Properties

Label 135.3.h.a.44.5
Level $135$
Weight $3$
Character 135.44
Analytic conductor $3.678$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,3,Mod(44,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.44"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3 x^{18} - 19 x^{16} + 66 x^{14} + 109 x^{12} - 813 x^{10} + 981 x^{8} + 5346 x^{6} + \cdots + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{12} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 44.5
Root \(-0.315300 + 1.70311i\) of defining polynomial
Character \(\chi\) \(=\) 135.44
Dual form 135.3.h.a.89.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.264396 - 0.457947i) q^{2} +(1.86019 - 3.22194i) q^{4} +(4.68146 - 1.75610i) q^{5} +(-2.39593 + 1.38329i) q^{7} -4.08247 q^{8} +(-2.04196 - 1.67955i) q^{10} +(7.99186 - 4.61410i) q^{11} +(-11.7678 - 6.79417i) q^{13} +(1.26695 + 0.731472i) q^{14} +(-6.36137 - 11.0182i) q^{16} +12.2161 q^{17} +20.2664 q^{19} +(3.05035 - 18.3501i) q^{20} +(-4.22603 - 2.43990i) q^{22} +(1.18564 - 2.05358i) q^{23} +(18.8322 - 16.4423i) q^{25} +7.18539i q^{26} +10.2927i q^{28} +(-30.2349 + 17.4561i) q^{29} +(-14.7233 + 25.5015i) q^{31} +(-11.5288 + 19.9684i) q^{32} +(-3.22989 - 5.59433i) q^{34} +(-8.78726 + 10.6833i) q^{35} +64.3630i q^{37} +(-5.35836 - 9.28095i) q^{38} +(-19.1119 + 7.16923i) q^{40} +(-34.5195 - 19.9299i) q^{41} +(58.5402 - 33.7982i) q^{43} -34.3324i q^{44} -1.25391 q^{46} +(46.6901 + 80.8696i) q^{47} +(-20.6730 + 35.8067i) q^{49} +(-12.5088 - 4.27688i) q^{50} +(-43.7808 + 25.2769i) q^{52} -9.82656 q^{53} +(29.3108 - 35.6353i) q^{55} +(9.78131 - 5.64724i) q^{56} +(15.9880 + 9.23066i) q^{58} +(50.6655 + 29.2517i) q^{59} +(7.75283 + 13.4283i) q^{61} +15.5711 q^{62} -38.6984 q^{64} +(-67.0220 - 11.1411i) q^{65} +(-13.4796 - 7.78243i) q^{67} +(22.7243 - 39.3596i) q^{68} +(7.21571 + 1.19947i) q^{70} +53.1970i q^{71} -23.6547i q^{73} +(29.4748 - 17.0173i) q^{74} +(37.6994 - 65.2973i) q^{76} +(-12.7653 + 22.1101i) q^{77} +(-17.2692 - 29.9112i) q^{79} +(-49.1297 - 40.4102i) q^{80} +21.0775i q^{82} +(-37.6730 - 65.2516i) q^{83} +(57.1893 - 21.4527i) q^{85} +(-30.9555 - 17.8722i) q^{86} +(-32.6265 + 18.8369i) q^{88} -29.1344i q^{89} +37.5932 q^{91} +(-4.41101 - 7.64010i) q^{92} +(24.6893 - 42.7631i) q^{94} +(94.8766 - 35.5899i) q^{95} +(-54.0151 + 31.1857i) q^{97} +21.8634 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 18 q^{4} + 12 q^{5} + 4 q^{10} + 24 q^{11} - 30 q^{14} - 26 q^{16} - 8 q^{19} - 144 q^{20} + 2 q^{25} + 114 q^{29} + 28 q^{31} - 4 q^{34} - 34 q^{40} - 102 q^{41} + 116 q^{46} - 40 q^{49} + 408 q^{50}+ \cdots + 762 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.264396 0.457947i −0.132198 0.228973i 0.792326 0.610098i \(-0.208870\pi\)
−0.924524 + 0.381125i \(0.875537\pi\)
\(3\) 0 0
\(4\) 1.86019 3.22194i 0.465047 0.805486i
\(5\) 4.68146 1.75610i 0.936293 0.351221i
\(6\) 0 0
\(7\) −2.39593 + 1.38329i −0.342276 + 0.197613i −0.661278 0.750141i \(-0.729986\pi\)
0.319002 + 0.947754i \(0.396652\pi\)
\(8\) −4.08247 −0.510309
\(9\) 0 0
\(10\) −2.04196 1.67955i −0.204196 0.167955i
\(11\) 7.99186 4.61410i 0.726533 0.419464i −0.0906197 0.995886i \(-0.528885\pi\)
0.817152 + 0.576422i \(0.195551\pi\)
\(12\) 0 0
\(13\) −11.7678 6.79417i −0.905218 0.522628i −0.0263288 0.999653i \(-0.508382\pi\)
−0.878890 + 0.477025i \(0.841715\pi\)
\(14\) 1.26695 + 0.731472i 0.0904962 + 0.0522480i
\(15\) 0 0
\(16\) −6.36137 11.0182i −0.397586 0.688639i
\(17\) 12.2161 0.718595 0.359297 0.933223i \(-0.383016\pi\)
0.359297 + 0.933223i \(0.383016\pi\)
\(18\) 0 0
\(19\) 20.2664 1.06665 0.533327 0.845909i \(-0.320941\pi\)
0.533327 + 0.845909i \(0.320941\pi\)
\(20\) 3.05035 18.3501i 0.152517 0.917505i
\(21\) 0 0
\(22\) −4.22603 2.43990i −0.192092 0.110904i
\(23\) 1.18564 2.05358i 0.0515494 0.0892861i −0.839099 0.543978i \(-0.816917\pi\)
0.890649 + 0.454692i \(0.150251\pi\)
\(24\) 0 0
\(25\) 18.8322 16.4423i 0.753288 0.657690i
\(26\) 7.18539i 0.276361i
\(27\) 0 0
\(28\) 10.2927i 0.367598i
\(29\) −30.2349 + 17.4561i −1.04258 + 0.601936i −0.920564 0.390592i \(-0.872270\pi\)
−0.122020 + 0.992528i \(0.538937\pi\)
\(30\) 0 0
\(31\) −14.7233 + 25.5015i −0.474945 + 0.822629i −0.999588 0.0286933i \(-0.990865\pi\)
0.524643 + 0.851322i \(0.324199\pi\)
\(32\) −11.5288 + 19.9684i −0.360274 + 0.624013i
\(33\) 0 0
\(34\) −3.22989 5.59433i −0.0949967 0.164539i
\(35\) −8.78726 + 10.6833i −0.251065 + 0.305238i
\(36\) 0 0
\(37\) 64.3630i 1.73954i 0.493457 + 0.869770i \(0.335733\pi\)
−0.493457 + 0.869770i \(0.664267\pi\)
\(38\) −5.35836 9.28095i −0.141009 0.244235i
\(39\) 0 0
\(40\) −19.1119 + 7.16923i −0.477798 + 0.179231i
\(41\) −34.5195 19.9299i −0.841940 0.486094i 0.0159834 0.999872i \(-0.494912\pi\)
−0.857923 + 0.513778i \(0.828245\pi\)
\(42\) 0 0
\(43\) 58.5402 33.7982i 1.36140 0.786004i 0.371589 0.928397i \(-0.378813\pi\)
0.989810 + 0.142393i \(0.0454796\pi\)
\(44\) 34.3324i 0.780282i
\(45\) 0 0
\(46\) −1.25391 −0.0272588
\(47\) 46.6901 + 80.8696i 0.993406 + 1.72063i 0.595992 + 0.802991i \(0.296759\pi\)
0.397414 + 0.917639i \(0.369908\pi\)
\(48\) 0 0
\(49\) −20.6730 + 35.8067i −0.421898 + 0.730749i
\(50\) −12.5088 4.27688i −0.250177 0.0855377i
\(51\) 0 0
\(52\) −43.7808 + 25.2769i −0.841939 + 0.486094i
\(53\) −9.82656 −0.185407 −0.0927034 0.995694i \(-0.529551\pi\)
−0.0927034 + 0.995694i \(0.529551\pi\)
\(54\) 0 0
\(55\) 29.3108 35.6353i 0.532923 0.647914i
\(56\) 9.78131 5.64724i 0.174666 0.100844i
