Properties

Label 45.3.h.a.29.6
Level $45$
Weight $3$
Character 45.29
Analytic conductor $1.226$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,3,Mod(14,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.14"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 45.h (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.22616118962\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.6
Root \(0.315300 + 1.70311i\) of defining polynomial
Character \(\chi\) \(=\) 45.29
Dual form 45.3.h.a.14.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.264396 - 0.457947i) q^{2} +(2.94987 - 0.546115i) q^{3} +(1.86019 + 3.22194i) q^{4} +(-4.68146 - 1.75610i) q^{5} +(0.529842 - 1.49528i) q^{6} +(-2.39593 - 1.38329i) q^{7} +4.08247 q^{8} +(8.40352 - 3.22194i) q^{9} +(-2.04196 + 1.67955i) q^{10} +(-7.99186 - 4.61410i) q^{11} +(7.24688 + 8.48845i) q^{12} +(-11.7678 + 6.79417i) q^{13} +(-1.26695 + 0.731472i) q^{14} +(-14.7688 - 2.62366i) q^{15} +(-6.36137 + 11.0182i) q^{16} -12.2161 q^{17} +(0.746375 - 4.70023i) q^{18} +20.2664 q^{19} +(-3.05035 - 18.3501i) q^{20} +(-7.82313 - 2.77208i) q^{21} +(-4.22603 + 2.43990i) q^{22} +(-1.18564 - 2.05358i) q^{23} +(12.0428 - 2.22950i) q^{24} +(18.8322 + 16.4423i) q^{25} +7.18539i q^{26} +(23.0298 - 14.0936i) q^{27} -10.2927i q^{28} +(30.2349 + 17.4561i) q^{29} +(-5.10629 + 6.06962i) q^{30} +(-14.7233 - 25.5015i) q^{31} +(11.5288 + 19.9684i) q^{32} +(-26.0948 - 9.24654i) q^{33} +(-3.22989 + 5.59433i) q^{34} +(8.78726 + 10.6833i) q^{35} +(26.0131 + 21.0822i) q^{36} -64.3630i q^{37} +(5.35836 - 9.28095i) q^{38} +(-31.0032 + 26.4685i) q^{39} +(-19.1119 - 7.16923i) q^{40} +(34.5195 - 19.9299i) q^{41} +(-3.33787 + 2.84965i) q^{42} +(58.5402 + 33.7982i) q^{43} -34.3324i q^{44} +(-44.9988 + 0.325975i) q^{45} -1.25391 q^{46} +(-46.6901 + 80.8696i) q^{47} +(-12.7480 + 35.9764i) q^{48} +(-20.6730 - 35.8067i) q^{49} +(12.5088 - 4.27688i) q^{50} +(-36.0360 + 6.67141i) q^{51} +(-43.7808 - 25.2769i) q^{52} +9.82656 q^{53} +(-0.365157 - 14.2727i) q^{54} +(29.3108 + 35.6353i) q^{55} +(-9.78131 - 5.64724i) q^{56} +(59.7834 - 11.0678i) q^{57} +(15.9880 - 9.23066i) q^{58} +(-50.6655 + 29.2517i) q^{59} +(-19.0194 - 52.4646i) q^{60} +(7.75283 - 13.4283i) q^{61} -15.5711 q^{62} +(-24.5911 - 3.90496i) q^{63} -38.6984 q^{64} +(67.0220 - 11.1411i) q^{65} +(-11.1338 + 9.50529i) q^{66} +(-13.4796 + 7.78243i) q^{67} +(-22.7243 - 39.3596i) q^{68} +(-4.61897 - 5.41031i) q^{69} +(7.21571 - 1.19947i) q^{70} +53.1970i q^{71} +(34.3071 - 13.1535i) q^{72} +23.6547i q^{73} +(-29.4748 - 17.0173i) q^{74} +(64.5320 + 38.2180i) q^{75} +(37.6994 + 65.2973i) q^{76} +(12.7653 + 22.1101i) q^{77} +(3.92405 + 21.1960i) q^{78} +(-17.2692 + 29.9112i) q^{79} +(49.1297 - 40.4102i) q^{80} +(60.2382 - 54.1513i) q^{81} -21.0775i q^{82} +(37.6730 - 65.2516i) q^{83} +(-5.62102 - 30.3623i) q^{84} +(57.1893 + 21.4527i) q^{85} +(30.9555 - 17.8722i) q^{86} +(98.7223 + 34.9817i) q^{87} +(-32.6265 - 18.8369i) q^{88} -29.1344i q^{89} +(-11.7482 + 20.6932i) q^{90} +37.5932 q^{91} +(4.41101 - 7.64010i) q^{92} +(-57.3586 - 67.1856i) q^{93} +(24.6893 + 42.7631i) q^{94} +(-94.8766 - 35.5899i) q^{95} +(44.9135 + 52.6083i) q^{96} +(-54.0151 - 31.1857i) q^{97} -21.8634 q^{98} +(-82.0261 - 13.0254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} - 12 q^{5} + 12 q^{6} - 18 q^{9} + 4 q^{10} - 24 q^{11} + 30 q^{14} + 24 q^{15} - 26 q^{16} - 8 q^{19} + 144 q^{20} - 96 q^{21} - 102 q^{24} + 2 q^{25} - 114 q^{29} - 48 q^{30} + 28 q^{31}+ \cdots - 468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.264396 0.457947i 0.132198 0.228973i −0.792326 0.610098i \(-0.791130\pi\)
0.924524 + 0.381125i \(0.124463\pi\)
\(3\) 2.94987 0.546115i 0.983291 0.182038i
\(4\) 1.86019 + 3.22194i 0.465047 + 0.805486i
\(5\) −4.68146 1.75610i −0.936293 0.351221i
\(6\) 0.529842 1.49528i 0.0883070 0.249213i
\(7\) −2.39593 1.38329i −0.342276 0.197613i 0.319002 0.947754i \(-0.396652\pi\)
−0.661278 + 0.750141i \(0.729986\pi\)
\(8\) 4.08247 0.510309
\(9\) 8.40352 3.22194i 0.933724 0.357994i
\(10\) −2.04196 + 1.67955i −0.204196 + 0.167955i
\(11\) −7.99186 4.61410i −0.726533 0.419464i 0.0906197 0.995886i \(-0.471115\pi\)
−0.817152 + 0.576422i \(0.804449\pi\)
\(12\) 7.24688 + 8.48845i 0.603907 + 0.707371i
\(13\) −11.7678 + 6.79417i −0.905218 + 0.522628i −0.878890 0.477025i \(-0.841715\pi\)
−0.0263288 + 0.999653i \(0.508382\pi\)
\(14\) −1.26695 + 0.731472i −0.0904962 + 0.0522480i
\(15\) −14.7688 2.62366i −0.984584 0.174911i
\(16\) −6.36137 + 11.0182i −0.397586 + 0.688639i
\(17\) −12.2161 −0.718595 −0.359297 0.933223i \(-0.616984\pi\)
−0.359297 + 0.933223i \(0.616984\pi\)
\(18\) 0.746375 4.70023i 0.0414653 0.261124i
\(19\) 20.2664 1.06665 0.533327 0.845909i \(-0.320941\pi\)
0.533327 + 0.845909i \(0.320941\pi\)
\(20\) −3.05035 18.3501i −0.152517 0.917505i
\(21\) −7.82313 2.77208i −0.372530 0.132004i
\(22\) −4.22603 + 2.43990i −0.192092 + 0.110904i
\(23\) −1.18564 2.05358i −0.0515494 0.0892861i 0.839099 0.543978i \(-0.183083\pi\)
−0.890649 + 0.454692i \(0.849749\pi\)
\(24\) 12.0428 2.22950i 0.501782 0.0928958i
\(25\) 18.8322 + 16.4423i 0.753288 + 0.657690i
\(26\) 7.18539i 0.276361i
\(27\) 23.0298 14.0936i 0.852954 0.521986i
\(28\) 10.2927i 0.367598i
\(29\) 30.2349 + 17.4561i 1.04258 + 0.601936i 0.920564 0.390592i \(-0.127730\pi\)
0.122020 + 0.992528i \(0.461063\pi\)
\(30\) −5.10629 + 6.06962i −0.170210 + 0.202321i
\(31\) −14.7233 25.5015i −0.474945 0.822629i 0.524643 0.851322i \(-0.324199\pi\)
−0.999588 + 0.0286933i \(0.990865\pi\)
\(32\) 11.5288 + 19.9684i 0.360274 + 0.624013i
\(33\) −26.0948 9.24654i −0.790752 0.280198i
\(34\) −3.22989 + 5.59433i −0.0949967 + 0.164539i
\(35\) 8.78726 + 10.6833i 0.251065 + 0.305238i
\(36\) 26.0131 + 21.0822i 0.722585 + 0.585617i
\(37\) 64.3630i 1.73954i −0.493457 0.869770i \(-0.664267\pi\)
0.493457 0.869770i \(-0.335733\pi\)
\(38\) 5.35836 9.28095i 0.141009 0.244235i
\(39\) −31.0032 + 26.4685i −0.794955 + 0.678680i
\(40\) −19.1119 7.16923i −0.477798 0.179231i
\(41\) 34.5195 19.9299i 0.841940 0.486094i −0.0159834 0.999872i \(-0.505088\pi\)
0.857923 + 0.513778i \(0.171755\pi\)
\(42\) −3.33787 + 2.84965i −0.0794730 + 0.0678488i
\(43\) 58.5402 + 33.7982i 1.36140 + 0.786004i 0.989810 0.142393i \(-0.0454796\pi\)
0.371589 + 0.928397i \(0.378813\pi\)
\(44\) 34.3324i 0.780282i
\(45\) −44.9988 + 0.325975i −0.999974 + 0.00724389i
\(46\) −1.25391 −0.0272588
\(47\) −46.6901 + 80.8696i −0.993406 + 1.72063i −0.397414 + 0.917639i \(0.630092\pi\)
−0.595992 + 0.802991i \(0.703241\pi\)
\(48\) −12.7480 + 35.9764i −0.265584 + 0.749509i
\(49\) −20.6730 35.8067i −0.421898 0.730749i
\(50\) 12.5088 4.27688i 0.250177 0.0855377i
\(51\) −36.0360 + 6.67141i −0.706588 + 0.130812i
\(52\) −43.7808 25.2769i −0.841939 0.486094i
\(53\) 9.82656 0.185407 0.0927034 0.995694i \(-0.470449\pi\)
0.0927034 + 0.995694i \(0.470449\pi\)
\(54\) −0.365157 14.2727i −0.00676216 0.264309i
\(55\) 29.3108 + 35.6353i 0.532923 + 0.647914i
\(56\) −9.78131 5.64724i −0.174666 0.100844i
\(57\) 59.7834 11.0678i 1.04883 0.194172i
\(58\) 15.9880 9.23066i 0.275655 0.159149i
\(59\) −50.6655 + 29.2517i −0.858737 + 0.495792i −0.863589 0.504196i \(-0.831789\pi\)
0.00485217 + 0.999988i \(0.498456\pi\)
\(60\) −19.0194 52.4646i −0.316990 0.874411i
\(61\) 7.75283 13.4283i 0.127096 0.220136i −0.795455 0.606013i \(-0.792768\pi\)
0.922550 + 0.385877i \(0.126101\pi\)
\(62\) −15.5711 −0.251147
\(63\) −24.5911 3.90496i −0.390335 0.0619834i
\(64\) −38.6984 −0.604662
\(65\) 67.0220 11.1411i 1.03111 0.171402i
\(66\) −11.1338 + 9.50529i −0.168694 + 0.144019i
\(67\) −13.4796 + 7.78243i −0.201188 + 0.116156i −0.597209 0.802085i \(-0.703724\pi\)
0.396022 + 0.918241i \(0.370390\pi\)
