)
\(524\) 215.545i 0.411346i
\(525\) 0 0
\(526\) −77.5659 −0.147464
\(527\) 359.723 0.682586
\(528\) 0 0
\(529\) −523.377 −0.989371
\(530\) 20.0654 + 16.5042i 0.0378593 + 0.0311401i
\(531\) 0 0
\(532\) 208.597i 0.392100i
\(533\) −541.627 −1.01619
\(534\) 0 0
\(535\) −247.141 203.279i −0.461945 0.379960i
\(536\) 63.5431i 0.118551i
\(537\) 0 0
\(538\) 146.017i 0.271406i
\(539\) 381.550i 0.707884i
\(540\) 0 0
\(541\) −502.886 −0.929549 −0.464774 0.885429i \(-0.653865\pi\)
−0.464774 + 0.885429i \(0.653865\pi\)
\(542\) 161.187 0.297393
\(543\) 0 0
\(544\) 281.674 0.517782
\(545\) 57.2034 + 47.0510i 0.104960 + 0.0863321i
\(546\) 0 0
\(547\) 730.024i 1.33460i −0.744791 0.667298i \(-0.767451\pi\)
0.744791 0.667298i \(-0.232549\pi\)
\(548\) −214.216 −0.390905
\(549\) 0 0
\(550\) −119.703 + 23.5368i −0.217641 + 0.0427941i
\(551\) 707.548i 1.28412i
\(552\) 0 0
\(553\) 95.5535i 0.172791i
\(554\) 217.100i 0.391878i
\(555\) 0 0
\(556\) 225.638 0.405823
\(557\) 419.491 0.753125 0.376562 0.926391i \(-0.377106\pi\)
0.376562 + 0.926391i \(0.377106\pi\)
\(558\) 0 0
\(559\) −918.522 −1.64315
\(560\) −111.798 + 135.921i −0.199639 + 0.242717i
\(561\) 0 0
\(562\) 54.9066i 0.0976985i
\(563\) 635.844 1.12939 0.564693 0.825301i \(-0.308995\pi\)
0.564693 + 0.825301i \(0.308995\pi\)
\(564\) 0 0
\(565\) −319.763 263.012i −0.565952 0.465507i
\(566\) 148.840i 0.262968i
\(567\) 0 0
\(568\) 217.175i 0.382351i
\(569\) 885.934i 1.55700i 0.627644 + 0.778501i \(0.284020\pi\)
−0.627644 + 0.778501i \(0.715980\pi\)
\(570\) 0 0
\(571\) 926.192 1.62205 0.811026 0.585010i \(-0.198910\pi\)
0.811026 + 0.585010i \(0.198910\pi\)
\(572\) 466.520 0.815595
\(573\) 0 0
\(574\) 58.3125 0.101590
\(575\) −11.4374 58.1680i −0.0198911 0.101162i
\(576\) 0 0
\(577\) 261.287i 0.452837i −0.974030 0.226418i \(-0.927298\pi\)
0.974030 0.226418i \(-0.0727016\pi\)
\(578\) −73.9073 −0.127867
\(579\) 0 0
\(580\) 412.549 501.567i 0.711292 0.864770i
\(581\) 208.451i 0.358780i
\(582\) 0 0
\(583\) 90.6815i 0.155543i
\(584\) 96.5696i 0.165359i
\(585\) 0 0
\(586\) 216.100 0.368772
\(587\) −603.386 −1.02792 −0.513958 0.857816i \(-0.671821\pi\)
−0.513958 + 0.857816i \(0.671821\pi\)
\(588\) 0 0
\(589\) 596.778 1.01320
\(590\) −98.2598 + 119.462i −0.166542 + 0.202477i
\(591\) 0 0
\(592\) 818.874i 1.38323i
\(593\) −314.000 −0.529511 −0.264756 0.964316i \(-0.585291\pi\)
−0.264756 + 0.964316i \(0.585291\pi\)
\(594\) 0 0
\(595\) −107.346 + 130.509i −0.180414 + 0.219342i
\(596\) 876.826i 1.47118i
\(597\) 0 0
\(598\) 17.0385i 0.0284925i
\(599\) 753.712i 1.25828i 0.777290 + 0.629142i \(0.216594\pi\)
−0.777290 + 0.629142i \(0.783406\pi\)