\(57\) 0 0
\(58\) 15.9880 + 9.23066i 0.275655 + 0.159149i
\(59\) 50.6655 + 29.2517i 0.858737 + 0.495792i 0.863589 0.504196i \(-0.168211\pi\)
−0.00485217 + 0.999988i \(0.501544\pi\)
\(60\) 0 0
\(61\) 7.75283 + 13.4283i 0.127096 + 0.220136i 0.922550 0.385877i \(-0.126101\pi\)
−0.795455 + 0.606013i \(0.792768\pi\)
\(62\) 15.5711 0.251147
\(63\) 0 0
\(64\) −38.6984 −0.604662
\(65\) −67.0220 11.1411i −1.03111 0.171402i
\(66\) 0 0
\(67\) −13.4796 7.78243i −0.201188 0.116156i 0.396022 0.918241i \(-0.370390\pi\)
−0.597209 + 0.802085i \(0.703724\pi\)
\(68\) 22.7243 39.3596i 0.334181 0.578818i
\(69\) 0 0
\(70\) 7.21571 + 1.19947i 0.103082 + 0.0171353i
\(71\) 53.1970i 0.749254i 0.927176 + 0.374627i \(0.122229\pi\)
−0.927176 + 0.374627i \(0.877771\pi\)
\(72\) 0 0
\(73\) 23.6547i 0.324037i −0.986788 0.162019i \(-0.948200\pi\)
0.986788 0.162019i \(-0.0518005\pi\)
\(74\) 29.4748 17.0173i 0.398308 0.229963i
\(75\) 0 0
\(76\) 37.6994 65.2973i 0.496045 0.859175i
\(77\) −12.7653 + 22.1101i −0.165783 + 0.287145i
\(78\) 0 0
\(79\) −17.2692 29.9112i −0.218598 0.378623i 0.735782 0.677219i \(-0.236815\pi\)
−0.954380 + 0.298596i \(0.903482\pi\)
\(80\) −49.1297 40.4102i −0.614121 0.505127i
\(81\) 0 0
\(82\) 21.0775i 0.257042i
\(83\) −37.6730 65.2516i −0.453892 0.786163i 0.544732 0.838610i \(-0.316631\pi\)
−0.998624 + 0.0524468i \(0.983298\pi\)
\(84\) 0 0
\(85\) 57.1893 21.4527i 0.672815 0.252385i
\(86\) −30.9555 17.8722i −0.359948 0.207816i
\(87\) 0 0
\(88\) −32.6265 + 18.8369i −0.370756 + 0.214056i
\(89\) 29.1344i 0.327352i −0.986514 0.163676i \(-0.947665\pi\)
0.986514 0.163676i \(-0.0523352\pi\)
\(90\) 0 0
\(91\) 37.5932 0.413112
\(92\) −4.41101 7.64010i −0.0479458 0.0830445i
\(93\) 0 0
\(94\) 24.6893 42.7631i 0.262652 0.454927i
\(95\) 94.8766 35.5899i 0.998701 0.374631i
\(96\) 0 0
\(97\) −54.0151 + 31.1857i −0.556857 + 0.321502i −0.751883 0.659296i \(-0.770854\pi\)
0.195026 + 0.980798i \(0.437521\pi\)
\(98\) 21.8634 0.223096
\(99\) 0 0
\(100\) −17.9446 91.2620i −0.179446 0.912620i
\(101\) 118.734 68.5511i 1.17558 0.678723i 0.220595 0.975366i \(-0.429200\pi\)
0.954989 + 0.296642i \(0.0958669\pi\)
\(102\) 0 0
\(103\) −94.2266 54.4017i −0.914821 0.528172i −0.0328419 0.999461i \(-0.510456\pi\)
−0.881979 + 0.471288i \(0.843789\pi\)
\(104\) 48.0418 + 27.7370i 0.461941 + 0.266702i
\(105\) 0 0
\(106\) 2.59810 + 4.50004i 0.0245104 + 0.0424532i
\(107\) 64.0002 0.598133 0.299067 0.954232i \(-0.403325\pi\)
0.299067 + 0.954232i \(0.403325\pi\)
\(108\) 0 0
\(109\) −14.8135 −0.135904 −0.0679520 0.997689i \(-0.521646\pi\)
−0.0679520 + 0.997689i \(0.521646\pi\)
\(110\) −24.0687 4.00095i −0.218806 0.0363723i
\(111\) 0 0
\(112\) 30.4828 + 17.5993i 0.272168 + 0.157136i
\(113\) −41.4033 + 71.7126i −0.366401 + 0.634625i −0.989000 0.147916i \(-0.952743\pi\)
0.622599 + 0.782541i \(0.286077\pi\)
\(114\) 0 0
\(115\) 1.94421 11.6959i 0.0169062 0.101703i
\(116\) 129.887i 1.11972i
\(117\) 0 0
\(118\) 30.9361i 0.262170i
\(119\) −29.2690 + 16.8984i −0.245958 + 0.142004i
\(120\) 0 0
\(121\) −17.9201 + 31.0386i −0.148100 + 0.256517i
\(122\) 4.09963 7.10077i 0.0336035 0.0582030i
\(123\) 0 0
\(124\) 54.7763 + 94.8753i 0.441744 + 0.765123i
\(125\) 59.2880 110.045i 0.474304 0.880361i
\(126\) 0 0
\(127\) 36.7291i 0.289206i −0.989490 0.144603i \(-0.953810\pi\)
0.989490 0.144603i \(-0.0461904\pi\)
\(128\) 56.3468 + 97.5955i 0.440209 + 0.762465i
\(129\) 0 0
\(130\) 12.6183 + 33.6381i 0.0970637 + 0.258755i
\(131\) −50.1743 28.9682i −0.383010 0.221131i 0.296117 0.955152i \(-0.404308\pi\)
−0.679127 + 0.734021i \(0.737641\pi\)
\(132\) 0 0
\(133\) −48.5570 + 28.0344i −0.365090 + 0.210785i
\(134\) 8.23056i 0.0614221i
\(135\) 0 0
\(136\) −49.8719 −0.366705
\(137\) −28.7895 49.8649i −0.210143 0.363978i 0.741616 0.670824i \(-0.234059\pi\)
−0.951759 + 0.306847i \(0.900726\pi\)
\(138\) 0 0
\(139\) 30.3246 52.5237i 0.218162 0.377868i −0.736084 0.676890i \(-0.763327\pi\)
0.954246 + 0.299022i \(0.0966605\pi\)
\(140\) 18.0751 + 48.1851i 0.129108 + 0.344179i
\(141\) 0 0
\(142\) 24.3614 14.0651i 0.171559 0.0990497i
\(143\) −125.396 −0.876894
\(144\) 0 0
\(145\) −110.889 + 134.816i −0.764751 + 0.929765i
\(146\) −10.8326 + 6.25420i −0.0741959 + 0.0428370i
\(147\) 0 0
\(148\) 207.374 + 119.727i 1.40118 + 0.808969i
\(149\) −204.106 117.841i −1.36984 0.790879i −0.378934 0.925424i \(-0.623709\pi\)
−0.990907 + 0.134545i \(0.957043\pi\)
\(150\) 0 0
\(151\) 7.41840 + 12.8490i 0.0491285 + 0.0850930i 0.889544 0.456850i \(-0.151022\pi\)
−0.840415 + 0.541943i \(0.817689\pi\)
\(152\) −82.7371 −0.544323
\(153\) 0 0
\(154\) 13.5003 0.0876646
\(155\) −24.1433 + 145.240i −0.155763 + 0.937032i
\(156\) 0 0
\(157\) 127.486 + 73.6041i 0.812013 + 0.468816i 0.847654 0.530549i \(-0.178014\pi\)
−0.0356413 + 0.999365i \(0.511347\pi\)
\(158\) −9.13182 + 15.8168i −0.0577963 + 0.100106i
\(159\) 0 0
\(160\) −18.9049 + 113.727i −0.118156 + 0.710795i
\(161\) 6.56031i 0.0407473i
\(162\) 0 0
\(163\) 9.62130i 0.0590264i 0.999564 + 0.0295132i \(0.00939571\pi\)
−0.999564 + 0.0295132i \(0.990604\pi\)
\(164\) −128.426 + 74.1466i −0.783084 + 0.452114i
\(165\) 0 0
\(166\) −19.9212 + 34.5045i −0.120007 + 0.207858i
\(167\) 41.5393 71.9482i 0.248738 0.430828i −0.714438 0.699699i \(-0.753317\pi\)
0.963176 + 0.268872i \(0.0866507\pi\)
\(168\) 0 0
\(169\) 7.82136 + 13.5470i 0.0462803 + 0.0801598i
\(170\) −24.9448 20.5176i −0.146734 0.120692i
\(171\) 0 0
\(172\) 251.484i 1.46212i