\(68\) −22.7243 39.3596i −0.334181 0.578818i
\(69\) −4.61897 5.41031i −0.0669415 0.0784103i
\(70\) 7.21571 1.19947i 0.103082 0.0171353i
\(71\) 53.1970i 0.749254i 0.927176 + 0.374627i \(0.122229\pi\)
−0.927176 + 0.374627i \(0.877771\pi\)
\(72\) 34.3071 13.1535i 0.476487 0.182687i
\(73\) 23.6547i 0.324037i 0.986788 + 0.162019i \(0.0518005\pi\)
−0.986788 + 0.162019i \(0.948200\pi\)
\(74\) −29.4748 17.0173i −0.398308 0.229963i
\(75\) 64.5320 + 38.2180i 0.860427 + 0.509574i
\(76\) 37.6994 + 65.2973i 0.496045 + 0.859175i
\(77\) 12.7653 + 22.1101i 0.165783 + 0.287145i
\(78\) 3.92405 + 21.1960i 0.0503084 + 0.271744i
\(79\) −17.2692 + 29.9112i −0.218598 + 0.378623i −0.954380 0.298596i \(-0.903482\pi\)
0.735782 + 0.677219i \(0.236815\pi\)
\(80\) 49.1297 40.4102i 0.614121 0.505127i
\(81\) 60.2382 54.1513i 0.743681 0.668535i
\(82\) 21.0775i 0.257042i
\(83\) 37.6730 65.2516i 0.453892 0.786163i −0.544732 0.838610i \(-0.683369\pi\)
0.998624 + 0.0524468i \(0.0167020\pi\)
\(84\) −5.62102 30.3623i −0.0669169 0.361456i
\(85\) 57.1893 + 21.4527i 0.672815 + 0.252385i
\(86\) 30.9555 17.8722i 0.359948 0.207816i
\(87\) 98.7223 + 34.9817i 1.13474 + 0.402088i
\(88\) −32.6265 18.8369i −0.370756 0.214056i
\(89\) 29.1344i 0.327352i −0.986514 0.163676i \(-0.947665\pi\)
0.986514 0.163676i \(-0.0523352\pi\)
\(90\) −11.7482 + 20.6932i −0.130536 + 0.229925i
\(91\) 37.5932 0.413112
\(92\) 4.41101 7.64010i 0.0479458 0.0830445i
\(93\) −57.3586 67.1856i −0.616759 0.722426i
\(94\) 24.6893 + 42.7631i 0.262652 + 0.454927i
\(95\) −94.8766 35.5899i −0.998701 0.374631i
\(96\) 44.9135 + 52.6083i 0.467849 + 0.548003i
\(97\) −54.0151 31.1857i −0.556857 0.321502i 0.195026 0.980798i \(-0.437521\pi\)
−0.751883 + 0.659296i \(0.770854\pi\)
\(98\) −21.8634 −0.223096
\(99\) −82.0261 13.0254i −0.828546 0.131569i
\(100\) −17.9446 + 91.2620i −0.179446 + 0.912620i
\(101\) −118.734 68.5511i −1.17558 0.678723i −0.220595 0.975366i \(-0.570800\pi\)
−0.954989 + 0.296642i \(0.904133\pi\)
\(102\) −6.47261 + 18.2665i −0.0634570 + 0.179083i
\(103\) −94.2266 + 54.4017i −0.914821 + 0.528172i −0.881979 0.471288i \(-0.843789\pi\)
−0.0328419 + 0.999461i \(0.510456\pi\)
\(104\) −48.0418 + 27.7370i −0.461941 + 0.266702i
\(105\) 31.7556 + 26.7156i 0.302435 + 0.254434i
\(106\) 2.59810 4.50004i 0.0245104 0.0424532i
\(107\) −64.0002 −0.598133 −0.299067 0.954232i \(-0.596675\pi\)
−0.299067 + 0.954232i \(0.596675\pi\)
\(108\) 88.2486 + 47.9838i 0.817116 + 0.444294i
\(109\) −14.8135 −0.135904 −0.0679520 0.997689i \(-0.521646\pi\)
−0.0679520 + 0.997689i \(0.521646\pi\)
\(110\) 24.0687 4.00095i 0.218806 0.0363723i
\(111\) −35.1496 189.863i −0.316663 1.71048i
\(112\) 30.4828 17.5993i 0.272168 0.157136i
\(113\) 41.4033 + 71.7126i 0.366401 + 0.634625i 0.989000 0.147916i \(-0.0472566\pi\)
−0.622599 + 0.782541i \(0.713923\pi\)
\(114\) 10.7380 30.3039i 0.0941931 0.265824i
\(115\) 1.94421 + 11.6959i 0.0169062 + 0.101703i
\(116\) 129.887i 1.11972i
\(117\) −77.0008 + 95.0102i −0.658127 + 0.812053i
\(118\) 30.9361i 0.262170i
\(119\) 29.2690 + 16.8984i 0.245958 + 0.142004i
\(120\) −60.2930 10.7110i −0.502442 0.0892585i
\(121\) −17.9201 31.0386i −0.148100 0.256517i
\(122\) −4.09963 7.10077i −0.0336035 0.0582030i
\(123\) 90.9443 77.6422i 0.739384 0.631238i
\(124\) 54.7763 94.8753i 0.441744 0.765123i
\(125\) −59.2880 110.045i −0.474304 0.880361i
\(126\) −8.29005 + 10.2290i −0.0657940 + 0.0811823i
\(127\) 36.7291i 0.289206i 0.989490 + 0.144603i \(0.0461904\pi\)
−0.989490 + 0.144603i \(0.953810\pi\)
\(128\) −56.3468 + 97.5955i −0.440209 + 0.762465i
\(129\) 191.144 + 67.7307i 1.48174 + 0.525044i
\(130\) 12.6183 33.6381i 0.0970637 0.258755i
\(131\) 50.1743 28.9682i 0.383010 0.221131i −0.296117 0.955152i \(-0.595692\pi\)
0.679127 + 0.734021i \(0.262359\pi\)
\(132\) −18.7495 101.276i −0.142041 0.767245i
\(133\) −48.5570 28.0344i −0.365090 0.210785i
\(134\) 8.23056i 0.0614221i
\(135\) −132.563 + 25.5361i −0.981947 + 0.189157i
\(136\) −49.8719 −0.366705
\(137\) 28.7895 49.8649i 0.210143 0.363978i −0.741616 0.670824i \(-0.765941\pi\)
0.951759 + 0.306847i \(0.0992738\pi\)
\(138\) −3.69887 + 0.684778i −0.0268034 + 0.00496216i
\(139\) 30.3246 + 52.5237i 0.218162 + 0.377868i 0.954246 0.299022i \(-0.0966605\pi\)
−0.736084 + 0.676890i \(0.763327\pi\)
\(140\) −18.0751 + 48.1851i −0.129108 + 0.344179i
\(141\) −93.5657 + 264.053i −0.663587 + 1.87272i
\(142\) 24.3614 + 14.0651i 0.171559 + 0.0990497i
\(143\) 125.396 0.876894
\(144\) −17.9578 + 113.088i −0.124707 + 0.785332i
\(145\) −110.889 134.816i −0.764751 0.929765i
\(146\) 10.8326 + 6.25420i 0.0741959 + 0.0428370i
\(147\) −80.5374 94.3354i −0.547873 0.641738i
\(148\) 207.374 119.727i 1.40118 0.808969i
\(149\) 204.106 117.841i 1.36984 0.790879i 0.378934 0.925424i \(-0.376291\pi\)
0.990907 + 0.134545i \(0.0429572\pi\)
\(150\) 34.5638 19.4475i 0.230425 0.129650i
\(151\) 7.41840 12.8490i 0.0491285 0.0850930i −0.840415 0.541943i \(-0.817689\pi\)
0.889544 + 0.456850i \(0.151022\pi\)
\(152\) 82.7371 0.544323
\(153\) −102.658 + 39.3596i −0.670969 + 0.257252i
\(154\) 13.5003 0.0876646
\(155\) 24.1433 + 145.240i 0.155763 + 0.937032i
\(156\) −142.952 50.6542i −0.916359 0.324707i
\(157\) 127.486 73.6041i 0.812013 0.468816i −0.0356413 0.999365i \(-0.511347\pi\)
0.847654 + 0.530549i \(0.178014\pi\)
\(158\) 9.13182 + 15.8168i 0.0577963 + 0.100106i
\(159\) 28.9871 5.36643i 0.182309 0.0337512i
\(160\) −18.9049 113.727i −0.118156 0.710795i
\(161\) 6.56031i 0.0407473i
\(162\) −8.87170 41.9032i −0.0547636 0.258662i
\(163\) 9.62130i 0.0590264i −0.999564 0.0295132i \(-0.990604\pi\)
0.999564 0.0295132i \(-0.00939571\pi\)
\(164\) 128.426 + 74.1466i 0.783084 + 0.452114i
\(165\) 105.924 + 89.1125i 0.641964 + 0.540076i
\(166\) −19.9212 34.5045i −0.120007 0.207858i
\(167\) −41.5393 71.9482i −0.248738 0.430828i 0.714438 0.699699i \(-0.246683\pi\)
−0.963176 + 0.268872i \(0.913349\pi\)
\(168\) −31.9377 11.3169i −0.190105 0.0673627i
\(169\) 7.82136 13.5470i 0.0462803 0.0801598i
\(170\) 24.9448 20.5176i 0.146734 0.120692i
\(171\) 170.309 65.2973i 0.995961 0.381856i
\(172\) 251.484i 1.46212i
\(173\) 0.219578 0.380321i 0.00126924 0.00219839i −0.865390 0.501099i \(-0.832929\pi\)
0.866659 + 0.498900i \(0.166263\pi\)
\(174\) 42.1215 35.9606i 0.242078 0.206670i
\(175\) −22.3762 65.4449i −0.127864 0.373971i
\(176\) 101.678 58.7040i 0.577718 0.333546i
\(177\) −133.482 + 113.958i −0.754135 + 0.643831i
\(178\) −13.3420 7.70300i −0.0749550 0.0432753i
\(179\) 102.699i 0.573740i 0.957970 + 0.286870i \(0.0926148\pi\)
−0.957970 + 0.286870i \(0.907385\pi\)
\(180\) −84.7566 144.377i −0.470870 0.802096i
\(181\) −120.426 −0.665337 −0.332669 0.943044i \(-0.607949\pi\)
−0.332669 + 0.943044i \(0.607949\pi\)
\(182\) 9.93949 17.2157i 0.0546126 0.0945917i
\(183\) 15.5365 43.8457i 0.0848988 0.239594i
\(184\) −4.84032 8.38368i −0.0263061 0.0455635i
\(185\) −113.028 + 301.313i −0.610962 + 1.62872i
\(186\) −45.9328 + 8.50362i −0.246950 + 0.0457184i
\(187\) 97.6295 + 56.3664i 0.522083 + 0.301425i
\(188\) −347.410 −1.84792
\(189\) −74.6733 + 1.91046i −0.395097 + 0.0101083i
\(190\) −41.3833 + 34.0386i −0.217807 + 0.179150i
\(191\) −126.755 73.1823i −0.663641 0.383153i 0.130022 0.991511i \(-0.458495\pi\)
−0.793663 + 0.608358i \(0.791829\pi\)
\(192\) −114.155 + 21.1338i −0.594559 + 0.110072i
\(193\) −112.932 + 65.2014i −0.585141 + 0.337831i −0.763174 0.646193i \(-0.776360\pi\)
0.178033 + 0.984025i \(0.443027\pi\)
\(194\) −28.5627 + 16.4907i −0.147231 + 0.0850036i
\(195\) 191.622 69.4666i 0.982677 0.356239i
\(196\) 76.9115 133.215i 0.392405 0.679666i
\(197\) 186.652 0.947470 0.473735 0.880668i \(-0.342906\pi\)
0.473735 + 0.880668i \(0.342906\pi\)