\(600\) 0 0
\(601\) −337.952 −0.562315 −0.281158 0.959662i \(-0.590718\pi\)
−0.281158 + 0.959662i \(0.590718\pi\)
\(602\) 98.8897 0.164269
\(603\) 0 0
\(604\) 55.1985 0.0913883
\(605\) −138.399 113.836i −0.228759 0.188159i
\(606\) 0 0
\(607\) 441.493i 0.727337i 0.931529 + 0.363668i \(0.118476\pi\)
−0.931529 + 0.363668i \(0.881524\pi\)
\(608\) 467.294 0.768576
\(609\) 0 0
\(610\) 31.6619 + 26.0426i 0.0519048 + 0.0426928i
\(611\) 1268.88i 2.07673i
\(612\) 0 0
\(613\) 406.010i 0.662332i 0.943572 + 0.331166i \(0.107442\pi\)
−0.943572 + 0.331166i \(0.892558\pi\)
\(614\) 92.0800i 0.149967i
\(615\) 0 0
\(616\) −104.228 −0.169201
\(617\) −895.709 −1.45172 −0.725858 0.687845i \(-0.758557\pi\)
−0.725858 + 0.687845i \(0.758557\pi\)
\(618\) 0 0
\(619\) 371.622 0.600358 0.300179 0.953883i \(-0.402954\pi\)
0.300179 + 0.953883i \(0.402954\pi\)
\(620\) 423.044 + 347.962i 0.682329 + 0.561230i
\(621\) 0 0
\(622\) 145.061i 0.233217i
\(623\) −80.6026 −0.129378
\(624\) 0 0
\(625\) −578.471 + 236.635i −0.925554 + 0.378615i
\(626\) 112.691i 0.180018i
\(627\) 0 0
\(628\) 547.671i 0.872087i
\(629\) 786.266i 1.25002i
\(630\) 0 0
\(631\) 150.820 0.239017 0.119508 0.992833i \(-0.461868\pi\)
0.119508 + 0.992833i \(0.461868\pi\)
\(632\) −141.002 −0.223105
\(633\) 0 0
\(634\) −128.033 −0.201945
\(635\) −116.660 + 141.832i −0.183716 + 0.223357i
\(636\) 0 0
\(637\) 561.823i 0.881983i
\(638\) 170.365 0.267029
\(639\) 0 0
\(640\) 435.173 + 357.939i 0.679958 + 0.559280i
\(641\) 203.184i 0.316980i −0.987361 0.158490i \(-0.949337\pi\)
0.987361 0.158490i \(-0.0506626\pi\)
\(642\) 0 0
\(643\) 49.3272i 0.0767142i −0.999264 0.0383571i \(-0.987788\pi\)
0.999264 0.0383571i \(-0.0122124\pi\)
\(644\) 24.4069i 0.0378988i
\(645\) 0 0
\(646\) 130.917 0.202657
\(647\) −1189.39 −1.83832 −0.919159 0.393887i \(-0.871130\pi\)
−0.919159 + 0.393887i \(0.871130\pi\)
\(648\) 0 0
\(649\) 539.882 0.831867
\(650\) −176.260 + 34.6574i −0.271169 + 0.0533191i
\(651\) 0 0
\(652\) 35.7949i 0.0549002i
\(653\) −341.212 −0.522530 −0.261265 0.965267i \(-0.584140\pi\)
−0.261265 + 0.965267i \(0.584140\pi\)
\(654\) 0 0
\(655\) 184.018 223.725i 0.280944 0.341564i
\(656\) 507.125i 0.773056i
\(657\) 0 0
\(658\) 136.610i 0.207614i
\(659\) 372.296i 0.564941i 0.959276 + 0.282471i \(0.0911540\pi\)
−0.959276 + 0.282471i \(0.908846\pi\)
\(660\) 0 0
\(661\) 332.442 0.502938 0.251469 0.967865i \(-0.419086\pi\)
0.251469 + 0.967865i \(0.419086\pi\)
\(662\) −105.192 −0.158900
\(663\) 0 0
\(664\) −307.598 −0.463250
\(665\) −178.086 + 216.513i −0.267799 + 0.325583i
\(666\) 0 0
\(667\) 82.7865i 0.124118i
\(668\) 309.084 0.462701