\(173\) −0.219578 0.380321i −0.00126924 0.00219839i 0.865390 0.501099i \(-0.167071\pi\)
−0.866659 + 0.498900i \(0.833737\pi\)
\(174\) 0 0
\(175\) −22.3762 + 65.4449i −0.127864 + 0.373971i
\(176\) −101.678 58.7040i −0.577718 0.333546i
\(177\) 0 0
\(178\) −13.3420 + 7.70300i −0.0749550 + 0.0432753i
\(179\) 102.699i 0.573740i 0.957970 + 0.286870i \(0.0926148\pi\)
−0.957970 + 0.286870i \(0.907385\pi\)
\(180\) 0 0
\(181\) −120.426 −0.665337 −0.332669 0.943044i \(-0.607949\pi\)
−0.332669 + 0.943044i \(0.607949\pi\)
\(182\) −9.93949 17.2157i −0.0546126 0.0945917i
\(183\) 0 0
\(184\) −4.84032 + 8.38368i −0.0263061 + 0.0455635i
\(185\) 113.028 + 301.313i 0.610962 + 1.62872i
\(186\) 0 0
\(187\) 97.6295 56.3664i 0.522083 0.301425i
\(188\) 347.410 1.84792
\(189\) 0 0
\(190\) −41.3833 34.0386i −0.217807 0.179150i
\(191\) 126.755 73.1823i 0.663641 0.383153i −0.130022 0.991511i \(-0.541505\pi\)
0.793663 + 0.608358i \(0.208171\pi\)
\(192\) 0 0
\(193\) −112.932 65.2014i −0.585141 0.337831i 0.178033 0.984025i \(-0.443027\pi\)
−0.763174 + 0.646193i \(0.776360\pi\)
\(194\) 28.5627 + 16.4907i 0.147231 + 0.0850036i
\(195\) 0 0
\(196\) 76.9115 + 133.215i 0.392405 + 0.679666i
\(197\) −186.652 −0.947470 −0.473735 0.880668i \(-0.657094\pi\)
−0.473735 + 0.880668i \(0.657094\pi\)
\(198\) 0 0
\(199\) 45.1917 0.227094 0.113547 0.993533i \(-0.463779\pi\)
0.113547 + 0.993533i \(0.463779\pi\)
\(200\) −76.8819 + 67.1250i −0.384410 + 0.335625i
\(201\) 0 0
\(202\) −62.7855 36.2492i −0.310819 0.179451i
\(203\) 48.2939 83.6474i 0.237901 0.412056i
\(204\) 0 0
\(205\) −196.601 32.6811i −0.959028 0.159420i
\(206\) 57.5343i 0.279293i
\(207\) 0 0
\(208\) 172.881i 0.831158i
\(209\) 161.967 93.5114i 0.774959 0.447423i
\(210\) 0 0
\(211\) 69.1054 119.694i 0.327514 0.567270i −0.654504 0.756058i \(-0.727123\pi\)
0.982018 + 0.188788i \(0.0604559\pi\)
\(212\) −18.2793 + 31.6606i −0.0862229 + 0.149343i
\(213\) 0 0
\(214\) −16.9214 29.3087i −0.0790719 0.136957i
\(215\) 214.701 261.028i 0.998608 1.21408i
\(216\) 0 0
\(217\) 81.4664i 0.375421i
\(218\) 3.91664 + 6.78381i 0.0179662 + 0.0311184i
\(219\) 0 0
\(220\) −60.2913 160.726i −0.274051 0.730573i
\(221\) −143.757 82.9983i −0.650485 0.375558i
\(222\) 0 0
\(223\) 50.4072 29.1026i 0.226041 0.130505i −0.382703 0.923871i \(-0.625007\pi\)
0.608744 + 0.793366i \(0.291673\pi\)
\(224\) 63.7906i 0.284780i
\(225\) 0 0
\(226\) 43.7874 0.193750
\(227\) −187.291 324.397i −0.825069 1.42906i −0.901866 0.432015i \(-0.857803\pi\)
0.0767971 0.997047i \(-0.475531\pi\)
\(228\) 0 0
\(229\) −33.8418 + 58.6157i −0.147781 + 0.255964i −0.930407 0.366528i \(-0.880546\pi\)
0.782626 + 0.622492i \(0.213880\pi\)
\(230\) −5.87012 + 2.20199i −0.0255223 + 0.00957387i
\(231\) 0 0
\(232\) 123.433 71.2642i 0.532040 0.307173i
\(233\) −282.378 −1.21192 −0.605961 0.795495i \(-0.707211\pi\)
−0.605961 + 0.795495i \(0.707211\pi\)
\(234\) 0 0
\(235\) 360.593 + 296.596i 1.53444 + 1.26211i
\(236\) 188.495 108.828i 0.798707 0.461134i
\(237\) 0 0
\(238\) 15.4772 + 8.93575i 0.0650301 + 0.0375452i
\(239\) 319.035 + 184.195i 1.33488 + 0.770691i 0.986042 0.166494i \(-0.0532447\pi\)
0.348833 + 0.937185i \(0.386578\pi\)
\(240\) 0 0
\(241\) −185.554 321.389i −0.769934 1.33357i −0.937598 0.347721i \(-0.886956\pi\)
0.167664 0.985844i \(-0.446378\pi\)
\(242\) 18.9520 0.0783141
\(243\) 0 0
\(244\) 57.6870 0.236422
\(245\) −33.8997 + 203.932i −0.138366 + 0.832374i
\(246\) 0 0
\(247\) −238.492 137.694i −0.965555 0.557464i
\(248\) 60.1074 104.109i 0.242369 0.419795i
\(249\) 0 0
\(250\) −66.0703 + 1.94471i −0.264281 + 0.00777886i
\(251\) 306.449i 1.22091i 0.792049 + 0.610457i \(0.209014\pi\)
−0.792049 + 0.610457i \(0.790986\pi\)
\(252\) 0 0
\(253\) 21.8826i 0.0864924i
\(254\) −16.8200 + 9.71102i −0.0662204 + 0.0382323i
\(255\) 0 0
\(256\) −47.6010 + 82.4474i −0.185941 + 0.322060i
\(257\) 152.974 264.959i 0.595230 1.03097i −0.398284 0.917262i \(-0.630394\pi\)
0.993514 0.113707i \(-0.0362724\pi\)
\(258\) 0 0
\(259\) −89.0328 154.209i −0.343756 0.595403i
\(260\) −160.570 + 195.216i −0.617575 + 0.750832i
\(261\) 0 0
\(262\) 30.6362i 0.116932i
\(263\) 73.3426 + 127.033i 0.278869 + 0.483016i 0.971104 0.238657i \(-0.0767070\pi\)
−0.692235 + 0.721672i \(0.743374\pi\)
\(264\) 0 0
\(265\) −46.0027 + 17.2564i −0.173595 + 0.0651187i
\(266\) 25.6765 + 14.8243i 0.0965282 + 0.0557306i
\(267\) 0 0
\(268\) −50.1491 + 28.9536i −0.187124 + 0.108036i
\(269\) 276.133i 1.02652i −0.858234 0.513258i \(-0.828438\pi\)
0.858234 0.513258i \(-0.171562\pi\)
\(270\) 0 0
\(271\) 304.822 1.12480 0.562402 0.826864i \(-0.309877\pi\)
0.562402 + 0.826864i \(0.309877\pi\)
\(272\) −77.7112 134.600i −0.285703 0.494852i
\(273\) 0 0
\(274\) −15.2237 + 26.3681i −0.0555608 + 0.0962341i
\(275\) 74.6381 218.298i 0.271411 0.793811i
\(276\) 0 0
\(277\) 355.555 205.280i 1.28359 0.741083i 0.306090 0.952003i \(-0.400979\pi\)
0.977503 + 0.210920i \(0.0676460\pi\)
\(278\) −32.0707 −0.115362
\(279\) 0 0
\(280\) 35.8737 43.6144i 0.128120 0.155766i
\(281\) −89.9230 + 51.9171i −0.320011 + 0.184758i −0.651397 0.758737i \(-0.725817\pi\)
0.331387 + 0.943495i \(0.392484\pi\)
\(282\) 0 0
\(283\) −243.762 140.736i −0.861351 0.497301i 0.00311372 0.999995i \(-0.499009\pi\)
−0.864464 + 0.502694i \(0.832342\pi\)
\(284\) 171.398 + 98.9566i 0.603513 + 0.348439i
\(285\) 0 0
\(286\) 33.1541 + 57.4246i 0.115924 + 0.200785i
\(287\) 110.275 0.384234
\(288\) 0 0
\(289\) −139.767 −0.483621
\(290\) 91.0571 + 15.1365i 0.313990 + 0.0521947i