\(198\) −27.6523 + 34.1197i −0.139658 + 0.172322i
\(199\) 45.1917 0.227094 0.113547 0.993533i \(-0.463779\pi\)
0.113547 + 0.993533i \(0.463779\pi\)
\(200\) 76.8819 + 67.1250i 0.384410 + 0.335625i
\(201\) −35.5129 + 30.3186i −0.176681 + 0.150839i
\(202\) −62.7855 + 36.2492i −0.310819 + 0.179451i
\(203\) −48.2939 83.6474i −0.237901 0.412056i
\(204\) −88.5287 103.696i −0.433964 0.508313i
\(205\) −196.601 + 32.6811i −0.959028 + 0.159420i
\(206\) 57.5343i 0.279293i
\(207\) −16.5800 13.4372i −0.0800967 0.0649142i
\(208\) 172.881i 0.831158i
\(209\) −161.967 93.5114i −0.774959 0.447423i
\(210\) 20.6304 7.47890i 0.0982399 0.0356138i
\(211\) 69.1054 + 119.694i 0.327514 + 0.567270i 0.982018 0.188788i \(-0.0604559\pi\)
−0.654504 + 0.756058i \(0.727123\pi\)
\(212\) 18.2793 + 31.6606i 0.0862229 + 0.149343i
\(213\) 29.0517 + 156.925i 0.136393 + 0.736735i
\(214\) −16.9214 + 29.3087i −0.0790719 + 0.136957i
\(215\) −214.701 261.028i −0.998608 1.21408i
\(216\) 94.0183 57.5368i 0.435270 0.266374i
\(217\) 81.4664i 0.375421i
\(218\) −3.91664 + 6.78381i −0.0179662 + 0.0311184i
\(219\) 12.9182 + 69.7784i 0.0589872 + 0.318623i
\(220\) −60.2913 + 160.726i −0.274051 + 0.730573i
\(221\) 143.757 82.9983i 0.650485 0.375558i
\(222\) −96.2404 34.1022i −0.433515 0.153614i
\(223\) 50.4072 + 29.1026i 0.226041 + 0.130505i 0.608744 0.793366i \(-0.291673\pi\)
−0.382703 + 0.923871i \(0.625007\pi\)
\(224\) 63.7906i 0.284780i
\(225\) 211.233 + 77.4965i 0.938812 + 0.344429i
\(226\) 43.7874 0.193750
\(227\) 187.291 324.397i 0.825069 1.42906i −0.0767971 0.997047i \(-0.524469\pi\)
0.901866 0.432015i \(-0.142197\pi\)
\(228\) 146.868 + 172.031i 0.644160 + 0.754520i
\(229\) −33.8418 58.6157i −0.147781 0.255964i 0.782626 0.622492i \(-0.213880\pi\)
−0.930407 + 0.366528i \(0.880546\pi\)
\(230\) 5.87012 + 2.20199i 0.0255223 + 0.00957387i
\(231\) 49.7307 + 58.2508i 0.215284 + 0.252168i
\(232\) 123.433 + 71.2642i 0.532040 + 0.307173i
\(233\) 282.378 1.21192 0.605961 0.795495i \(-0.292789\pi\)
0.605961 + 0.795495i \(0.292789\pi\)
\(234\) 23.1509 + 60.3825i 0.0989356 + 0.258045i
\(235\) 360.593 296.596i 1.53444 1.26211i
\(236\) −188.495 108.828i −0.798707 0.461134i
\(237\) −34.6071 + 97.6653i −0.146022 + 0.412090i
\(238\) 15.4772 8.93575i 0.0650301 0.0375452i
\(239\) −319.035 + 184.195i −1.33488 + 0.770691i −0.986042 0.166494i \(-0.946755\pi\)
−0.348833 + 0.937185i \(0.613422\pi\)
\(240\) 122.858 146.035i 0.511907 0.608481i
\(241\) −185.554 + 321.389i −0.769934 + 1.33357i 0.167664 + 0.985844i \(0.446378\pi\)
−0.937598 + 0.347721i \(0.886956\pi\)
\(242\) −18.9520 −0.0783141
\(243\) 148.122 192.637i 0.609556 0.792743i
\(244\) 57.6870 0.236422
\(245\) 33.8997 + 203.932i 0.138366 + 0.832374i
\(246\) −11.5107 62.1759i −0.0467916 0.252747i
\(247\) −238.492 + 137.694i −0.965555 + 0.557464i
\(248\) −60.1074 104.109i −0.242369 0.419795i
\(249\) 75.4957 213.058i 0.303196 0.855653i
\(250\) −66.0703 1.94471i −0.264281 0.00777886i
\(251\) 306.449i 1.22091i 0.792049 + 0.610457i \(0.209014\pi\)
−0.792049 + 0.610457i \(0.790986\pi\)
\(252\) −33.1626 86.4952i −0.131598 0.343235i
\(253\) 21.8826i 0.0864924i
\(254\) 16.8200 + 9.71102i 0.0662204 + 0.0382323i
\(255\) 180.417 + 32.0510i 0.707517 + 0.125690i
\(256\) −47.6010 82.4474i −0.185941 0.322060i
\(257\) −152.974 264.959i −0.595230 1.03097i −0.993514 0.113707i \(-0.963728\pi\)
0.398284 0.917262i \(-0.369606\pi\)
\(258\) 81.5547 69.6260i 0.316103 0.269868i
\(259\) −89.0328 + 154.209i −0.343756 + 0.595403i
\(260\) 160.570 + 195.216i 0.617575 + 0.750832i
\(261\) 310.322 + 49.2778i 1.18898 + 0.188804i
\(262\) 30.6362i 0.116932i
\(263\) −73.3426 + 127.033i −0.278869 + 0.483016i −0.971104 0.238657i \(-0.923293\pi\)
0.692235 + 0.721672i \(0.256626\pi\)
\(264\) −106.531 37.7487i −0.403528 0.142988i
\(265\) −46.0027 17.2564i −0.173595 0.0651187i
\(266\) −25.6765 + 14.8243i −0.0965282 + 0.0557306i
\(267\) −15.9107 85.9427i −0.0595907 0.321883i
\(268\) −50.1491 28.9536i −0.187124 0.108036i
\(269\) 276.133i 1.02652i −0.858234 0.513258i \(-0.828438\pi\)
0.858234 0.513258i \(-0.171562\pi\)
\(270\) −23.3548 + 67.4583i −0.0864994 + 0.249846i
\(271\) 304.822 1.12480 0.562402 0.826864i \(-0.309877\pi\)
0.562402 + 0.826864i \(0.309877\pi\)
\(272\) 77.7112 134.600i 0.285703 0.494852i
\(273\) 110.895 20.5302i 0.406210 0.0752024i
\(274\) −15.2237 26.3681i −0.0555608 0.0962341i
\(275\) −74.6381 218.298i −0.271411 0.793811i
\(276\) 8.83956 24.9463i 0.0320274 0.0903850i
\(277\) 355.555 + 205.280i 1.28359 + 0.741083i 0.977503 0.210920i \(-0.0676460\pi\)
0.306090 + 0.952003i \(0.400979\pi\)
\(278\) 32.0707 0.115362
\(279\) −205.892 166.865i −0.737964 0.598081i
\(280\) 35.8737 + 43.6144i 0.128120 + 0.155766i
\(281\) 89.9230 + 51.9171i 0.320011 + 0.184758i 0.651397 0.758737i \(-0.274183\pi\)
−0.331387 + 0.943495i \(0.607516\pi\)
\(282\) 96.1840 + 112.663i 0.341078 + 0.399513i
\(283\) −243.762 + 140.736i −0.861351 + 0.497301i −0.864464 0.502694i \(-0.832342\pi\)
0.00311372 + 0.999995i \(0.499009\pi\)
\(284\) −171.398 + 98.9566i −0.603513 + 0.348439i
\(285\) −299.310 53.1723i −1.05021 0.186569i
\(286\) 33.1541 57.4246i 0.115924 0.200785i
\(287\) −110.275 −0.384234
\(288\) 161.219 + 130.660i 0.559790 + 0.453680i
\(289\) −139.767 −0.483621
\(290\) −91.0571 + 15.1365i −0.313990 + 0.0521947i
\(291\) −176.369 62.4953i −0.606078 0.214760i
\(292\) −76.2142 + 44.0023i −0.261007 + 0.150693i
\(293\) 204.334 + 353.917i 0.697387 + 1.20791i 0.969369 + 0.245607i \(0.0789873\pi\)
−0.271983 + 0.962302i \(0.587679\pi\)
\(294\) −64.4943 + 11.9399i −0.219368 + 0.0406121i
\(295\) 288.558 47.9671i 0.978162 0.162600i
\(296\) 262.760i 0.887703i
\(297\) −249.080 + 6.37253i −0.838653 + 0.0214563i
\(298\) 124.626i 0.418210i
\(299\) 27.9047 + 16.1108i 0.0933268 + 0.0538823i
\(300\) −3.09458 + 279.011i −0.0103153 + 0.930038i
\(301\) −93.5055 161.956i −0.310649 0.538060i
\(302\) −3.92278 6.79446i −0.0129893 0.0224982i
\(303\) −387.687 137.375i −1.27949 0.453381i
\(304\) −128.922 + 223.300i −0.424087 + 0.734540i
\(305\) −59.8761 + 49.2493i −0.196315 + 0.161473i
\(306\) −9.11780 + 57.4185i −0.0297967 + 0.187642i
\(307\) 174.133i 0.567208i −0.958941 0.283604i \(-0.908470\pi\)
0.958941 0.283604i \(-0.0915301\pi\)
\(308\) −47.4917 + 82.2581i −0.154194 + 0.267072i
\(309\) −248.247 + 211.937i −0.803388 + 0.685880i
\(310\) 72.8955 + 27.3444i 0.235147 + 0.0882079i
\(311\) 237.573 137.163i 0.763900 0.441038i −0.0667941 0.997767i \(-0.521277\pi\)
0.830694 + 0.556729i \(0.187944\pi\)
\(312\) −126.570 + 108.057i −0.405672 + 0.346336i
\(313\) −184.560 106.555i −0.589647 0.340433i 0.175311 0.984513i \(-0.443907\pi\)
−0.764958 + 0.644080i \(0.777240\pi\)
\(314\) 77.8424i 0.247906i
\(315\) 108.265 + 61.4654i 0.343698 + 0.195128i
\(316\) −128.496 −0.406634
\(317\) −121.062 + 209.686i −0.381899 + 0.661469i −0.991334 0.131368i \(-0.958063\pi\)
0.609435 + 0.792836i \(0.291396\pi\)
\(318\) 5.20652 14.6934i 0.0163727 0.0462057i
\(319\) −161.089 279.014i −0.504981 0.874653i
\(320\) 181.165 + 67.9583i 0.566140 + 0.212370i
\(321\) −188.793 + 34.9515i −0.588139 + 0.108883i
\(322\) 3.00427 + 1.73452i 0.00933004 + 0.00538670i
\(323\) −247.577 −0.766493
\(324\) 286.527 + 93.3522i 0.884342 + 0.288124i
\(325\) −333.326 65.5408i −1.02562 0.201664i
\(326\) −4.40604 2.54383i −0.0135155 0.00780316i
\(327\) −43.6981 + 8.08990i −0.133633 + 0.0247398i
\(328\) 140.925 81.3630i 0.429649 0.248058i
\(329\) 223.732 129.172i 0.680038 0.392620i
\(330\) 68.8146 24.9466i 0.208529 0.0755957i
\(331\) 99.4647 172.278i 0.300498 0.520477i −0.675751 0.737130i \(-0.736181\pi\)
0.976249 + 0.216653i \(0.0695139\pi\)
\(332\) 280.316 0.844325
\(333\) −207.374 540.875i −0.622745 1.62425i