\(669\) 0 0
\(670\) 26.1420 31.7828i 0.0390180 0.0474371i
\(671\) 143.089i 0.213248i
\(672\) 0 0
\(673\) 227.346i 0.337809i 0.985632 + 0.168905i \(0.0540230\pi\)
−0.985632 + 0.168905i \(0.945977\pi\)
\(674\) 166.701i 0.247330i
\(675\) 0 0
\(676\) 58.1969 0.0860901
\(677\) 1061.47 1.56790 0.783952 0.620821i \(-0.213201\pi\)
0.783952 + 0.620821i \(0.213201\pi\)
\(678\) 0 0
\(679\) −172.555 −0.254132
\(680\) 192.583 + 158.404i 0.283211 + 0.232947i
\(681\) 0 0
\(682\) 143.693i 0.210694i
\(683\) 633.553 0.927604 0.463802 0.885939i \(-0.346485\pi\)
0.463802 + 0.885939i \(0.346485\pi\)
\(684\) 0 0
\(685\) −222.345 182.884i −0.324591 0.266983i
\(686\) 132.171i 0.192669i
\(687\) 0 0
\(688\) 860.011i 1.25002i
\(689\) 133.527i 0.193798i
\(690\) 0 0
\(691\) 1081.80 1.56555 0.782777 0.622303i \(-0.213803\pi\)
0.782777 + 0.622303i \(0.213803\pi\)
\(692\) −1.63383 −0.00236103
\(693\) 0 0
\(694\) 267.571 0.385549
\(695\) 234.200 + 192.635i 0.336979 + 0.277172i
\(696\) 0 0
\(697\) 486.931i 0.698609i
\(698\) −297.008 −0.425513
\(699\) 0 0
\(700\) −252.484 + 49.6451i −0.360691 + 0.0709216i
\(701\) 143.009i 0.204007i −0.994784 0.102003i \(-0.967475\pi\)
0.994784 0.102003i \(-0.0325253\pi\)
\(702\) 0 0
\(703\) 1304.41i 1.85549i
\(704\) 357.116i 0.507267i
\(705\) 0 0
\(706\) 127.861 0.181107
\(707\) 379.304 0.536498
\(708\) 0 0
\(709\) 849.083 1.19758 0.598789 0.800907i \(-0.295649\pi\)
0.598789 + 0.800907i \(0.295649\pi\)
\(710\) 89.3473 108.626i 0.125841 0.152995i
\(711\) 0 0
\(712\) 118.940i 0.167051i
\(713\) −69.8258 −0.0979324
\(714\) 0 0
\(715\) 484.224 + 398.284i 0.677236 + 0.557041i
\(716\) 382.081i 0.533633i
\(717\) 0 0
\(718\) 191.372i 0.266534i
\(719\) 155.493i 0.216263i −0.994137 0.108131i \(-0.965513\pi\)
0.994137 0.108131i \(-0.0344867\pi\)
\(720\) 0 0
\(721\) 301.014 0.417495
\(722\) 26.2960 0.0364211
\(723\) 0 0
\(724\) 448.031 0.618827
\(725\) 856.409 168.393i 1.18125 0.232266i
\(726\) 0 0
\(727\) 624.427i 0.858909i 0.903089 + 0.429454i \(0.141294\pi\)
−0.903089 + 0.429454i \(0.858706\pi\)
\(728\) −153.473 −0.210815
\(729\) 0 0
\(730\) −39.7294 + 48.3020i −0.0544238 + 0.0661671i
\(731\) 825.765i 1.12964i
\(732\) 0 0
\(733\) 453.649i 0.618893i 0.950917 + 0.309447i \(0.100144\pi\)
−0.950917 + 0.309447i \(0.899856\pi\)
\(734\) 138.972i 0.189336i
\(735\) 0 0
\(736\) −54.6757 −0.0742876
\(737\) −143.636 −0.194892
\(738\) 0 0
\(739\) 827.126 1.11925 0.559625 0.828746i \(-0.310945\pi\)
0.559625 + 0.828746i \(0.310945\pi\)
\(740\) −760.560 + 924.669i −1.02778 + 1.24955i
\(741\) 0 0
\(742\) 14.3757i 0.0193743i
\(743\) −602.966 −0.811529 −0.405765 0.913978i \(-0.632995\pi\)