\(291\) 0 0
\(292\) −76.2142 44.0023i −0.261007 0.150693i
\(293\) −204.334 + 353.917i −0.697387 + 1.20791i 0.271983 + 0.962302i \(0.412321\pi\)
−0.969369 + 0.245607i \(0.921013\pi\)
\(294\) 0 0
\(295\) 288.558 + 47.9671i 0.978162 + 0.162600i
\(296\) 262.760i 0.887703i
\(297\) 0 0
\(298\) 124.626i 0.418210i
\(299\) −27.9047 + 16.1108i −0.0933268 + 0.0538823i
\(300\) 0 0
\(301\) −93.5055 + 161.956i −0.310649 + 0.538060i
\(302\) 3.92278 6.79446i 0.0129893 0.0224982i
\(303\) 0 0
\(304\) −128.922 223.300i −0.424087 0.734540i
\(305\) 59.8761 + 49.2493i 0.196315 + 0.161473i
\(306\) 0 0
\(307\) 174.133i 0.567208i 0.958941 + 0.283604i \(0.0915301\pi\)
−0.958941 + 0.283604i \(0.908470\pi\)
\(308\) 47.4917 + 82.2581i 0.154194 + 0.267072i
\(309\) 0 0
\(310\) 72.8955 27.3444i 0.235147 0.0882079i
\(311\) −237.573 137.163i −0.763900 0.441038i 0.0667941 0.997767i \(-0.478723\pi\)
−0.830694 + 0.556729i \(0.812056\pi\)
\(312\) 0 0
\(313\) −184.560 + 106.555i −0.589647 + 0.340433i −0.764958 0.644080i \(-0.777240\pi\)
0.175311 + 0.984513i \(0.443907\pi\)
\(314\) 77.8424i 0.247906i
\(315\) 0 0
\(316\) −128.496 −0.406634
\(317\) 121.062 + 209.686i 0.381899 + 0.661469i 0.991334 0.131368i \(-0.0419368\pi\)
−0.609435 + 0.792836i \(0.708604\pi\)
\(318\) 0 0
\(319\) −161.089 + 279.014i −0.504981 + 0.874653i
\(320\) −181.165 + 67.9583i −0.566140 + 0.212370i
\(321\) 0 0
\(322\) 3.00427 1.73452i 0.00933004 0.00538670i
\(323\) 247.577 0.766493
\(324\) 0 0
\(325\) −333.326 + 65.5408i −1.02562 + 0.201664i
\(326\) 4.40604 2.54383i 0.0135155 0.00780316i
\(327\) 0 0
\(328\) 140.925 + 81.3630i 0.429649 + 0.248058i
\(329\) −223.732 129.172i −0.680038 0.392620i
\(330\) 0 0
\(331\) 99.4647 + 172.278i 0.300498 + 0.520477i 0.976249 0.216653i \(-0.0695139\pi\)
−0.675751 + 0.737130i \(0.736181\pi\)
\(332\) −280.316 −0.844325
\(333\) 0 0
\(334\) −43.9313 −0.131531
\(335\) −76.7709 12.7617i −0.229167 0.0380945i
\(336\) 0 0
\(337\) 273.013 + 157.624i 0.810128 + 0.467728i 0.847000 0.531592i \(-0.178406\pi\)
−0.0368724 + 0.999320i \(0.511740\pi\)
\(338\) 4.13587 7.16353i 0.0122363 0.0211939i
\(339\) 0 0
\(340\) 37.2634 224.167i 0.109598 0.659314i
\(341\) 271.739i 0.796889i
\(342\) 0 0
\(343\) 249.950i 0.728716i
\(344\) −238.988 + 137.980i −0.694734 + 0.401105i
\(345\) 0 0
\(346\) −0.116111 + 0.201110i −0.000335581 + 0.000581244i
\(347\) −253.003 + 438.213i −0.729114 + 1.26286i 0.228144 + 0.973627i \(0.426734\pi\)
−0.957258 + 0.289235i \(0.906599\pi\)
\(348\) 0 0
\(349\) 280.837 + 486.423i 0.804689 + 1.39376i 0.916501 + 0.400033i \(0.131001\pi\)
−0.111811 + 0.993729i \(0.535665\pi\)
\(350\) 35.8865 7.05624i 0.102533 0.0201607i
\(351\) 0 0
\(352\) 212.780i 0.604488i
\(353\) −120.900 209.404i −0.342492 0.593213i 0.642403 0.766367i \(-0.277938\pi\)
−0.984895 + 0.173154i \(0.944604\pi\)
\(354\) 0 0
\(355\) 93.4194 + 249.040i 0.263153 + 0.701521i
\(356\) −93.8693 54.1955i −0.263678 0.152234i
\(357\) 0 0
\(358\) 47.0309 27.1533i 0.131371 0.0758472i
\(359\) 361.904i 1.00809i 0.863678 + 0.504044i \(0.168155\pi\)
−0.863678 + 0.504044i \(0.831845\pi\)
\(360\) 0 0
\(361\) 49.7285 0.137752
\(362\) 31.8401 + 55.1487i 0.0879561 + 0.152344i
\(363\) 0 0
\(364\) 69.9305 121.123i 0.192117 0.332756i
\(365\) −41.5401 110.739i −0.113809 0.303394i
\(366\) 0 0
\(367\) −227.601 + 131.406i −0.620168 + 0.358054i −0.776934 0.629582i \(-0.783226\pi\)
0.156767 + 0.987636i \(0.449893\pi\)
\(368\) −30.1691 −0.0819812
\(369\) 0 0
\(370\) 108.101 131.427i 0.292165 0.355207i
\(371\) 23.5437 13.5930i 0.0634602 0.0366388i
\(372\) 0 0
\(373\) 270.755 + 156.320i 0.725883 + 0.419089i 0.816914 0.576759i \(-0.195683\pi\)
−0.0910309 + 0.995848i \(0.529016\pi\)
\(374\) −51.6256 29.8061i −0.138036 0.0796953i
\(375\) 0 0
\(376\) −190.611 330.148i −0.506944 0.878052i
\(377\) 474.400 1.25835
\(378\) 0 0
\(379\) 256.518 0.676830 0.338415 0.940997i \(-0.390109\pi\)
0.338415 + 0.940997i \(0.390109\pi\)
\(380\) 61.8197 371.891i 0.162683 0.978661i
\(381\) 0 0
\(382\) −67.0272 38.6982i −0.175464 0.101304i
\(383\) 19.4145 33.6269i 0.0506906 0.0877986i −0.839567 0.543257i \(-0.817191\pi\)
0.890257 + 0.455458i \(0.150524\pi\)
\(384\) 0 0
\(385\) −20.9326 + 125.925i −0.0543704 + 0.327078i
\(386\) 68.9559i 0.178642i
\(387\) 0 0
\(388\) 232.045i 0.598054i
\(389\) −265.870 + 153.500i −0.683469 + 0.394601i −0.801161 0.598449i \(-0.795784\pi\)
0.117691 + 0.993050i \(0.462451\pi\)
\(390\) 0 0
\(391\) 14.4839 25.0868i 0.0370431 0.0641605i
\(392\) 84.3969 146.180i 0.215298 0.372908i
\(393\) 0 0
\(394\) 49.3498 + 85.4764i 0.125253 + 0.216945i
\(395\) −133.372 109.702i −0.337652 0.277726i
\(396\) 0 0
\(397\) 47.0129i 0.118420i −0.998246 0.0592102i \(-0.981142\pi\)
0.998246 0.0592102i \(-0.0188582\pi\)
\(398\) −11.9485 20.6954i −0.0300213 0.0519985i
\(399\) 0 0
\(400\) −300.963 102.902i −0.752408 0.257255i
\(401\) 492.460 + 284.322i 1.22808 + 0.709032i 0.966628 0.256184i \(-0.0824654\pi\)
0.261452 + 0.965216i \(0.415799\pi\)
\(402\) 0 0
\(403\) 346.523 200.065i 0.859858 0.496439i
\(404\) 510.072i 1.26255i
\(405\) 0 0
\(406\) −51.0747 −0.125800
\(407\) 296.977 + 514.380i 0.729674 + 1.26383i
\(408\) 0 0
\(409\) 281.070 486.828i 0.687213 1.19029i −0.285523 0.958372i \(-0.592167\pi\)
0.972736 0.231916i \(-0.0744994\pi\)
\(410\) 37.0142 + 98.6734i 0.0902785 + 0.240667i
\(411\) 0 0
\(412\) −350.559 + 202.395i −0.850870 + 0.491250i
\(413\) −161.855 −0.391900
\(414\) 0 0
\(415\) −290.953 239.315i −0.701092 0.576663i