\(334\) −43.9313 −0.131531
\(335\) 76.7709 12.7617i 0.229167 0.0380945i
\(336\) 80.3092 68.5627i 0.239016 0.204056i
\(337\) 273.013 157.624i 0.810128 0.467728i −0.0368724 0.999320i \(-0.511740\pi\)
0.847000 + 0.531592i \(0.178406\pi\)
\(338\) −4.13587 7.16353i −0.0122363 0.0211939i
\(339\) 161.298 + 188.932i 0.475805 + 0.557322i
\(340\) 37.2634 + 224.167i 0.109598 + 0.659314i
\(341\) 271.739i 0.796889i
\(342\) 15.1264 95.2569i 0.0442291 0.278529i
\(343\) 249.950i 0.728716i
\(344\) 238.988 + 137.980i 0.694734 + 0.401105i
\(345\) 12.1225 + 33.4395i 0.0351376 + 0.0969262i
\(346\) −0.116111 0.201110i −0.000335581 0.000581244i
\(347\) 253.003 + 438.213i 0.729114 + 1.26286i 0.957258 + 0.289235i \(0.0934009\pi\)
−0.228144 + 0.973627i \(0.573266\pi\)
\(348\) 70.9333 + 383.150i 0.203831 + 1.10101i
\(349\) 280.837 486.423i 0.804689 1.39376i −0.111811 0.993729i \(-0.535665\pi\)
0.916501 0.400033i \(-0.131001\pi\)
\(350\) −35.8865 7.05624i −0.102533 0.0201607i
\(351\) −175.256 + 322.319i −0.499305 + 0.918289i
\(352\) 212.780i 0.604488i
\(353\) 120.900 209.404i 0.342492 0.593213i −0.642403 0.766367i \(-0.722062\pi\)
0.984895 + 0.173154i \(0.0553957\pi\)
\(354\) 16.8947 + 91.2576i 0.0477251 + 0.257790i
\(355\) 93.4194 249.040i 0.263153 0.701521i
\(356\) 93.8693 54.1955i 0.263678 0.152234i
\(357\) 95.5682 + 33.8640i 0.267698 + 0.0948573i
\(358\) 47.0309 + 27.1533i 0.131371 + 0.0758472i
\(359\) 361.904i 1.00809i 0.863678 + 0.504044i \(0.168155\pi\)
−0.863678 + 0.504044i \(0.831845\pi\)
\(360\) −183.706 + 1.33078i −0.510295 + 0.00369662i
\(361\) 49.7285 0.137752
\(362\) −31.8401 + 55.1487i −0.0879561 + 0.152344i
\(363\) −69.8127 81.7734i −0.192322 0.225271i
\(364\) 69.9305 + 121.123i 0.192117 + 0.332756i
\(365\) 41.5401 110.739i 0.113809 0.303394i
\(366\) −15.9712 18.7075i −0.0436372 0.0511134i
\(367\) −227.601 131.406i −0.620168 0.358054i 0.156767 0.987636i \(-0.449893\pi\)
−0.776934 + 0.629582i \(0.783226\pi\)
\(368\) 30.1691 0.0819812
\(369\) 225.873 278.701i 0.612121 0.755287i
\(370\) 108.101 + 131.427i 0.292165 + 0.355207i
\(371\) −23.5437 13.5930i −0.0634602 0.0366388i
\(372\) 109.770 309.784i 0.295081 0.832753i
\(373\) 270.755 156.320i 0.725883 0.419089i −0.0910309 0.995848i \(-0.529016\pi\)
0.816914 + 0.576759i \(0.195683\pi\)
\(374\) 51.6256 29.8061i 0.138036 0.0796953i
\(375\) −234.989 292.241i −0.626639 0.779310i
\(376\) −190.611 + 330.148i −0.506944 + 0.878052i
\(377\) −474.400 −1.25835
\(378\) −18.8684 + 34.7015i −0.0499164 + 0.0918029i
\(379\) 256.518 0.676830 0.338415 0.940997i \(-0.390109\pi\)
0.338415 + 0.940997i \(0.390109\pi\)
\(380\) −61.8197 371.891i −0.162683 0.978661i
\(381\) 20.0583 + 108.346i 0.0526465 + 0.284373i
\(382\) −67.0272 + 38.6982i −0.175464 + 0.101304i
\(383\) −19.4145 33.6269i −0.0506906 0.0877986i 0.839567 0.543257i \(-0.182809\pi\)
−0.890257 + 0.455458i \(0.849476\pi\)
\(384\) −112.918 + 318.666i −0.294056 + 0.829860i
\(385\) −20.9326 125.925i −0.0543704 0.327078i
\(386\) 68.9559i 0.178642i
\(387\) 600.839 + 95.4105i 1.55256 + 0.246539i
\(388\) 232.045i 0.598054i
\(389\) 265.870 + 153.500i 0.683469 + 0.394601i 0.801161 0.598449i \(-0.204216\pi\)
−0.117691 + 0.993050i \(0.537549\pi\)
\(390\) 18.8520 106.119i 0.0483386 0.272101i
\(391\) 14.4839 + 25.0868i 0.0370431 + 0.0641605i
\(392\) −84.3969 146.180i −0.215298 0.372908i
\(393\) 132.188 112.853i 0.336356 0.287159i
\(394\) 49.3498 85.4764i 0.125253 0.216945i
\(395\) 133.372 109.702i 0.337652 0.277726i
\(396\) −110.617 288.513i −0.279336 0.728568i
\(397\) 47.0129i 0.118420i 0.998246 + 0.0592102i \(0.0188582\pi\)
−0.998246 + 0.0592102i \(0.981142\pi\)
\(398\) 11.9485 20.6954i 0.0300213 0.0519985i
\(399\) −158.547 56.1802i −0.397361 0.140802i
\(400\) −300.963 + 102.902i −0.752408 + 0.257255i
\(401\) −492.460 + 284.322i −1.22808 + 0.709032i −0.966628 0.256184i \(-0.917535\pi\)
−0.261452 + 0.965216i \(0.584201\pi\)
\(402\) 4.49484 + 24.2791i 0.0111812 + 0.0603958i
\(403\) 346.523 + 200.065i 0.859858 + 0.496439i
\(404\) 510.072i 1.26255i
\(405\) −377.098 + 147.723i −0.931106 + 0.364748i
\(406\) −51.0747 −0.125800
\(407\) −296.977 + 514.380i −0.729674 + 1.26383i
\(408\) −147.116 + 27.2358i −0.360578 + 0.0667544i
\(409\) 281.070 + 486.828i 0.687213 + 1.19029i 0.972736 + 0.231916i \(0.0744994\pi\)
−0.285523 + 0.958372i \(0.592167\pi\)
\(410\) −37.0142 + 98.6734i −0.0902785 + 0.240667i
\(411\) 57.6935 162.818i 0.140373 0.396150i
\(412\) −350.559 202.395i −0.850870 0.491250i
\(413\) 161.855 0.391900
\(414\) −10.5372 + 4.04002i −0.0254522 + 0.00975850i
\(415\) −290.953 + 239.315i −0.701092 + 0.576663i
\(416\) −271.338 156.657i −0.652254 0.376579i
\(417\) 118.138 + 138.378i 0.283304 + 0.331841i
\(418\) −85.6465 + 49.4480i −0.204896 + 0.118297i
\(419\) 180.183 104.029i 0.430031 0.248279i −0.269329 0.963048i \(-0.586802\pi\)
0.699360 + 0.714770i \(0.253469\pi\)
\(420\) −27.0047 + 152.011i −0.0642968 + 0.361931i
\(421\) 197.236 341.622i 0.468493 0.811454i −0.530858 0.847461i \(-0.678130\pi\)
0.999352 + 0.0360063i \(0.0114636\pi\)
\(422\) 73.0846 0.173186
\(423\) −131.804 + 830.022i −0.311592 + 1.96223i
\(424\) 40.1166 0.0946147
\(425\) −230.056 200.861i −0.541309 0.472613i
\(426\) 79.5442 + 28.1860i 0.186723 + 0.0661644i
\(427\) −37.1505 + 21.4488i −0.0870035 + 0.0502315i
\(428\) −119.053 206.205i −0.278160 0.481788i
\(429\) 369.902 68.4806i 0.862243 0.159629i
\(430\) −176.303 + 29.3069i −0.410006 + 0.0681556i
\(431\) 216.515i 0.502355i −0.967941 0.251177i \(-0.919182\pi\)
0.967941 0.251177i \(-0.0808177\pi\)
\(432\) 8.78569 + 343.402i 0.0203372 + 0.794911i
\(433\) 614.024i 1.41807i 0.705173 + 0.709035i \(0.250869\pi\)
−0.705173 + 0.709035i \(0.749131\pi\)
\(434\) 37.3073 + 21.5394i 0.0859614 + 0.0496299i
\(435\) −400.734 337.132i −0.921227 0.775016i
\(436\) −27.5560 47.7284i −0.0632018 0.109469i
\(437\) −24.0286 41.6188i −0.0549854 0.0952374i
\(438\) 35.3703 + 12.5333i 0.0807541 + 0.0286148i
\(439\) −259.851 + 450.074i −0.591915 + 1.02523i 0.402059 + 0.915614i \(0.368295\pi\)
−0.993974 + 0.109613i \(0.965039\pi\)
\(440\) 119.660 + 145.480i 0.271955 + 0.330636i
\(441\) −289.093 234.295i −0.655540 0.531281i
\(442\) 87.7775i 0.198592i
\(443\) 250.825 434.441i 0.566196 0.980680i −0.430742 0.902475i \(-0.641748\pi\)
0.996937 0.0782045i \(-0.0249187\pi\)
\(444\) 546.342 466.431i 1.23050 1.05052i
\(445\) −51.1629 + 136.391i −0.114973 + 0.306498i
\(446\) 26.6549 15.3892i 0.0597643 0.0345049i
\(447\) 537.734 459.082i 1.20298 1.02703i
\(448\) 92.7186 + 53.5311i 0.206961 + 0.119489i
\(449\) 166.389i 0.370576i 0.982684 + 0.185288i \(0.0593218\pi\)
−0.982684 + 0.185288i \(0.940678\pi\)
\(450\) 91.3383 76.2436i 0.202974 0.169430i
\(451\) −367.834 −0.815596
\(452\) −154.036 + 266.798i −0.340788 + 0.590261i
\(453\) 14.8663 41.9543i 0.0328174 0.0926145i
\(454\) −99.0377 171.538i −0.218145 0.377838i
\(455\) −175.991 66.0176i −0.386794 0.145094i
\(456\) 244.064 45.1840i 0.535228 0.0990877i
\(457\) −720.569 416.021i −1.57674 0.910330i −0.995310 0.0967320i \(-0.969161\pi\)
−0.581428 0.813598i \(-0.697506\pi\)
\(458\) −35.7905 −0.0781452
\(459\) −281.334 + 172.169i −0.612928 + 0.375096i
\(460\) −34.0668 + 28.0207i −0.0740582 + 0.0609145i
\(461\) 376.087 + 217.134i 0.815806 + 0.471006i 0.848968 0.528444i \(-0.177224\pi\)
−0.0331619 + 0.999450i \(0.510558\pi\)
\(462\) 39.8243 7.37275i 0.0861999 0.0159583i
\(463\) 150.734 87.0264i 0.325560 0.187962i −0.328308 0.944571i \(-0.606478\pi\)
0.653868 + 0.756609i \(0.273145\pi\)
\(464\) −384.671 + 222.090i −0.829033 + 0.478643i
\(465\) 150.538 + 415.255i 0.323737 + 0.893021i
\(466\) 74.6594 129.314i 0.160213 0.277498i
\(467\) 134.443 0.287886 0.143943 0.989586i \(-0.454022\pi\)