−0.405765 + 0.913978i \(0.632995\pi\)
\(744\) 0 0
\(745\) 748.576 910.100i 1.00480 1.22161i
\(746\) 165.321i 0.221611i
\(747\) 0 0
\(748\) 419.409i 0.560707i
\(749\) 177.062i 0.236398i
\(750\) 0 0
\(751\) −344.963 −0.459338 −0.229669 0.973269i \(-0.573764\pi\)
−0.229669 + 0.973269i \(0.573764\pi\)
\(752\) −1188.05 −1.57986
\(753\) 0 0
\(754\) 250.858 0.332704
\(755\) 57.2932 + 47.1248i 0.0758850 + 0.0624170i
\(756\) 0 0
\(757\) 1248.67i 1.64950i −0.565501 0.824748i \(-0.691317\pi\)
0.565501 0.824748i \(-0.308683\pi\)
\(758\) 135.645 0.178951
\(759\) 0 0
\(760\) 319.494 + 262.791i 0.420387 + 0.345777i
\(761\) 1108.86i 1.45710i −0.684990 0.728552i \(-0.740193\pi\)
0.684990 0.728552i \(-0.259807\pi\)
\(762\) 0 0
\(763\) 40.9829i 0.0537128i
\(764\) 544.532i 0.712738i
\(765\) 0 0
\(766\) −20.5324 −0.0268047
\(767\) 794.964 1.03646
\(768\) 0 0
\(769\) −1152.33 −1.49848 −0.749239 0.662300i \(-0.769581\pi\)
−0.749239 + 0.662300i \(0.769581\pi\)
\(770\) −52.1324 42.8800i −0.0677045 0.0556883i
\(771\) 0 0
\(772\) 485.148i 0.628430i
\(773\) 1116.83 1.44480 0.722399 0.691476i \(-0.243039\pi\)
0.722399 + 0.691476i \(0.243039\pi\)
\(774\) 0 0
\(775\) 142.030 + 722.334i 0.183265 + 0.932044i
\(776\) 254.629i 0.328130i
\(777\) 0 0
\(778\) 162.339i 0.208662i
\(779\) 807.815i 1.03699i
\(780\) 0 0
\(781\) −490.913 −0.628570
\(782\) −15.3179 −0.0195881
\(783\) 0 0
\(784\) 526.035 0.670963
\(785\) −467.565 + 568.454i −0.595624 + 0.724145i
\(786\) 0 0
\(787\) 1065.19i 1.35349i 0.736219 + 0.676743i \(0.236609\pi\)
−0.736219 + 0.676743i \(0.763391\pi\)
\(788\) 694.415 0.881237
\(789\) 0 0
\(790\) −70.5262 58.0093i −0.0892736 0.0734294i
\(791\) 229.091i 0.289622i
\(792\) 0 0
\(793\) 210.696i 0.265695i
\(794\) 24.8600i 0.0313098i
\(795\) 0 0
\(796\) −168.130 −0.211219
\(797\) 188.979 0.237113 0.118557 0.992947i \(-0.462173\pi\)
0.118557 + 0.992947i \(0.462173\pi\)
\(798\) 0 0
\(799\) −1140.74 −1.42771
\(800\) 111.214 + 565.609i 0.139017 + 0.707011i
\(801\) 0 0
\(802\) 300.694i 0.374930i
\(803\) 218.291 0.271844
\(804\) 0 0
\(805\) 20.8370 25.3331i 0.0258844 0.0314696i
\(806\) 211.585i 0.262513i
\(807\) 0 0
\(808\) 559.715i 0.692717i
\(809\) 1105.36i 1.36633i 0.730266 + 0.683163i \(0.239396\pi\)
−0.730266 + 0.683163i \(0.760604\pi\)
\(810\) 0 0
\(811\) 4.70248 0.00579838 0.00289919 0.999996i \(-0.499077\pi\)
0.00289919 + 0.999996i \(0.499077\pi\)
\(812\) 359.343 0.442541
\(813\) 0 0
\(814\) −314.078 −0.385845
\(815\) 30.5593 37.1533i 0.0374961 0.0455868i
\(816\) 0 0
\(817\) 1369.94i 1.67679i
\(818\) −297.255 −0.363392
\(819\) 0 0