\(416\) 271.338 156.657i 0.652254 0.376579i
\(417\) 0 0
\(418\) −85.6465 49.4480i −0.204896 0.118297i
\(419\) −180.183 104.029i −0.430031 0.248279i 0.269329 0.963048i \(-0.413198\pi\)
−0.699360 + 0.714770i \(0.746531\pi\)
\(420\) 0 0
\(421\) 197.236 + 341.622i 0.468493 + 0.811454i 0.999352 0.0360063i \(-0.0114636\pi\)
−0.530858 + 0.847461i \(0.678130\pi\)
\(422\) −73.0846 −0.173186
\(423\) 0 0
\(424\) 40.1166 0.0946147
\(425\) 230.056 200.861i 0.541309 0.472613i
\(426\) 0 0
\(427\) −37.1505 21.4488i −0.0870035 0.0502315i
\(428\) 119.053 206.205i 0.278160 0.481788i
\(429\) 0 0
\(430\) −176.303 29.3069i −0.410006 0.0681556i
\(431\) 216.515i 0.502355i −0.967941 0.251177i \(-0.919182\pi\)
0.967941 0.251177i \(-0.0808177\pi\)
\(432\) 0 0
\(433\) 614.024i 1.41807i −0.705173 0.709035i \(-0.749131\pi\)
0.705173 0.709035i \(-0.250869\pi\)
\(434\) −37.3073 + 21.5394i −0.0859614 + 0.0496299i
\(435\) 0 0
\(436\) −27.5560 + 47.7284i −0.0632018 + 0.109469i
\(437\) 24.0286 41.6188i 0.0549854 0.0952374i
\(438\) 0 0
\(439\) −259.851 450.074i −0.591915 1.02523i −0.993974 0.109613i \(-0.965039\pi\)
0.402059 0.915614i \(-0.368295\pi\)
\(440\) −119.660 + 145.480i −0.271955 + 0.330636i
\(441\) 0 0
\(442\) 87.7775i 0.198592i
\(443\) −250.825 434.441i −0.566196 0.980680i −0.996937 0.0782045i \(-0.975081\pi\)
0.430742 0.902475i \(-0.358252\pi\)
\(444\) 0 0
\(445\) −51.1629 136.391i −0.114973 0.306498i
\(446\) −26.6549 15.3892i −0.0597643 0.0345049i
\(447\) 0 0
\(448\) 92.7186 53.5311i 0.206961 0.119489i
\(449\) 166.389i 0.370576i 0.982684 + 0.185288i \(0.0593218\pi\)
−0.982684 + 0.185288i \(0.940678\pi\)
\(450\) 0 0
\(451\) −367.834 −0.815596
\(452\) 154.036 + 266.798i 0.340788 + 0.590261i
\(453\) 0 0
\(454\) −99.0377 + 171.538i −0.218145 + 0.377838i
\(455\) 175.991 66.0176i 0.386794 0.145094i
\(456\) 0 0
\(457\) −720.569 + 416.021i −1.57674 + 0.910330i −0.581428 + 0.813598i \(0.697506\pi\)
−0.995310 + 0.0967320i \(0.969161\pi\)
\(458\) 35.7905 0.0781452
\(459\) 0 0
\(460\) −34.0668 28.0207i −0.0740582 0.0609145i
\(461\) −376.087 + 217.134i −0.815806 + 0.471006i −0.848968 0.528444i \(-0.822776\pi\)
0.0331619 + 0.999450i \(0.489442\pi\)
\(462\) 0 0
\(463\) 150.734 + 87.0264i 0.325560 + 0.187962i 0.653868 0.756609i \(-0.273145\pi\)
−0.328308 + 0.944571i \(0.606478\pi\)
\(464\) 384.671 + 222.090i 0.829033 + 0.478643i
\(465\) 0 0
\(466\) 74.6594 + 129.314i 0.160213 + 0.277498i
\(467\) −134.443 −0.287886 −0.143943 0.989586i \(-0.545978\pi\)
−0.143943 + 0.989586i \(0.545978\pi\)
\(468\) 0 0
\(469\) 43.0615 0.0918155
\(470\) 40.4856 243.551i 0.0861397 0.518194i
\(471\) 0 0
\(472\) −206.840 119.419i −0.438221 0.253007i
\(473\) 311.897 540.221i 0.659401 1.14212i
\(474\) 0 0
\(475\) 381.662 333.226i 0.803498 0.701529i
\(476\) 125.737i 0.264154i
\(477\) 0 0
\(478\) 194.802i 0.407535i
\(479\) 617.101 356.283i 1.28831 0.743806i 0.309958 0.950750i \(-0.399685\pi\)
0.978353 + 0.206944i \(0.0663518\pi\)
\(480\) 0 0
\(481\) 437.293 757.413i 0.909133 1.57466i
\(482\) −98.1194 + 169.948i −0.203567 + 0.352589i
\(483\) 0 0
\(484\) 66.6697 + 115.475i 0.137747 + 0.238585i
\(485\) −198.105 + 240.851i −0.408463 + 0.496599i
\(486\) 0 0
\(487\) 208.661i 0.428462i 0.976783 + 0.214231i \(0.0687246\pi\)
−0.976783 + 0.214231i \(0.931275\pi\)
\(488\) −31.6507 54.8206i −0.0648580 0.112337i
\(489\) 0 0
\(490\) 102.353 38.3944i 0.208883 0.0783559i
\(491\) 356.432 + 205.786i 0.725931 + 0.419117i 0.816932 0.576734i \(-0.195673\pi\)
−0.0910005 + 0.995851i \(0.529006\pi\)
\(492\) 0 0
\(493\) −369.353 + 213.246i −0.749195 + 0.432548i
\(494\) 145.622i 0.294782i
\(495\) 0 0
\(496\) 374.641 0.755326
\(497\) −73.5870 127.456i −0.148062 0.256451i
\(498\) 0 0
\(499\) 167.299 289.770i 0.335269 0.580702i −0.648268 0.761412i \(-0.724506\pi\)
0.983536 + 0.180710i \(0.0578396\pi\)
\(500\) −244.272 395.727i −0.488545 0.791455i
\(501\) 0 0
\(502\) 140.337 81.0239i 0.279557 0.161402i
\(503\) −85.4624 −0.169905 −0.0849527 0.996385i \(-0.527074\pi\)
−0.0849527 + 0.996385i \(0.527074\pi\)
\(504\) 0 0
\(505\) 435.466 529.428i 0.862309 1.04837i
\(506\) −10.0210 + 5.78565i −0.0198044 + 0.0114341i
\(507\) 0 0
\(508\) −118.339 68.3231i −0.232951 0.134494i
\(509\) −142.153 82.0719i −0.279278 0.161241i 0.353818 0.935314i \(-0.384883\pi\)
−0.633097 + 0.774073i \(0.718216\pi\)
\(510\) 0 0
\(511\) 32.7214 + 56.6750i 0.0640340 + 0.110910i
\(512\) 501.116 0.978743
\(513\) 0 0
\(514\) −161.783 −0.314752
\(515\) −536.653 89.2082i −1.04205 0.173220i
\(516\) 0 0
\(517\) 746.281 + 430.866i 1.44348 + 0.833396i
\(518\) −47.0797 + 81.5445i −0.0908875 + 0.157422i
\(519\) 0 0
\(520\) 273.615 + 45.4832i 0.526183 + 0.0874677i
\(521\) 954.386i 1.83184i −0.401366 0.915918i \(-0.631464\pi\)
0.401366 0.915918i \(-0.368536\pi\)
\(522\) 0 0
\(523\) 53.5836i 0.102454i 0.998687 + 0.0512271i \(0.0163132\pi\)
−0.998687 + 0.0512271i \(0.983687\pi\)
\(524\) −186.668 + 107.773i −0.356236 + 0.205673i
\(525\) 0 0
\(526\) 38.7829 67.1740i 0.0737318 0.127707i
\(527\) −179.861 + 311.529i −0.341293 + 0.591137i
\(528\) 0 0
\(529\) 261.689 + 453.258i 0.494685 + 0.856820i
\(530\) 20.0654 + 16.5042i 0.0378593 + 0.0311401i
\(531\) 0 0
\(532\) 208.597i 0.392100i
\(533\) 270.814 + 469.063i 0.508093 + 0.880043i
\(534\) 0 0
\(535\) 299.615 112.391i 0.560028 0.210077i
\(536\) 55.0299 + 31.7715i 0.102668 + 0.0592753i
\(537\) 0 0
\(538\) −126.454 + 73.0083i −0.235045 + 0.135703i
\(539\) 381.550i 0.707884i