0.143943 + 0.989586i \(0.454022\pi\)
\(468\) −449.354 71.3553i −0.960157 0.152469i
\(469\) 43.0615 0.0918155
\(470\) −40.4856 243.551i −0.0861397 0.518194i
\(471\) 335.872 286.745i 0.713103 0.608800i
\(472\) −206.840 + 119.419i −0.438221 + 0.253007i
\(473\) −311.897 540.221i −0.659401 1.14212i
\(474\) 35.5755 + 41.6705i 0.0750538 + 0.0879124i
\(475\) 381.662 + 333.226i 0.803498 + 0.701529i
\(476\) 125.737i 0.264154i
\(477\) 82.5776 31.6606i 0.173119 0.0663744i
\(478\) 194.802i 0.407535i
\(479\) −617.101 356.283i −1.28831 0.743806i −0.309958 0.950750i \(-0.600315\pi\)
−0.978353 + 0.206944i \(0.933648\pi\)
\(480\) −117.875 325.157i −0.245574 0.677410i
\(481\) 437.293 + 757.413i 0.909133 + 1.57466i
\(482\) 98.1194 + 169.948i 0.203567 + 0.352589i
\(483\) 3.58269 + 19.3521i 0.00741757 + 0.0400665i
\(484\) 66.6697 115.475i 0.137747 0.238585i
\(485\) 198.105 + 240.851i 0.408463 + 0.496599i
\(486\) −49.0544 118.764i −0.100935 0.244371i
\(487\) 208.661i 0.428462i −0.976783 0.214231i \(-0.931275\pi\)
0.976783 0.214231i \(-0.0687246\pi\)
\(488\) 31.6507 54.8206i 0.0648580 0.112337i
\(489\) −5.25434 28.3816i −0.0107451 0.0580402i
\(490\) 102.353 + 38.3944i 0.208883 + 0.0783559i
\(491\) −356.432 + 205.786i −0.725931 + 0.419117i −0.816932 0.576734i \(-0.804327\pi\)
0.0910005 + 0.995851i \(0.470994\pi\)
\(492\) 419.332 + 148.588i 0.852302 + 0.302008i
\(493\) −369.353 213.246i −0.749195 0.432548i
\(494\) 145.622i 0.294782i
\(495\) 361.128 + 205.024i 0.729552 + 0.414190i
\(496\) 374.641 0.755326
\(497\) 73.5870 127.456i 0.148062 0.256451i
\(498\) −77.6083 90.9045i −0.155840 0.182539i
\(499\) 167.299 + 289.770i 0.335269 + 0.580702i 0.983536 0.180710i \(-0.0578396\pi\)
−0.648268 + 0.761412i \(0.724506\pi\)
\(500\) 244.272 395.727i 0.488545 0.791455i
\(501\) −161.828 189.553i −0.323010 0.378349i
\(502\) 140.337 + 81.0239i 0.279557 + 0.161402i
\(503\) 85.4624 0.169905 0.0849527 0.996385i \(-0.472926\pi\)
0.0849527 + 0.996385i \(0.472926\pi\)
\(504\) −100.393 15.9419i −0.199191 0.0316307i
\(505\) 435.466 + 529.428i 0.862309 + 1.04837i
\(506\) 10.0210 + 5.78565i 0.0198044 + 0.0114341i
\(507\) 15.6738 44.2333i 0.0309148 0.0872452i
\(508\) −118.339 + 68.3231i −0.232951 + 0.134494i
\(509\) 142.153 82.0719i 0.279278 0.161241i −0.353818 0.935314i \(-0.615117\pi\)
0.633097 + 0.774073i \(0.281784\pi\)
\(510\) 62.3791 74.1472i 0.122312 0.145387i
\(511\) 32.7214 56.6750i 0.0640340 0.110910i
\(512\) −501.116 −0.978743
\(513\) 466.731 285.627i 0.909808 0.556779i
\(514\) −161.783 −0.314752
\(515\) 536.653 89.2082i 1.04205 0.173220i
\(516\) 137.339 + 741.847i 0.266162 + 1.43769i
\(517\) 746.281 430.866i 1.44348 0.833396i
\(518\) 47.0797 + 81.5445i 0.0908875 + 0.157422i
\(519\) 0.440030 1.24181i 0.000847841 0.00239271i
\(520\) 273.615 45.4832i 0.526183 0.0874677i
\(521\) 954.386i 1.83184i −0.401366 0.915918i \(-0.631464\pi\)
0.401366 0.915918i \(-0.368536\pi\)
\(522\) 104.614 129.082i 0.200411 0.247284i
\(523\) 53.5836i 0.102454i −0.998687 0.0512271i \(-0.983687\pi\)
0.998687 0.0512271i \(-0.0163132\pi\)
\(524\) 186.668 + 107.773i 0.356236 + 0.205673i
\(525\) −101.748 180.834i −0.193805 0.344446i
\(526\) 38.7829 + 67.1740i 0.0737318 + 0.127707i
\(527\) 179.861 + 311.529i 0.341293 + 0.591137i
\(528\) 267.879 228.698i 0.507347 0.433140i
\(529\) 261.689 453.258i 0.494685 0.856820i
\(530\) −20.0654 + 16.5042i −0.0378593 + 0.0311401i
\(531\) −331.521 + 409.059i −0.624333 + 0.770355i
\(532\) 208.597i 0.392100i
\(533\) −270.814 + 469.063i −0.508093 + 0.880043i
\(534\) −43.5639 15.4366i −0.0815803 0.0289075i
\(535\) 299.615 + 112.391i 0.560028 + 0.210077i
\(536\) −55.0299 + 31.7715i −0.102668 + 0.0592753i
\(537\) 56.0857 + 302.950i 0.104443 + 0.564154i
\(538\) −126.454 73.0083i −0.235045 0.135703i
\(539\) 381.550i 0.707884i
\(540\) −328.868 379.608i −0.609015 0.702978i
\(541\) −502.886 −0.929549 −0.464774 0.885429i \(-0.653865\pi\)
−0.464774 + 0.885429i \(0.653865\pi\)
\(542\) 80.5935 139.592i 0.148697 0.257550i
\(543\) −355.242 + 65.7665i −0.654220 + 0.121117i
\(544\) −140.837 243.937i −0.258891 0.448413i
\(545\) 69.3491 + 26.0141i 0.127246 + 0.0477323i
\(546\) 19.9185 56.2122i 0.0364807 0.102953i
\(547\) −632.220 365.012i −1.15579 0.667298i −0.205502 0.978657i \(-0.565883\pi\)
−0.950293 + 0.311359i \(0.899216\pi\)
\(548\) 214.216 0.390905
\(549\) 21.8858 137.824i 0.0398649 0.251046i
\(550\) −119.703 23.5368i −0.217641 0.0427941i
\(551\) 612.754 + 353.774i 1.11208 + 0.642058i
\(552\) −18.8568 22.0874i −0.0341608 0.0400134i
\(553\) 82.7518 47.7768i 0.149642 0.0863956i
\(554\) 188.014 108.550i 0.339376 0.195939i
\(555\) −168.867 + 950.562i −0.304264 + 1.71272i
\(556\) −112.819 + 195.408i −0.202912 + 0.351453i
\(557\) −419.491 −0.753125 −0.376562 0.926391i \(-0.622894\pi\)
−0.376562 + 0.926391i \(0.622894\pi\)
\(558\) −130.852 + 50.1692i −0.234502 + 0.0899090i
\(559\) −918.522 −1.64315
\(560\) −173.610 + 28.8594i −0.310018 + 0.0515346i
\(561\) 318.777 + 112.957i 0.568230 + 0.201349i
\(562\) 47.5505 27.4533i 0.0846094 0.0488493i
\(563\) 317.922 + 550.657i 0.564693 + 0.978077i 0.997078 + 0.0763882i \(0.0243388\pi\)
−0.432385 + 0.901689i \(0.642328\pi\)
\(564\) −1024.81 + 189.726i −1.81705 + 0.336393i
\(565\) −67.8933 408.428i −0.120165 0.722882i
\(566\) 148.840i 0.262968i
\(567\) −219.233 + 46.4159i −0.386655 + 0.0818622i
\(568\) 217.175i 0.382351i
\(569\) −767.241 442.967i −1.34840 0.778501i −0.360380 0.932806i \(-0.617353\pi\)
−0.988023 + 0.154305i \(0.950686\pi\)
\(570\) −103.486 + 123.010i −0.181555 + 0.215806i
\(571\) −463.096 802.105i −0.811026 1.40474i −0.912147 0.409864i \(-0.865576\pi\)
0.101121 0.994874i \(-0.467757\pi\)
\(572\) 233.260 + 404.018i 0.407798 + 0.706326i
\(573\) −413.879 146.655i −0.722301 0.255943i
\(574\) −29.1563 + 50.5001i −0.0507949 + 0.0879794i
\(575\) 11.4374 58.1680i 0.0198911 0.101162i
\(576\) −325.202 + 124.684i −0.564587 + 0.216465i
\(577\) 261.287i 0.452837i 0.974030 + 0.226418i \(0.0727016\pi\)
−0.974030 + 0.226418i \(0.927298\pi\)
\(578\) −36.9537 + 64.0056i −0.0639337 + 0.110736i
\(579\) −297.528 + 254.010i −0.513866 + 0.438705i
\(580\) 228.095 608.061i 0.393267 1.04838i
\(581\) −180.524 + 104.225i −0.310712 + 0.179390i
\(582\) −75.2506 + 64.2440i −0.129297 + 0.110385i
\(583\) −78.5325 45.3407i −0.134704 0.0777714i
\(584\) 96.5696i 0.165359i
\(585\) 527.324 309.565i 0.901409 0.529172i
\(586\) 216.100 0.368772
\(587\) −301.693 + 522.548i −0.513958 + 0.890201i 0.485911 + 0.874008i \(0.338488\pi\)
−0.999869 + 0.0161926i \(0.994846\pi\)
\(588\) 154.129 434.969i 0.262123 0.739743i
\(589\) −298.389 516.825i −0.506602 0.877461i
\(590\) 54.3270 144.826i 0.0920797 0.245468i
\(591\) 550.599 101.933i 0.931639 0.172476i
\(592\) 709.166 + 409.437i 1.19792 + 0.691617i
\(593\) 314.000 0.529511 0.264756 0.964316i \(-0.414709\pi\)
0.264756 + 0.964316i \(0.414709\pi\)
\(594\) −62.9374 + 115.750i −0.105955 + 0.194866i
\(595\) −107.346 130.509i −0.180414 0.219342i
\(596\) 759.354 + 438.413i 1.27408 + 0.735592i
\(597\) 133.310 24.6799i 0.223300 0.0413398i
\(598\) 14.7558 8.51925i 0.0246752 0.0142462i
\(599\) 652.734 376.856i 1.08971 0.629142i 0.156208 0.987724i \(-0.450073\pi\)
0.933498 + 0.358582i \(0.116740\pi\)
\(600\) 263.450 + 156.024i 0.439083 + 0.260040i
\(601\) 168.976 292.675i 0.281158 0.486979i −0.690512 0.723320i \(-0.742615\pi\)
0.971670 + 0.236341i \(0.0759483\pi\)
\(602\) −98.8897 −0.164269
\(603\) −88.2012 + 108.830i −0.146271 + 0.180481i
\(604\) 55.1985 0.0913883
\(605\) 29.3855 + 176.775i 0.0485711 + 0.292191i
\(606\) −165.413 + 141.219i −0.272959 + 0.233034i
\(607\) −382.344 + 220.747i −0.629892 + 0.363668i −0.780710 0.624893i \(-0.785143\pi\)