\(820\) −471.011 + 572.644i −0.574404 + 0.698346i
\(821\) 876.894i 1.06808i −0.845459 0.534040i \(-0.820673\pi\)
0.845459 0.534040i \(-0.179327\pi\)
\(822\) 0 0
\(823\) 1145.71i 1.39211i −0.717986 0.696057i \(-0.754936\pi\)
0.717986 0.696057i \(-0.245064\pi\)
\(824\) 444.187i 0.539062i
\(825\) 0 0
\(826\) −85.5873 −0.103617
\(827\) −255.412 −0.308841 −0.154421 0.988005i \(-0.549351\pi\)
−0.154421 + 0.988005i \(0.549351\pi\)
\(828\) 0 0
\(829\) −829.155 −1.00019 −0.500093 0.865971i \(-0.666701\pi\)
−0.500093 + 0.865971i \(0.666701\pi\)
\(830\) −153.854 126.548i −0.185366 0.152467i
\(831\) 0 0
\(832\) 525.846i 0.632026i
\(833\) 505.088 0.606348
\(834\) 0 0
\(835\) 320.813 + 263.876i 0.384208 + 0.316019i
\(836\) 695.796i 0.832292i
\(837\) 0 0
\(838\) 110.019i 0.131288i
\(839\) 453.809i 0.540893i −0.962735 0.270446i \(-0.912829\pi\)
0.962735 0.270446i \(-0.0871713\pi\)
\(840\) 0 0
\(841\) −377.868 −0.449308
\(842\) −208.593 −0.247735
\(843\) 0 0
\(844\) 514.197 0.609238
\(845\) 60.4054 + 49.6847i 0.0714856 + 0.0587984i
\(846\) 0 0
\(847\) 99.1550i 0.117066i
\(848\) −125.021 −0.147430
\(849\) 0 0
\(850\) 31.1575 + 158.460i 0.0366559 + 0.186424i
\(851\) 152.622i 0.179344i
\(852\) 0 0
\(853\) 16.2753i 0.0190800i 0.999954 + 0.00954002i \(0.00303673\pi\)
−0.999954 + 0.00954002i \(0.996963\pi\)
\(854\) 22.6839i 0.0265620i
\(855\) 0 0
\(856\) −261.279 −0.305232
\(857\) 1061.70 1.23885 0.619427 0.785054i \(-0.287365\pi\)
0.619427 + 0.785054i \(0.287365\pi\)
\(858\) 0 0
\(859\) 1623.74 1.89027 0.945133 0.326686i \(-0.105932\pi\)
0.945133 + 0.326686i \(0.105932\pi\)
\(860\) −798.768 + 971.122i −0.928800 + 1.12921i
\(861\) 0 0
\(862\) 114.491i 0.132820i
\(863\) −687.358 −0.796475 −0.398238 0.917282i \(-0.630378\pi\)
−0.398238 + 0.917282i \(0.630378\pi\)
\(864\) 0 0
\(865\) −1.69583 1.39486i −0.00196050 0.00161255i
\(866\) 324.691i 0.374932i
\(867\) 0 0
\(868\) 303.086i 0.349177i
\(869\) 318.728i 0.366776i
\(870\) 0 0
\(871\) −211.501 −0.242825
\(872\) 60.4758 0.0693530
\(873\) 0 0
\(874\) −25.4122 −0.0290758
\(875\) −304.449 164.025i −0.347942 0.187457i
\(876\) 0 0
\(877\) 1553.91i 1.77185i −0.463832 0.885923i \(-0.653526\pi\)
0.463832 0.885923i \(-0.346474\pi\)
\(878\) 274.813 0.312999
\(879\) 0 0
\(880\) 372.913 453.379i 0.423765 0.515203i
\(881\) 452.136i 0.513208i 0.966517 + 0.256604i \(0.0826036\pi\)
−0.966517 + 0.256604i \(0.917396\pi\)
\(882\) 0 0
\(883\) 1014.46i 1.14888i 0.818546 + 0.574441i \(0.194781\pi\)
−0.818546 + 0.574441i \(0.805219\pi\)
\(884\) 617.570i 0.698609i
\(885\) 0 0
\(886\) 265.268 0.299399
\(887\) 208.120 0.234634 0.117317 0.993095i \(-0.462571\pi\)