\(540\) 0 0
\(541\) −502.886 −0.929549 −0.464774 0.885429i \(-0.653865\pi\)
−0.464774 + 0.885429i \(0.653865\pi\)
\(542\) −80.5935 139.592i −0.148697 0.257550i
\(543\) 0 0
\(544\) −140.837 + 243.937i −0.258891 + 0.448413i
\(545\) −69.3491 + 26.0141i −0.127246 + 0.0477323i
\(546\) 0 0
\(547\) −632.220 + 365.012i −1.15579 + 0.667298i −0.950293 0.311359i \(-0.899216\pi\)
−0.205502 + 0.978657i \(0.565883\pi\)
\(548\) −214.216 −0.390905
\(549\) 0 0
\(550\) −119.703 + 23.5368i −0.217641 + 0.0427941i
\(551\) −612.754 + 353.774i −1.11208 + 0.642058i
\(552\) 0 0
\(553\) 82.7518 + 47.7768i 0.149642 + 0.0863956i
\(554\) −188.014 108.550i −0.339376 0.195939i
\(555\) 0 0
\(556\) −112.819 195.408i −0.202912 0.351453i
\(557\) 419.491 0.753125 0.376562 0.926391i \(-0.377106\pi\)
0.376562 + 0.926391i \(0.377106\pi\)
\(558\) 0 0
\(559\) −918.522 −1.64315
\(560\) 173.610 + 28.8594i 0.310018 + 0.0515346i
\(561\) 0 0
\(562\) 47.5505 + 27.4533i 0.0846094 + 0.0488493i
\(563\) −317.922 + 550.657i −0.564693 + 0.978077i 0.432385 + 0.901689i \(0.357672\pi\)
−0.997078 + 0.0763882i \(0.975661\pi\)
\(564\) 0 0
\(565\) −67.8933 + 408.428i −0.120165 + 0.722882i
\(566\) 148.840i 0.262968i
\(567\) 0 0
\(568\) 217.175i 0.382351i
\(569\) 767.241 442.967i 1.34840 0.778501i 0.360380 0.932806i \(-0.382647\pi\)
0.988023 + 0.154305i \(0.0493138\pi\)
\(570\) 0 0
\(571\) −463.096 + 802.105i −0.811026 + 1.40474i 0.101121 + 0.994874i \(0.467757\pi\)
−0.912147 + 0.409864i \(0.865576\pi\)
\(572\) −233.260 + 404.018i −0.407798 + 0.706326i
\(573\) 0 0
\(574\) −29.1563 50.5001i −0.0507949 0.0879794i
\(575\) −11.4374 58.1680i −0.0198911 0.101162i
\(576\) 0 0
\(577\) 261.287i 0.452837i −0.974030 0.226418i \(-0.927298\pi\)
0.974030 0.226418i \(-0.0727016\pi\)
\(578\) 36.9537 + 64.0056i 0.0639337 + 0.110736i
\(579\) 0 0
\(580\) 228.095 + 608.061i 0.393267 + 1.04838i
\(581\) 180.524 + 104.225i 0.310712 + 0.179390i
\(582\) 0 0
\(583\) −78.5325 + 45.3407i −0.134704 + 0.0777714i
\(584\) 96.5696i 0.165359i
\(585\) 0 0
\(586\) 216.100 0.368772
\(587\) 301.693 + 522.548i 0.513958 + 0.890201i 0.999869 + 0.0161926i \(0.00515450\pi\)
−0.485911 + 0.874008i \(0.661512\pi\)
\(588\) 0 0
\(589\) −298.389 + 516.825i −0.506602 + 0.877461i
\(590\) −54.3270 144.826i −0.0920797 0.245468i
\(591\) 0 0
\(592\) 709.166 409.437i 1.19792 0.691617i
\(593\) −314.000 −0.529511 −0.264756 0.964316i \(-0.585291\pi\)
−0.264756 + 0.964316i \(0.585291\pi\)
\(594\) 0 0
\(595\) −107.346 + 130.509i −0.180414 + 0.219342i
\(596\) −759.354 + 438.413i −1.27408 + 0.735592i
\(597\) 0 0
\(598\) 14.7558 + 8.51925i 0.0246752 + 0.0142462i
\(599\) −652.734 376.856i −1.08971 0.629142i −0.156208 0.987724i \(-0.549927\pi\)
−0.933498 + 0.358582i \(0.883260\pi\)
\(600\) 0 0
\(601\) 168.976 + 292.675i 0.281158 + 0.486979i 0.971670 0.236341i \(-0.0759483\pi\)
−0.690512 + 0.723320i \(0.742615\pi\)
\(602\) 98.8897 0.164269
\(603\) 0 0
\(604\) 55.1985 0.0913883
\(605\) −29.3855 + 176.775i −0.0485711 + 0.292191i
\(606\) 0 0
\(607\) −382.344 220.747i −0.629892 0.363668i 0.150818 0.988562i \(-0.451809\pi\)
−0.780710 + 0.624893i \(0.785143\pi\)
\(608\) −233.647 + 404.689i −0.384288 + 0.665607i
\(609\) 0 0
\(610\) 6.72259 40.4414i 0.0110206 0.0662973i
\(611\) 1268.88i 2.07673i
\(612\) 0 0
\(613\) 406.010i 0.662332i 0.943572 + 0.331166i \(0.107442\pi\)
−0.943572 + 0.331166i \(0.892558\pi\)
\(614\) 79.7436 46.0400i 0.129876 0.0749837i
\(615\) 0 0
\(616\) 52.1139 90.2639i 0.0846005 0.146532i
\(617\) 447.854 775.706i 0.725858 1.25722i −0.232762 0.972534i \(-0.574776\pi\)
0.958620 0.284689i \(-0.0918903\pi\)
\(618\) 0 0
\(619\) −185.811 321.834i −0.300179 0.519925i 0.675997 0.736904i \(-0.263713\pi\)
−0.976176 + 0.216979i \(0.930380\pi\)
\(620\) 423.044 + 347.962i 0.682329 + 0.561230i
\(621\) 0 0
\(622\) 145.061i 0.233217i
\(623\) 40.3013 + 69.8039i 0.0646891 + 0.112045i
\(624\) 0 0
\(625\) 84.3040 619.288i 0.134886 0.990861i
\(626\) 97.5935 + 56.3456i 0.155900 + 0.0900090i
\(627\) 0 0
\(628\) 474.297 273.835i 0.755249 0.436043i
\(629\) 786.266i 1.25002i
\(630\) 0 0
\(631\) 150.820 0.239017 0.119508 0.992833i \(-0.461868\pi\)
0.119508 + 0.992833i \(0.461868\pi\)
\(632\) 70.5011 + 122.112i 0.111552 + 0.193214i
\(633\) 0 0
\(634\) 64.0165 110.880i 0.100972 0.174889i
\(635\) −64.5001 171.946i −0.101575 0.270781i
\(636\) 0 0
\(637\) 486.553 280.912i 0.763820 0.440992i
\(638\) 170.365 0.267029
\(639\) 0 0
\(640\) 435.173 + 357.939i 0.679958 + 0.559280i
\(641\) −175.963 + 101.592i −0.274513 + 0.158490i −0.630937 0.775834i \(-0.717329\pi\)
0.356424 + 0.934324i \(0.383996\pi\)
\(642\) 0 0
\(643\) 42.7186 + 24.6636i 0.0664365 + 0.0383571i 0.532850 0.846210i \(-0.321121\pi\)
−0.466414 + 0.884567i \(0.654454\pi\)
\(644\) 21.1370 + 12.2034i 0.0328214 + 0.0189494i
\(645\) 0 0
\(646\) −65.4583 113.377i −0.101329 0.175506i
\(647\) −1189.39 −1.83832 −0.919159 0.393887i \(-0.871130\pi\)
−0.919159 + 0.393887i \(0.871130\pi\)
\(648\) 0 0
\(649\) 539.882 0.831867
\(650\) 118.144 + 135.317i 0.181760 + 0.208180i
\(651\) 0 0
\(652\) 30.9993 + 17.8975i 0.0475449 + 0.0274501i
\(653\) 170.606 295.498i 0.261265 0.452524i −0.705313 0.708896i \(-0.749194\pi\)
0.966578 + 0.256371i \(0.0825270\pi\)
\(654\) 0 0
\(655\) −285.760 47.5021i −0.436275 0.0725223i
\(656\) 507.125i 0.773056i
\(657\) 0 0
\(658\) 136.610i 0.207614i
\(659\) 322.418 186.148i 0.489254 0.282471i −0.235011 0.971993i \(-0.575513\pi\)
0.724265 + 0.689522i \(0.242179\pi\)