0.150818 + 0.988562i \(0.451809\pi\)
\(608\) 233.647 + 404.689i 0.384288 + 0.665607i
\(609\) −188.142 220.375i −0.308936 0.361864i
\(610\) 6.72259 + 40.4414i 0.0110206 + 0.0662973i
\(611\) 1268.88i 2.07673i
\(612\) −317.778 257.543i −0.519246 0.420822i
\(613\) 406.010i 0.662332i −0.943572 0.331166i \(-0.892558\pi\)
0.943572 0.331166i \(-0.107442\pi\)
\(614\) −79.7436 46.0400i −0.129876 0.0749837i
\(615\) −562.100 + 203.772i −0.913984 + 0.331336i
\(616\) 52.1139 + 90.2639i 0.0846005 + 0.146532i
\(617\) −447.854 775.706i −0.725858 1.25722i −0.958620 0.284689i \(-0.908110\pi\)
0.232762 0.972534i \(-0.425224\pi\)
\(618\) 31.4204 + 169.719i 0.0508420 + 0.274626i
\(619\) −185.811 + 321.834i −0.300179 + 0.519925i −0.976176 0.216979i \(-0.930380\pi\)
0.675997 + 0.736904i \(0.263713\pi\)
\(620\) −423.044 + 347.962i −0.682329 + 0.561230i
\(621\) −56.2473 30.5836i −0.0905753 0.0492489i
\(622\) 145.061i 0.233217i
\(623\) −40.3013 + 69.8039i −0.0646891 + 0.112045i
\(624\) −94.4129 509.977i −0.151303 0.817271i
\(625\) 84.3040 + 619.288i 0.134886 + 0.990861i
\(626\) −97.5935 + 56.3456i −0.155900 + 0.0900090i
\(627\) −528.849 187.395i −0.843459 0.298875i
\(628\) 474.297 + 273.835i 0.755249 + 0.436043i
\(629\) 786.266i 1.25002i
\(630\) 56.7727 33.3284i 0.0901154 0.0529022i
\(631\) 150.820 0.239017 0.119508 0.992833i \(-0.461868\pi\)
0.119508 + 0.992833i \(0.461868\pi\)
\(632\) −70.5011 + 122.112i −0.111552 + 0.193214i
\(633\) 269.219 + 315.343i 0.425306 + 0.498172i
\(634\) 64.0165 + 110.880i 0.100972 + 0.174889i
\(635\) 64.5001 171.946i 0.101575 0.270781i
\(636\) 71.2119 + 83.4122i 0.111968 + 0.131151i
\(637\) 486.553 + 280.912i 0.763820 + 0.440992i
\(638\) −170.365 −0.267029
\(639\) 171.398 + 447.042i 0.268228 + 0.699596i
\(640\) 435.173 357.939i 0.679958 0.559280i
\(641\) 175.963 + 101.592i 0.274513 + 0.158490i 0.630937 0.775834i \(-0.282671\pi\)
−0.356424 + 0.934324i \(0.616004\pi\)
\(642\) −33.9100 + 95.6980i −0.0528193 + 0.149062i
\(643\) 42.7186 24.6636i 0.0664365 0.0383571i −0.466414 0.884567i \(-0.654454\pi\)
0.532850 + 0.846210i \(0.321121\pi\)
\(644\) −21.1370 + 12.2034i −0.0328214 + 0.0189494i
\(645\) −775.891 652.747i −1.20293 1.01201i
\(646\) −65.4583 + 113.377i −0.101329 + 0.175506i
\(647\) 1189.39 1.83832 0.919159 0.393887i \(-0.128870\pi\)
0.919159 + 0.393887i \(0.128870\pi\)
\(648\) 245.920 221.071i 0.379507 0.341159i
\(649\) 539.882 0.831867
\(650\) −118.144 + 135.317i −0.181760 + 0.208180i
\(651\) 44.4901 + 240.316i 0.0683411 + 0.369148i
\(652\) 30.9993 17.8975i 0.0475449 0.0274501i
\(653\) −170.606 295.498i −0.261265 0.452524i 0.705313 0.708896i \(-0.250806\pi\)
−0.966578 + 0.256371i \(0.917473\pi\)
\(654\) −7.84884 + 22.1503i −0.0120013 + 0.0338690i
\(655\) −285.760 + 47.5021i −0.436275 + 0.0725223i
\(656\) 507.125i 0.773056i
\(657\) 76.2142 + 198.783i 0.116003 + 0.302561i
\(658\) 136.610i 0.207614i
\(659\) −322.418 186.148i −0.489254 0.282471i 0.235011 0.971993i \(-0.424487\pi\)
−0.724265 + 0.689522i \(0.757821\pi\)
\(660\) −90.0767 + 507.047i −0.136480 + 0.768254i
\(661\) −166.221 287.904i −0.251469 0.435557i 0.712461 0.701711i \(-0.247580\pi\)
−0.963931 + 0.266154i \(0.914247\pi\)
\(662\) −52.5961 91.0991i −0.0794502 0.137612i
\(663\) 378.739 323.343i 0.571251 0.487696i
\(664\) 153.799 266.387i 0.231625 0.401186i
\(665\) 178.086 + 216.513i 0.267799 + 0.325583i
\(666\) −302.521 48.0389i −0.454236 0.0721305i
\(667\) 82.7865i 0.124118i
\(668\) 154.542 267.675i 0.231350 0.400711i
\(669\) 164.588 + 58.3209i 0.246021 + 0.0871762i
\(670\) 14.4537 38.5311i 0.0215727 0.0575091i
\(671\) −123.919 + 71.5447i −0.184678 + 0.106624i
\(672\) −34.8370 188.174i −0.0518408 0.280021i
\(673\) 196.887 + 113.673i 0.292551 + 0.168905i 0.639092 0.769130i \(-0.279310\pi\)
−0.346541 + 0.938035i \(0.612644\pi\)
\(674\) 166.701i 0.247330i
\(675\) 665.432 + 113.247i 0.985825 + 0.167774i
\(676\) 58.1969 0.0860901
\(677\) 530.736 919.261i 0.783952 1.35785i −0.145671 0.989333i \(-0.546534\pi\)
0.929623 0.368512i \(-0.120133\pi\)
\(678\) 129.167 23.9130i 0.190512 0.0352699i
\(679\) 86.2777 + 149.437i 0.127066 + 0.220084i
\(680\) 233.474 + 87.5802i 0.343343 + 0.128794i
\(681\) 375.326 1059.21i 0.551139 1.55538i
\(682\) 124.442 + 71.8466i 0.182466 + 0.105347i
\(683\) −633.553 −0.927604 −0.463802 0.885939i \(-0.653515\pi\)
−0.463802 + 0.885939i \(0.653515\pi\)
\(684\) 527.192 + 427.262i 0.770749 + 0.624652i
\(685\) −222.345 + 182.884i −0.324591 + 0.266983i
\(686\) 114.464 + 66.0856i 0.166857 + 0.0963347i
\(687\) −131.840 154.428i −0.191907 0.224785i
\(688\) −744.792 + 430.006i −1.08255 + 0.625008i
\(689\) −115.637 + 66.7633i −0.167834 + 0.0968988i
\(690\) 18.5187 + 3.28983i 0.0268386 + 0.00476787i
\(691\) −540.899 + 936.864i −0.782777 + 1.35581i 0.147542 + 0.989056i \(0.452864\pi\)
−0.930318 + 0.366753i \(0.880469\pi\)
\(692\) 1.63383 0.00236103
\(693\) 178.511 + 144.674i 0.257592 + 0.208765i
\(694\) 267.571 0.385549
\(695\) −49.7264 299.141i −0.0715487 0.430418i
\(696\) 403.031 + 142.812i 0.579067 + 0.205189i
\(697\) −421.694 + 243.465i −0.605014 + 0.349305i
\(698\) −148.504 257.216i −0.212756 0.368505i
\(699\) 832.979 154.211i 1.19167 0.220616i
\(700\) 169.236 193.835i 0.241766 0.276907i
\(701\) 143.009i 0.204007i −0.994784 0.102003i \(-0.967475\pi\)
0.994784 0.102003i \(-0.0325253\pi\)
\(702\) 101.268 + 165.478i 0.144257 + 0.235723i
\(703\) 1304.41i 1.85549i
\(704\) 309.272 + 178.558i 0.439306 + 0.253634i
\(705\) 901.729 1071.85i 1.27905 1.52035i
\(706\) −63.9307 110.731i −0.0905534 0.156843i
\(707\) 189.652 + 328.487i 0.268249 + 0.464621i
\(708\) −615.468 218.088i −0.869306 0.308033i
\(709\) −424.541 + 735.327i −0.598789 + 1.03713i 0.394211 + 0.919020i \(0.371018\pi\)
−0.993000 + 0.118113i \(0.962315\pi\)
\(710\) −89.3473 108.626i −0.125841 0.152995i
\(711\) −48.7501 + 307.000i −0.0685656 + 0.431786i
\(712\) 118.940i 0.167051i
\(713\) −34.9129 + 60.4709i −0.0489662 + 0.0848120i
\(714\) 40.7757 34.8116i 0.0571089 0.0487558i
\(715\) −587.036 220.208i −0.821030 0.307983i
\(716\) −330.892 + 191.040i −0.462139 + 0.266816i
\(717\) −840.522 + 717.582i −1.17228 + 1.00081i
\(718\) 165.733 + 95.6858i 0.230825 + 0.133267i
\(719\) 155.493i 0.216263i −0.994137 0.108131i \(-0.965513\pi\)
0.994137 0.108131i \(-0.0344867\pi\)
\(720\) 282.663 497.881i 0.392587 0.691501i
\(721\) 301.014 0.417495
\(722\) 13.1480 22.7730i 0.0182105 0.0315416i
\(723\) −371.846 + 1049.39i −0.514310 + 1.45144i
\(724\) −224.015 388.006i −0.309413 0.535920i
\(725\) 282.372 + 825.869i 0.389479 + 1.13913i
\(726\) −55.9060 + 10.3500i −0.0770056 + 0.0142562i
\(727\) 540.769 + 312.213i 0.743837 + 0.429454i 0.823463 0.567370i \(-0.192039\pi\)
−0.0796259 + 0.996825i \(0.525373\pi\)
\(728\) 153.473 0.210815
\(729\) 331.740 649.145i 0.455062 0.890460i
\(730\) −39.7294 48.3020i −0.0544238 0.0661671i
\(731\) −715.133 412.882i −0.978295 0.564819i
\(732\) 170.169 31.5037i 0.232472 0.0430379i
\(733\) −392.871 + 226.824i −0.535977 + 0.309447i −0.743447 0.668795i \(-0.766810\pi\)
0.207470 + 0.978241i \(0.433477\pi\)
\(734\) −120.354 + 69.4862i −0.163970 + 0.0946679i
\(735\) 211.370 + 583.060i 0.287578 + 0.793279i
\(736\) 27.3378 47.3505i 0.0371438 0.0643350i
\(737\) 143.636 0.194892
\(738\) −67.9104 177.125i −0.0920195 0.240007i
\(739\) 827.126 1.11925 0.559625 0.828746i \(-0.310945\pi\)
0.559625 + 0.828746i \(0.310945\pi\)
\(740\) −1181.07 + 196.330i −1.59604 + 0.265310i
\(741\) −628.325 + 536.423i −0.847943 + 0.723917i
\(742\) −12.4497 + 7.18785i −0.0167786 + 0.00968713i
\(743\) −301.483 522.184i −0.405765 0.702805i 0.588645 0.808391i \(-0.299661\pi\)
−0.994410 + 0.105586i \(0.966328\pi\)
\(744\) −234.165 274.283i −0.314738 0.368660i