0.117317 + 0.993095i \(0.462571\pi\)
\(888\) 0 0
\(889\) −101.614 −0.114302
\(890\) −48.9328 + 59.4912i −0.0549806 + 0.0668441i
\(891\) 0 0
\(892\) 216.545i 0.242764i
\(893\) −1892.48 −2.11924
\(894\) 0 0
\(895\) 326.196 396.580i 0.364464 0.443106i
\(896\) 311.776i 0.347964i
\(897\) 0 0
\(898\) 87.9849i 0.0979787i
\(899\) 1028.05i 1.14355i
\(900\) 0 0
\(901\) −120.042 −0.133232
\(902\) −194.507 −0.215640
\(903\) 0 0
\(904\) −338.055 −0.373955
\(905\) 465.033 + 382.499i 0.513848 + 0.422651i
\(906\) 0 0
\(907\) 237.481i 0.261832i −0.991393 0.130916i \(-0.958208\pi\)
0.991393 0.130916i \(-0.0417918\pi\)
\(908\) −1393.59 −1.53479
\(909\) 0 0
\(910\) −76.7639 63.1399i −0.0843559 0.0693845i
\(911\) 1348.08i 1.47979i −0.672725 0.739893i \(-0.734876\pi\)
0.672725 0.739893i \(-0.265124\pi\)
\(912\) 0 0
\(913\) 695.308i 0.761564i
\(914\) 439.976i 0.481375i
\(915\) 0 0
\(916\) −251.809 −0.274900
\(917\) 160.286 0.174793
\(918\) 0 0
\(919\) −153.887 −0.167450 −0.0837250 0.996489i \(-0.526682\pi\)
−0.0837250 + 0.996489i \(0.526682\pi\)
\(920\) −37.3824 30.7478i −0.0406330 0.0334215i
\(921\) 0 0
\(922\) 229.637i 0.249064i
\(923\) −722.859 −0.783162
\(924\) 0 0
\(925\) −1578.84 + 310.443i −1.70686 + 0.335614i
\(926\) 92.0376i 0.0993926i
\(927\) 0 0
\(928\) 804.992i 0.867448i
\(929\) 768.443i 0.827172i 0.910465 + 0.413586i \(0.135724\pi\)
−0.910465 + 0.413586i \(0.864276\pi\)
\(930\) 0 0
\(931\) 837.937 0.900039
\(932\) 1050.55 1.12720
\(933\) 0 0
\(934\) −71.0922 −0.0761159
\(935\) 358.064 435.325i 0.382956 0.465588i
\(936\) 0 0
\(937\) 359.563i 0.383738i −0.981421 0.191869i \(-0.938545\pi\)
0.981421 0.191869i \(-0.0614549\pi\)
\(938\) 22.7705 0.0242756
\(939\) 0 0
\(940\) −1341.54 1103.45i −1.42717 1.17388i
\(941\) 211.896i 0.225182i 0.993641 + 0.112591i \(0.0359149\pi\)
−0.993641 + 0.112591i \(0.964085\pi\)
\(942\) 0 0
\(943\) 94.5182i 0.100231i
\(944\) 744.325i 0.788479i
\(945\) 0 0
\(946\) −329.856 −0.348685
\(947\) −1546.93 −1.63351 −0.816754 0.576986i \(-0.804229\pi\)
−0.816754 + 0.576986i \(0.804229\pi\)
\(948\) 0 0
\(949\) 321.428 0.338702
\(950\) 51.6901 + 262.884i 0.0544106 + 0.276720i
\(951\) 0 0
\(952\) 137.975i 0.144931i
\(953\) 1453.97 1.52568 0.762838 0.646589i \(-0.223805\pi\)
0.762838 + 0.646589i \(0.223805\pi\)
\(954\) 0 0
\(955\) 464.885 565.196i 0.486791 0.591828i
\(956\) 1370.55i 1.43363i
\(957\) 0 0
\(958\) 376.799i 0.393318i
\(959\) 159.297i 0.166108i
\(960\) 0 0
\(961\) −93.8983 −0.0977089
\(962\) −462.473 −0.480741
\(963\) 0 0
\(964\) −1380.66 −1.43222
\(965\) 414.188 503.559i 0.429210 0.521823i
\(966\) 0 0