\(660\) 0 0
\(661\) −166.221 + 287.904i −0.251469 + 0.435557i −0.963931 0.266154i \(-0.914247\pi\)
0.712461 + 0.701711i \(0.247580\pi\)
\(662\) 52.5961 91.0991i 0.0794502 0.137612i
\(663\) 0 0
\(664\) 153.799 + 266.387i 0.231625 + 0.401186i
\(665\) −178.086 + 216.513i −0.267799 + 0.325583i
\(666\) 0 0
\(667\) 82.7865i 0.124118i
\(668\) −154.542 267.675i −0.231350 0.400711i
\(669\) 0 0
\(670\) 14.4537 + 38.5311i 0.0215727 + 0.0575091i
\(671\) 123.919 + 71.5447i 0.184678 + 0.106624i
\(672\) 0 0
\(673\) 196.887 113.673i 0.292551 0.168905i −0.346541 0.938035i \(-0.612644\pi\)
0.639092 + 0.769130i \(0.279310\pi\)
\(674\) 166.701i 0.247330i
\(675\) 0 0
\(676\) 58.1969 0.0860901
\(677\) −530.736 919.261i −0.783952 1.35785i −0.929623 0.368512i \(-0.879867\pi\)
0.145671 0.989333i \(-0.453466\pi\)
\(678\) 0 0
\(679\) 86.2777 149.437i 0.127066 0.220084i
\(680\) −233.474 + 87.5802i −0.343343 + 0.128794i
\(681\) 0 0
\(682\) 124.442 71.8466i 0.182466 0.105347i
\(683\) 633.553 0.927604 0.463802 0.885939i \(-0.346485\pi\)
0.463802 + 0.885939i \(0.346485\pi\)
\(684\) 0 0
\(685\) −222.345 182.884i −0.324591 0.266983i
\(686\) −114.464 + 66.0856i −0.166857 + 0.0963347i
\(687\) 0 0
\(688\) −744.792 430.006i −1.08255 0.625008i
\(689\) 115.637 + 66.7633i 0.167834 + 0.0968988i
\(690\) 0 0
\(691\) −540.899 936.864i −0.782777 1.35581i −0.930318 0.366753i \(-0.880469\pi\)
0.147542 0.989056i \(-0.452864\pi\)
\(692\) −1.63383 −0.00236103
\(693\) 0 0
\(694\) 267.571 0.385549
\(695\) 49.7264 299.141i 0.0715487 0.430418i
\(696\) 0 0
\(697\) −421.694 243.465i −0.605014 0.349305i
\(698\) 148.504 257.216i 0.212756 0.368505i
\(699\) 0 0
\(700\) 169.236 + 193.835i 0.241766 + 0.276907i
\(701\) 143.009i 0.204007i −0.994784 0.102003i \(-0.967475\pi\)
0.994784 0.102003i \(-0.0325253\pi\)
\(702\) 0 0
\(703\) 1304.41i 1.85549i
\(704\) −309.272 + 178.558i −0.439306 + 0.253634i
\(705\) 0 0
\(706\) −63.9307 + 110.731i −0.0905534 + 0.156843i
\(707\) −189.652 + 328.487i −0.268249 + 0.464621i
\(708\) 0 0
\(709\) −424.541 735.327i −0.598789 1.03713i −0.993000 0.118113i \(-0.962315\pi\)
0.394211 0.919020i \(-0.371018\pi\)
\(710\) 89.3473 108.626i 0.125841 0.152995i
\(711\) 0 0
\(712\) 118.940i 0.167051i
\(713\) 34.9129 + 60.4709i 0.0489662 + 0.0848120i
\(714\) 0 0
\(715\) −587.036 + 220.208i −0.821030 + 0.307983i
\(716\) 330.892 + 191.040i 0.462139 + 0.266816i
\(717\) 0 0
\(718\) 165.733 95.6858i 0.230825 0.133267i
\(719\) 155.493i 0.216263i −0.994137 0.108131i \(-0.965513\pi\)
0.994137 0.108131i \(-0.0344867\pi\)
\(720\) 0 0
\(721\) 301.014 0.417495
\(722\) −13.1480 22.7730i −0.0182105 0.0315416i
\(723\) 0 0
\(724\) −224.015 + 388.006i −0.309413 + 0.535920i
\(725\) −282.372 + 825.869i −0.389479 + 1.13913i
\(726\) 0 0
\(727\) 540.769 312.213i 0.743837 0.429454i −0.0796259 0.996825i \(-0.525373\pi\)
0.823463 + 0.567370i \(0.192039\pi\)
\(728\) −153.473 −0.210815
\(729\) 0 0
\(730\) −39.7294 + 48.3020i −0.0544238 + 0.0661671i
\(731\) 715.133 412.882i 0.978295 0.564819i
\(732\) 0 0
\(733\) −392.871 226.824i −0.535977 0.309447i 0.207470 0.978241i \(-0.433477\pi\)
−0.743447 + 0.668795i \(0.766810\pi\)
\(734\) 120.354 + 69.4862i 0.163970 + 0.0946679i
\(735\) 0 0
\(736\) 27.3378 + 47.3505i 0.0371438 + 0.0643350i
\(737\) −143.636 −0.194892
\(738\) 0 0
\(739\) 827.126 1.11925 0.559625 0.828746i \(-0.310945\pi\)
0.559625 + 0.828746i \(0.310945\pi\)
\(740\) 1181.07 + 196.330i 1.59604 + 0.265310i
\(741\) 0 0
\(742\) −12.4497 7.18785i −0.0167786 0.00968713i
\(743\) 301.483 522.184i 0.405765 0.702805i −0.588645 0.808391i \(-0.700339\pi\)
0.994410 + 0.105586i \(0.0336719\pi\)
\(744\) 0 0
\(745\) −1162.46 193.236i −1.56035 0.259377i
\(746\) 165.321i 0.221611i
\(747\) 0 0
\(748\) 419.409i 0.560707i
\(749\) −153.340 + 88.5309i −0.204726 + 0.118199i
\(750\) 0 0
\(751\) 172.482 298.747i 0.229669 0.397799i −0.728041 0.685534i \(-0.759569\pi\)
0.957710 + 0.287735i \(0.0929023\pi\)
\(752\) 594.026 1028.88i 0.789928 1.36820i
\(753\) 0 0
\(754\) −125.429 217.250i −0.166352 0.288130i
\(755\) 57.2932 + 47.1248i 0.0758850 + 0.0624170i
\(756\) 0 0
\(757\) 1248.67i 1.64950i −0.565501 0.824748i \(-0.691317\pi\)
0.565501 0.824748i \(-0.308683\pi\)
\(758\) −67.8223 117.472i −0.0894754 0.154976i
\(759\) 0 0
\(760\) −387.331 + 145.295i −0.509646 + 0.191177i
\(761\) 960.298 + 554.428i 1.26189 + 0.728552i 0.973440 0.228942i \(-0.0735268\pi\)
0.288450 + 0.957495i \(0.406860\pi\)
\(762\) 0 0
\(763\) 35.4922 20.4914i 0.0465167 0.0268564i
\(764\) 544.532i 0.712738i
\(765\) 0 0
\(766\) −20.5324 −0.0268047
\(767\) −397.482 688.459i −0.518230 0.897600i
\(768\) 0 0
\(769\) 576.165 997.947i 0.749239 1.29772i −0.198949 0.980010i \(-0.563753\pi\)
0.948188 0.317710i \(-0.102914\pi\)
\(770\) 63.2014 23.7080i 0.0820797 0.0307896i
\(771\) 0 0
\(772\) −420.151 + 242.574i −0.544237 + 0.314215i
\(773\) 1116.83 1.44480 0.722399 0.691476i \(-0.243039\pi\)
0.722399 + 0.691476i \(0.243039\pi\)
\(774\) 0 0
\(775\) 142.030 + 722.334i 0.183265 + 0.932044i
\(776\) 220.515 127.314i 0.284169 0.164065i
\(777\) 0 0
\(778\) 140.590 + 81.1694i 0.180706 + 0.104331i
\(779\) −699.588 403.907i −0.898059 0.518495i
\(780\) 0 0
\(781\) 245.456 + 425.143i 0.314285 + 0.544357i
\(782\) −15.3179 −0.0195881
\(783\) 0 0
\(784\) 526.035 0.670963
\(785\) 726.078 + 120.696i 0.924940 + 0.153753i
\(786\) 0 0
\(787\) −922.485 532.597i −1.17215 0.676743i −0.217967 0.975956i \(-0.569943\pi\)