\(745\) −1162.46 + 193.236i −1.56035 + 0.259377i
\(746\) 165.321i 0.221611i
\(747\) 106.349 669.723i 0.142368 0.896550i
\(748\) 419.409i 0.560707i
\(749\) 153.340 + 88.5309i 0.204726 + 0.118199i
\(750\) −195.961 + 30.3453i −0.261281 + 0.0404605i
\(751\) 172.482 + 298.747i 0.229669 + 0.397799i 0.957710 0.287735i \(-0.0929023\pi\)
−0.728041 + 0.685534i \(0.759569\pi\)
\(752\) −594.026 1028.88i −0.789928 1.36820i
\(753\) 167.357 + 903.987i 0.222253 + 1.20051i
\(754\) −125.429 + 217.250i −0.166352 + 0.288130i
\(755\) −57.2932 + 47.1248i −0.0758850 + 0.0624170i
\(756\) −145.062 237.039i −0.191881 0.313544i
\(757\) 1248.67i 1.64950i 0.565501 + 0.824748i \(0.308683\pi\)
−0.565501 + 0.824748i \(0.691317\pi\)
\(758\) 67.8223 117.472i 0.0894754 0.154976i
\(759\) 11.9504 + 64.5508i 0.0157449 + 0.0850472i
\(760\) −387.331 145.295i −0.509646 0.191177i
\(761\) −960.298 + 554.428i −1.26189 + 0.728552i −0.973440 0.228942i \(-0.926473\pi\)
−0.288450 + 0.957495i \(0.593140\pi\)
\(762\) 54.9201 + 19.4606i 0.0720737 + 0.0255389i
\(763\) 35.4922 + 20.4914i 0.0465167 + 0.0268564i
\(764\) 544.532i 0.712738i
\(765\) 549.711 3.98215i 0.718576 0.00520542i
\(766\) −20.5324 −0.0268047
\(767\) 397.482 688.459i 0.518230 0.897600i
\(768\) −185.443 217.214i −0.241462 0.282830i
\(769\) 576.165 + 997.947i 0.749239 + 1.29772i 0.948188 + 0.317710i \(0.102914\pi\)
−0.198949 + 0.980010i \(0.563753\pi\)
\(770\) −63.2014 23.7080i −0.0820797 0.0307896i
\(771\) −595.952 698.054i −0.772960 0.905388i
\(772\) −420.151 242.574i −0.544237 0.314215i
\(773\) −1116.83 −1.44480 −0.722399 0.691476i \(-0.756961\pi\)
−0.722399 + 0.691476i \(0.756961\pi\)
\(774\) 202.552 249.926i 0.261695 0.322902i
\(775\) 142.030 722.334i 0.183265 0.932044i
\(776\) −220.515 127.314i −0.284169 0.164065i
\(777\) −178.419 + 503.520i −0.229626 + 0.648031i
\(778\) 140.590 81.1694i 0.180706 0.104331i
\(779\) 699.588 403.907i 0.898059 0.518495i
\(780\) 580.271 + 488.174i 0.743937 + 0.625865i
\(781\) 245.456 425.143i 0.314285 0.544357i
\(782\) 15.3179 0.0195881
\(783\) 942.324 24.1087i 1.20348 0.0307901i
\(784\) 526.035 0.670963
\(785\) −726.078 + 120.696i −0.924940 + 0.153753i
\(786\) −16.7309 90.3730i −0.0212861 0.114978i
\(787\) −922.485 + 532.597i −1.17215 + 0.676743i −0.954186 0.299213i \(-0.903276\pi\)
−0.217967 + 0.975956i \(0.569943\pi\)
\(788\) 347.207 + 601.381i 0.440618 + 0.763173i
\(789\) −146.977 + 414.785i −0.186282 + 0.525710i
\(790\) −14.9744 90.0821i −0.0189549 0.114028i
\(791\) 229.091i 0.289622i
\(792\) −334.869 53.1756i −0.422814 0.0671410i
\(793\) 210.696i 0.265695i
\(794\) 21.5294 + 12.4300i 0.0271151 + 0.0156549i
\(795\) −145.126 25.7816i −0.182549 0.0324296i
\(796\) 84.0651 + 145.605i 0.105609 + 0.182921i
\(797\) 94.4897 + 163.661i 0.118557 + 0.205346i 0.919196 0.393801i \(-0.128840\pi\)
−0.800639 + 0.599147i \(0.795507\pi\)
\(798\) −67.6467 + 57.7523i −0.0847702 + 0.0723713i
\(799\) 570.371 987.912i 0.713857 1.23644i
\(800\) −111.214 + 565.609i −0.139017 + 0.707011i
\(801\) −93.8693 244.831i −0.117190 0.305657i
\(802\) 300.694i 0.374930i
\(803\) 109.145 189.045i 0.135922 0.235424i
\(804\) −163.746 58.0223i −0.203664 0.0721670i
\(805\) 11.5206 30.7119i 0.0143113 0.0381514i
\(806\) 183.238 105.793i 0.227343 0.131256i
\(807\) −150.800 814.557i −0.186865 1.00936i
\(808\) −484.728 279.858i −0.599910 0.346358i
\(809\) 1105.36i 1.36633i 0.730266 + 0.683163i \(0.239396\pi\)
−0.730266 + 0.683163i \(0.760604\pi\)
\(810\) −32.0538 + 211.748i −0.0395726 + 0.261417i
\(811\) 4.70248 0.00579838 0.00289919 0.999996i \(-0.499077\pi\)
0.00289919 + 0.999996i \(0.499077\pi\)
\(812\) 179.672 311.200i 0.221270 0.383251i
\(813\) 899.186 166.468i 1.10601 0.204758i
\(814\) 157.039 + 272.000i 0.192923 + 0.334152i
\(815\) −16.8960 + 45.0418i −0.0207313 + 0.0552660i
\(816\) 155.731 439.492i 0.190847 0.538593i
\(817\) 1186.40 + 684.969i 1.45214 + 0.838395i
\(818\) 297.255 0.363392
\(819\) 315.915 121.123i 0.385733 0.147892i
\(820\) −471.011 572.644i −0.574404 0.698346i
\(821\) 759.412 + 438.447i 0.924984 + 0.534040i 0.885222 0.465169i \(-0.154007\pi\)
0.0397625 + 0.999209i \(0.487340\pi\)
\(822\) −59.3079 69.4688i −0.0721507 0.0845120i
\(823\) 992.214 572.855i 1.20561 0.696057i 0.243810 0.969823i \(-0.421603\pi\)
0.961796 + 0.273766i \(0.0882693\pi\)
\(824\) −384.677 + 222.093i −0.466841 + 0.269531i
\(825\) −339.389 603.191i −0.411380 0.731140i
\(826\) 42.7937 74.1208i 0.0518083 0.0897346i
\(827\) 255.412 0.308841 0.154421 0.988005i \(-0.450649\pi\)
0.154421 + 0.988005i \(0.450649\pi\)
\(828\) 12.4521 78.4157i 0.0150387 0.0947050i
\(829\) −829.155 −1.00019 −0.500093 0.865971i \(-0.666701\pi\)
−0.500093 + 0.865971i \(0.666701\pi\)
\(830\) 32.6668 + 196.515i 0.0393576 + 0.236765i
\(831\) 1160.95 + 411.376i 1.39705 + 0.495037i
\(832\) 455.396 262.923i 0.547351 0.316013i
\(833\) 252.544 + 437.419i 0.303174 + 0.525113i
\(834\) 94.6046 17.5143i 0.113435 0.0210004i
\(835\) 68.1164 + 409.770i 0.0815765 + 0.490743i
\(836\) 695.796i 0.832292i
\(837\) −698.482 379.789i −0.834507 0.453750i
\(838\) 110.019i 0.131288i
\(839\) 393.010 + 226.904i 0.468427 + 0.270446i 0.715581 0.698530i \(-0.246162\pi\)
−0.247154 + 0.968976i \(0.579495\pi\)
\(840\) 129.641 + 109.066i 0.154335 + 0.129840i
\(841\) 188.934 + 327.244i 0.224654 + 0.389113i
\(842\) −104.297 180.647i −0.123868 0.214545i
\(843\) 293.614 + 104.040i 0.348297 + 0.123417i
\(844\) −257.098 + 445.307i −0.304619 + 0.527615i
\(845\) −60.4054 + 49.6847i −0.0714856 + 0.0587984i
\(846\) 345.257 + 279.813i 0.408106 + 0.330748i
\(847\) 99.1550i 0.117066i
\(848\) −62.5104 + 108.271i −0.0737151 + 0.127678i
\(849\) −642.210 + 548.276i −0.756431 + 0.645791i
\(850\) −152.809 + 52.2469i −0.179776 + 0.0614669i
\(851\) −132.175 + 76.3110i −0.155317 + 0.0896722i
\(852\) −451.560 + 385.512i −0.530000 + 0.452479i
\(853\) 14.0948 + 8.13764i 0.0165238 + 0.00954002i 0.508239 0.861216i \(-0.330297\pi\)
−0.491715 + 0.870756i \(0.663630\pi\)
\(854\) 22.6839i 0.0265620i
\(855\) −911.966 + 6.60636i −1.06663 + 0.00772673i
\(856\) −261.279 −0.305232
\(857\) 530.849 919.457i 0.619427 1.07288i −0.370164 0.928967i \(-0.620698\pi\)
0.989590 0.143912i \(-0.0459683\pi\)
\(858\) 66.4400 187.501i 0.0774359 0.218533i
\(859\) −811.869 1406.20i −0.945133 1.63702i −0.755485 0.655166i \(-0.772599\pi\)
−0.189648 0.981852i \(-0.560735\pi\)
\(860\) 441.632 1177.31i 0.513526 1.36897i
\(861\) −325.298 + 60.2230i −0.377814 + 0.0699454i
\(862\) −99.1522 57.2456i −0.115026 0.0664102i
\(863\) 687.358 0.796475 0.398238 0.917282i \(-0.369622\pi\)
0.398238 + 0.917282i \(0.369622\pi\)
\(864\) 546.932 + 297.386i 0.633024 + 0.344197i
\(865\) −1.69583 + 1.39486i −0.00196050 + 0.00161255i
\(866\) 281.190 + 162.345i 0.324700 + 0.187466i
\(867\) −412.294 + 76.3287i −0.475541 + 0.0880377i
\(868\) −262.480 + 151.543i −0.302397 + 0.174589i
\(869\) 276.027 159.364i 0.317637 0.183388i
\(870\) −260.341 + 94.3784i −0.299242 + 0.108481i
\(871\) 105.750 183.165i 0.121412 0.210293i
\(872\) −60.4758 −0.0693530
\(873\) −554.395 88.0354i −0.635046 0.100842i
\(874\) −25.4122 −0.0290758
\(875\) −10.1745 + 345.673i −0.0116281 + 0.395055i
\(876\) −200.792 + 171.423i −0.229214 + 0.195688i
\(877\) 1345.72 776.955i 1.53446 0.885923i 0.535316 0.844652i \(-0.320193\pi\)
0.999148 0.0412710i \(-0.0131407\pi\)
\(878\) 137.407 + 237.995i 0.156500 + 0.271065i
\(879\) 796.040 + 932.422i 0.905620 + 1.06078i
\(880\) −579.094 + 96.2632i −0.658061 + 0.109390i
\(881\) 452.136i 0.513208i 0.966517 + 0.256604i \(0.0826036\pi\)
−0.966517 + 0.256604i \(0.917396\pi\)
\(882\) −183.730 + 70.4427i −0.208310 + 0.0798670i
\(883\) 1014.46i 1.14888i −0.818546 0.574441i \(-0.805219\pi\)