\(967\) 382.597i 0.395654i 0.980237 + 0.197827i \(0.0633884\pi\)
−0.980237 + 0.197827i \(0.936612\pi\)
\(968\) −146.317 −0.151154
\(969\) 0 0
\(970\) −104.756 + 127.360i −0.107996 + 0.131299i
\(971\) 1474.96i 1.51901i 0.650503 + 0.759504i \(0.274558\pi\)
−0.650503 + 0.759504i \(0.725442\pi\)
\(972\) 0 0
\(973\) 167.791i 0.172447i
\(974\) 110.338i 0.113284i
\(975\) 0 0
\(976\) −197.275 −0.202126
\(977\) −1417.81 −1.45119 −0.725593 0.688124i \(-0.758435\pi\)
−0.725593 + 0.688124i \(0.758435\pi\)
\(978\) 0 0
\(979\) 268.858 0.274625
\(980\) 593.997 + 488.575i 0.606119 + 0.498546i
\(981\) 0 0
\(982\) 217.636i 0.221625i
\(983\) −444.320 −0.452004 −0.226002 0.974127i \(-0.572566\pi\)
−0.226002 + 0.974127i \(0.572566\pi\)
\(984\) 0 0
\(985\) 720.766 + 592.845i 0.731743 + 0.601874i
\(986\) 225.526i 0.228728i
\(987\) 0 0
\(988\) 1024.54i 1.03699i
\(989\) 160.289i 0.162072i
\(990\) 0 0
\(991\) 1177.77 1.18847 0.594235 0.804291i \(-0.297455\pi\)
0.594235 + 0.804291i \(0.297455\pi\)
\(992\) 678.966 0.684442
\(993\) 0 0
\(994\) 77.8243 0.0782940
\(995\) −174.511 143.539i −0.175387 0.144260i
\(996\) 0 0
\(997\) 101.208i 0.101513i 0.998711 + 0.0507563i \(0.0161632\pi\)
−0.998711 + 0.0507563i \(0.983837\pi\)
\(998\) −176.933 −0.177287
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.a.404.11 20
3.2 odd 2 inner 405.3.d.a.404.10 20
5.4 even 2 inner 405.3.d.a.404.9 20
9.2 odd 6 45.3.h.a.14.6 yes 20
9.4 even 3 45.3.h.a.29.5 yes 20
9.5 odd 6 135.3.h.a.89.6 20
9.7 even 3 135.3.h.a.44.5 20
15.14 odd 2 inner 405.3.d.a.404.12 20
45.2 even 12 225.3.j.e.176.5 20
45.4 even 6 45.3.h.a.29.6 yes 20
45.7 odd 12 675.3.j.e.476.6 20
45.13 odd 12 225.3.j.e.101.6 20
45.14 odd 6 135.3.h.a.89.5 20
45.22 odd 12 225.3.j.e.101.5 20
45.23 even 12 675.3.j.e.251.5 20
45.29 odd 6 45.3.h.a.14.5 20
45.32 even 12 675.3.j.e.251.6 20
45.34 even 6 135.3.h.a.44.6 20
45.38 even 12 225.3.j.e.176.6 20
45.43 odd 12 675.3.j.e.476.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.5 20 45.29 odd 6
45.3.h.a.14.6 yes 20 9.2 odd 6
45.3.h.a.29.5 yes 20 9.4 even 3
45.3.h.a.29.6 yes 20 45.4 even 6
135.3.h.a.44.5 20 9.7 even 3
135.3.h.a.44.6 20 45.34 even 6
135.3.h.a.89.5 20 45.14 odd 6
135.3.h.a.89.6 20 9.5 odd 6
225.3.j.e.101.5 20 45.22 odd 12
225.3.j.e.101.6 20 45.13 odd 12
225.3.j.e.176.5 20 45.2 even 12
225.3.j.e.176.6 20 45.38 even 12
405.3.d.a.404.9 20 5.4 even 2 inner
405.3.d.a.404.10 20 3.2 odd 2 inner
405.3.d.a.404.11 20 1.1 even 1 trivial
405.3.d.a.404.12 20 15.14 odd 2 inner
675.3.j.e.251.5 20 45.23 even 12
675.3.j.e.251.6 20 45.32 even 12
675.3.j.e.476.5 20 45.43 odd 12
675.3.j.e.476.6 20 45.7 odd 12