0.818546 0.574441i \(-0.194781\pi\)
\(884\) 534.832 + 308.785i 0.605013 + 0.349304i
\(885\) 825.013 299.083i 0.932218 0.337947i
\(886\) −132.634 229.729i −0.149700 0.259287i
\(887\) 104.060 + 180.237i 0.117317 + 0.203199i 0.918704 0.394948i \(-0.129237\pi\)
−0.801387 + 0.598147i \(0.795904\pi\)
\(888\) −143.497 775.109i −0.161596 0.872870i
\(889\) 50.8071 88.0004i 0.0571508 0.0989881i
\(890\) 48.9328 + 59.4912i 0.0549806 + 0.0668441i
\(891\) −731.275 + 154.825i −0.820735 + 0.173765i
\(892\) 216.545i 0.242764i
\(893\) −946.242 + 1638.94i −1.05962 + 1.83532i
\(894\) −68.0604 367.632i −0.0761302 0.411222i
\(895\) 180.351 480.784i 0.201509 0.537189i
\(896\) 270.006 155.888i 0.301346 0.173982i
\(897\) 91.1138 + 32.2856i 0.101576 + 0.0359929i
\(898\) 76.1971 + 43.9924i 0.0848521 + 0.0489894i
\(899\) 1028.05i 1.14355i
\(900\) 143.244 + 824.738i 0.159160 + 0.916376i
\(901\) −120.042 −0.133232
\(902\) −97.2536 + 168.448i −0.107820 + 0.186750i
\(903\) −364.276 426.686i −0.403407 0.472520i
\(904\) 169.028 + 292.765i 0.186978 + 0.323855i
\(905\) 563.770 + 211.480i 0.622950 + 0.233680i
\(906\) −15.2823 17.9005i −0.0168679 0.0197577i
\(907\) −205.665 118.741i −0.226753 0.130916i 0.382320 0.924030i \(-0.375125\pi\)
−0.609073 + 0.793114i \(0.708458\pi\)
\(908\) 1393.59 1.53479
\(909\) −1218.65 193.516i −1.34065 0.212889i
\(910\) −76.7639 + 63.1399i −0.0843559 + 0.0693845i
\(911\) 1167.48 + 674.042i 1.28153 + 0.739893i 0.977128 0.212650i \(-0.0682095\pi\)
0.304404 + 0.952543i \(0.401543\pi\)
\(912\) −258.357 + 729.114i −0.283286 + 0.799467i
\(913\) −602.155 + 347.654i −0.659534 + 0.380782i
\(914\) −381.031 + 219.988i −0.416883 + 0.240687i
\(915\) −149.731 + 177.979i −0.163641 + 0.194512i
\(916\) 125.904 218.073i 0.137450 0.238071i
\(917\) −160.286 −0.174793
\(918\) 4.46079 + 174.357i 0.00485925 + 0.189931i
\(919\) −153.887 −0.167450 −0.0837250 0.996489i \(-0.526682\pi\)
−0.0837250 + 0.996489i \(0.526682\pi\)
\(920\) 7.93718 + 47.7480i 0.00862737 + 0.0519000i
\(921\) −95.0967 513.670i −0.103254 0.557731i
\(922\) 198.871 114.818i 0.215696 0.124532i
\(923\) −361.429 626.014i −0.391581 0.678238i
\(924\) −95.1722 + 268.587i −0.103000 + 0.290679i
\(925\) 1058.27 1212.10i 1.14408 1.31038i
\(926\) 92.0376i 0.0993926i
\(927\) −616.555 + 760.759i −0.665108 + 0.820667i
\(928\) 804.992i 0.867448i
\(929\) −665.491 384.221i −0.716352 0.413586i 0.0970567 0.995279i \(-0.469057\pi\)
−0.813408 + 0.581693i \(0.802391\pi\)
\(930\) 229.966 + 40.8533i 0.247275 + 0.0439283i
\(931\) −418.968 725.674i −0.450020 0.779457i
\(932\) 525.276 + 909.805i 0.563601 + 0.976186i
\(933\) 625.904 534.355i 0.670851 0.572728i
\(934\) 35.5461 61.5677i 0.0380579 0.0659183i
\(935\) −358.064 435.325i −0.382956 0.465588i
\(936\) −314.353 + 387.876i −0.335848 + 0.414398i
\(937\) 359.563i 0.383738i 0.981421 + 0.191869i \(0.0614549\pi\)
−0.981421 + 0.191869i \(0.938545\pi\)
\(938\) 11.3853 19.7199i 0.0121378 0.0210233i
\(939\) −602.619 213.534i −0.641767 0.227406i
\(940\) 1626.39 + 610.087i 1.73020 + 0.649029i
\(941\) 183.507 105.948i 0.195013 0.112591i −0.399314 0.916814i \(-0.630752\pi\)
0.594327 + 0.804223i \(0.297418\pi\)
\(942\) −42.5109 229.625i −0.0451284 0.243764i
\(943\) −81.8551 47.2591i −0.0868029 0.0501157i
\(944\) 744.325i 0.788479i
\(945\) 352.935 + 122.190i 0.373476 + 0.129302i
\(946\) −329.856 −0.348685
\(947\) −773.466 + 1339.68i −0.816754 + 1.41466i 0.0913074 + 0.995823i \(0.470895\pi\)
−0.908062 + 0.418837i \(0.862438\pi\)
\(948\) −379.048 + 70.1738i −0.399839 + 0.0740230i
\(949\) −160.714 278.365i −0.169351 0.293324i
\(950\) 253.509 86.6772i 0.266852 0.0912392i
\(951\) −242.605 + 684.660i −0.255105 + 0.719937i
\(952\) 119.490 + 68.9874i 0.125514 + 0.0724657i
\(953\) −1453.97 −1.52568 −0.762838 0.646589i \(-0.776195\pi\)
−0.762838 + 0.646589i \(0.776195\pi\)
\(954\) 7.33429 46.1871i 0.00768794 0.0484141i
\(955\) 464.885 + 565.196i 0.486791 + 0.591828i
\(956\) −1186.93 685.276i −1.24156 0.716816i
\(957\) −627.566 735.084i −0.655764 0.768112i
\(958\) −326.317 + 188.399i −0.340624 + 0.196659i
\(959\) −137.955 + 79.6486i −0.143853 + 0.0830538i
\(960\) 571.527 + 101.531i 0.595340 + 0.105762i
\(961\) 46.9491 81.3183i 0.0488544 0.0846184i
\(962\) 462.473 0.480741
\(963\) −537.827 + 206.205i −0.558491 + 0.214128i
\(964\) −1380.66 −1.43222
\(965\) 643.188 106.918i 0.666517 0.110795i
\(966\) 9.80948 + 3.47593i 0.0101547 + 0.00359827i
\(967\) −331.339 + 191.299i −0.342646 + 0.197827i −0.661442 0.749997i \(-0.730055\pi\)
0.318795 + 0.947824i \(0.396722\pi\)
\(968\) −73.1583 126.714i −0.0755768 0.130903i
\(969\) −730.321 + 135.206i −0.753686 + 0.139531i
\(970\) 162.675 27.0415i 0.167706 0.0278779i
\(971\) 1474.96i 1.51901i 0.650503 + 0.759504i \(0.274558\pi\)
−0.650503 + 0.759504i \(0.725442\pi\)
\(972\) 896.199 + 118.901i 0.922016 + 0.122326i
\(973\) 167.791i 0.172447i
\(974\) −95.5557 55.1691i −0.0981064 0.0566418i
\(975\) −1019.06 11.3027i −1.04519 0.0115925i
\(976\) 98.6373 + 170.845i 0.101063 + 0.175046i
\(977\) −708.905 1227.86i −0.725593 1.25676i −0.958729 0.284320i \(-0.908232\pi\)
0.233136 0.972444i \(-0.425101\pi\)
\(978\) −14.3865 5.09777i −0.0147101 0.00521245i
\(979\) −134.429 + 232.838i −0.137313 + 0.237832i
\(980\) −593.997 + 488.575i −0.606119 + 0.498546i
\(981\) −124.486 + 47.7284i −0.126897 + 0.0486528i
\(982\) 217.636i 0.221625i
\(983\) −222.160 + 384.792i −0.226002 + 0.391447i −0.956620 0.291340i \(-0.905899\pi\)
0.730618 + 0.682787i \(0.239232\pi\)
\(984\) 371.277 316.972i 0.377314 0.322126i
\(985\) −873.802 327.779i −0.887109 0.332771i
\(986\) −195.311 + 112.763i −0.198084 + 0.114364i
\(987\) 589.440 503.225i 0.597203 0.509853i
\(988\) −887.282 512.272i −0.898058 0.518494i
\(989\) 160.289i 0.162072i
\(990\) 189.371 111.170i 0.191284 0.112293i
\(991\) 1177.77 1.18847 0.594235 0.804291i \(-0.297455\pi\)
0.594235 + 0.804291i \(0.297455\pi\)
\(992\) 339.483 588.002i 0.342221 0.592744i
\(993\) 199.325 562.517i 0.200730 0.566483i
\(994\) −38.9121 67.3978i −0.0391470 0.0678046i
\(995\) −211.563 79.3613i −0.212626 0.0797601i
\(996\) 826.896 153.085i 0.830217 0.153700i
\(997\) 87.6487 + 50.6040i 0.0879125 + 0.0507563i 0.543312 0.839531i \(-0.317170\pi\)
−0.455399 + 0.890287i \(0.650503\pi\)
\(998\) 176.933 0.177287
\(999\) −907.107 1482.26i −0.908016 1.48375i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.3.h.a.29.6 yes 20
3.2 odd 2 135.3.h.a.89.5 20
5.2 odd 4 225.3.j.e.101.6 20
5.3 odd 4 225.3.j.e.101.5 20
5.4 even 2 inner 45.3.h.a.29.5 yes 20
9.2 odd 6 405.3.d.a.404.12 20
9.4 even 3 135.3.h.a.44.6 20
9.5 odd 6 inner 45.3.h.a.14.5 20
9.7 even 3 405.3.d.a.404.9 20
15.2 even 4 675.3.j.e.251.5 20
15.8 even 4 675.3.j.e.251.6 20
15.14 odd 2 135.3.h.a.89.6 20
45.4 even 6 135.3.h.a.44.5 20
45.13 odd 12 675.3.j.e.476.6 20
45.14 odd 6 inner 45.3.h.a.14.6 yes 20
45.22 odd 12 675.3.j.e.476.5 20
45.23 even 12 225.3.j.e.176.5 20
45.29 odd 6 405.3.d.a.404.10 20
45.32 even 12 225.3.j.e.176.6 20
45.34 even 6 405.3.d.a.404.11 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.5 20 9.5 odd 6 inner
45.3.h.a.14.6 yes 20 45.14 odd 6 inner
45.3.h.a.29.5 yes 20 5.4 even 2 inner
45.3.h.a.29.6 yes 20 1.1 even 1 trivial
135.3.h.a.44.5 20 45.4 even 6
135.3.h.a.44.6 20 9.4 even 3
135.3.h.a.89.5 20 3.2 odd 2
135.3.h.a.89.6 20 15.14 odd 2
225.3.j.e.101.5 20 5.3 odd 4
225.3.j.e.101.6 20 5.2 odd 4
225.3.j.e.176.5 20 45.23 even 12
225.3.j.e.176.6 20 45.32 even 12
405.3.d.a.404.9 20 9.7 even 3
405.3.d.a.404.10 20 45.29 odd 6
405.3.d.a.404.11 20 45.34 even 6
405.3.d.a.404.12 20 9.2 odd 6
675.3.j.e.251.5 20 15.2 even 4
675.3.j.e.251.6 20 15.8 even 4
675.3.j.e.476.5 20 45.22 odd 12
675.3.j.e.476.6 20 45.13 odd 12