−0.954186 + 0.299213i \(0.903276\pi\)
\(788\) −347.207 + 601.381i −0.440618 + 0.763173i
\(789\) 0 0
\(790\) −14.9744 + 90.0821i −0.0189549 + 0.114028i
\(791\) 229.091i 0.289622i
\(792\) 0 0
\(793\) 210.696i 0.265695i
\(794\) −21.5294 + 12.4300i −0.0271151 + 0.0156549i
\(795\) 0 0
\(796\) 84.0651 145.605i 0.105609 0.182921i
\(797\) −94.4897 + 163.661i −0.118557 + 0.205346i −0.919196 0.393801i \(-0.871160\pi\)
0.800639 + 0.599147i \(0.204493\pi\)
\(798\) 0 0
\(799\) 570.371 + 987.912i 0.713857 + 1.23644i
\(800\) 111.214 + 565.609i 0.139017 + 0.707011i
\(801\) 0 0
\(802\) 300.694i 0.374930i
\(803\) −109.145 189.045i −0.135922 0.235424i
\(804\) 0 0
\(805\) 11.5206 + 30.7119i 0.0143113 + 0.0381514i
\(806\) −183.238 105.793i −0.227343 0.131256i
\(807\) 0 0
\(808\) −484.728 + 279.858i −0.599910 + 0.346358i
\(809\) 1105.36i 1.36633i 0.730266 + 0.683163i \(0.239396\pi\)
−0.730266 + 0.683163i \(0.760604\pi\)
\(810\) 0 0
\(811\) 4.70248 0.00579838 0.00289919 0.999996i \(-0.499077\pi\)
0.00289919 + 0.999996i \(0.499077\pi\)
\(812\) −179.672 311.200i −0.221270 0.383251i
\(813\) 0 0
\(814\) 157.039 272.000i 0.192923 0.334152i
\(815\) 16.8960 + 45.0418i 0.0207313 + 0.0552660i
\(816\) 0 0
\(817\) 1186.40 684.969i 1.45214 0.838395i
\(818\) −297.255 −0.363392
\(819\) 0 0
\(820\) −471.011 + 572.644i −0.574404 + 0.698346i
\(821\) −759.412 + 438.447i −0.924984 + 0.534040i −0.885222 0.465169i \(-0.845993\pi\)
−0.0397625 + 0.999209i \(0.512660\pi\)
\(822\) 0 0
\(823\) 992.214 + 572.855i 1.20561 + 0.696057i 0.961796 0.273766i \(-0.0882693\pi\)
0.243810 + 0.969823i \(0.421603\pi\)
\(824\) 384.677 + 222.093i 0.466841 + 0.269531i
\(825\) 0 0
\(826\) 42.7937 + 74.1208i 0.0518083 + 0.0897346i
\(827\) −255.412 −0.308841 −0.154421 0.988005i \(-0.549351\pi\)
−0.154421 + 0.988005i \(0.549351\pi\)
\(828\) 0 0
\(829\) −829.155 −1.00019 −0.500093 0.865971i \(-0.666701\pi\)
−0.500093 + 0.865971i \(0.666701\pi\)
\(830\) −32.6668 + 196.515i −0.0393576 + 0.236765i
\(831\) 0 0
\(832\) 455.396 + 262.923i 0.547351 + 0.316013i
\(833\) −252.544 + 437.419i −0.303174 + 0.525113i
\(834\) 0 0
\(835\) 68.1164 409.770i 0.0815765 0.490743i
\(836\) 695.796i 0.832292i
\(837\) 0 0
\(838\) 110.019i 0.131288i
\(839\) −393.010 + 226.904i −0.468427 + 0.270446i −0.715581 0.698530i \(-0.753838\pi\)
0.247154 + 0.968976i \(0.420505\pi\)
\(840\) 0 0
\(841\) 188.934 327.244i 0.224654 0.389113i
\(842\) 104.297 180.647i 0.123868 0.214545i
\(843\) 0 0
\(844\) −257.098 445.307i −0.304619 0.527615i
\(845\) 60.4054 + 49.6847i 0.0714856 + 0.0587984i
\(846\) 0 0
\(847\) 99.1550i 0.117066i
\(848\) 62.5104 + 108.271i 0.0737151 + 0.127678i
\(849\) 0 0
\(850\) −152.809 52.2469i −0.179776 0.0614669i
\(851\) 132.175 + 76.3110i 0.155317 + 0.0896722i
\(852\) 0 0
\(853\) 14.0948 8.13764i 0.0165238 0.00954002i −0.491715 0.870756i \(-0.663630\pi\)
0.508239 + 0.861216i \(0.330297\pi\)
\(854\) 22.6839i 0.0265620i
\(855\) 0 0
\(856\) −261.279 −0.305232
\(857\) −530.849 919.457i −0.619427 1.07288i −0.989590 0.143912i \(-0.954032\pi\)
0.370164 0.928967i \(-0.379302\pi\)
\(858\) 0 0
\(859\) −811.869 + 1406.20i −0.945133 + 1.63702i −0.189648 + 0.981852i \(0.560735\pi\)
−0.755485 + 0.655166i \(0.772599\pi\)
\(860\) −441.632 1177.31i −0.513526 1.36897i
\(861\) 0 0
\(862\) −99.1522 + 57.2456i −0.115026 + 0.0664102i
\(863\) −687.358 −0.796475 −0.398238 0.917282i \(-0.630378\pi\)
−0.398238 + 0.917282i \(0.630378\pi\)
\(864\) 0 0
\(865\) −1.69583 1.39486i −0.00196050 0.00161255i
\(866\) −281.190 + 162.345i −0.324700 + 0.187466i
\(867\) 0 0
\(868\) −262.480 151.543i −0.302397 0.174589i
\(869\) −276.027 159.364i −0.317637 0.183388i
\(870\) 0 0
\(871\) 105.750 + 183.165i 0.121412 + 0.210293i
\(872\) 60.4758 0.0693530
\(873\) 0 0
\(874\) −25.4122 −0.0290758
\(875\) 10.1745 + 345.673i 0.0116281 + 0.395055i
\(876\) 0 0
\(877\) 1345.72 + 776.955i 1.53446 + 0.885923i 0.999148 + 0.0412710i \(0.0131407\pi\)
0.535316 + 0.844652i \(0.320193\pi\)
\(878\) −137.407 + 237.995i −0.156500 + 0.271065i
\(879\) 0 0
\(880\) −579.094 96.2632i −0.658061 0.109390i
\(881\) 452.136i 0.513208i 0.966517 + 0.256604i \(0.0826036\pi\)
−0.966517 + 0.256604i \(0.917396\pi\)
\(882\) 0 0
\(883\) 1014.46i 1.14888i 0.818546 + 0.574441i \(0.194781\pi\)
−0.818546 + 0.574441i \(0.805219\pi\)
\(884\) −534.832 + 308.785i −0.605013 + 0.349304i
\(885\) 0 0
\(886\) −132.634 + 229.729i −0.149700 + 0.259287i
\(887\) −104.060 + 180.237i −0.117317 + 0.203199i −0.918704 0.394948i \(-0.870763\pi\)
0.801387 + 0.598147i \(0.204096\pi\)
\(888\) 0 0
\(889\) 50.8071 + 88.0004i 0.0571508 + 0.0989881i
\(890\) −48.9328 + 59.4912i −0.0549806 + 0.0668441i
\(891\) 0 0
\(892\) 216.545i 0.242764i
\(893\) 946.242 + 1638.94i 1.05962 + 1.83532i
\(894\) 0 0
\(895\) 180.351 + 480.784i 0.201509 + 0.537189i
\(896\) −270.006 155.888i −0.301346 0.173982i
\(897\) 0 0
\(898\) 76.1971 43.9924i 0.0848521 0.0489894i
\(899\) 1028.05i 1.14355i
\(900\) 0 0
\(901\) −120.042 −0.133232
\(902\) 97.2536 + 168.448i 0.107820 + 0.186750i
\(903\) 0 0
\(904\) 169.028 292.765i 0.186978 0.323855i
\(905\) −563.770 + 211.480i −0.622950 + 0.233680i
\(906\) 0 0
\(907\) −205.665 + 118.741i −0.226753 + 0.130916i −0.609073 0.793114i \(-0.708458\pi\)
0.382320 + 0.924030i \(0.375125\pi\)
\(908\) −1393.59 −1.53479
\(909\) 0 0
\(910\) −76.7639 63.1399i −0.0843559 0.0693845i
\(911\) −1167.48 + 674.042i −1.28153 + 0.739893i −0.977128 0.212650i \(-0.931791\pi\)
−0.304404 + 0.952543i \(0.598457\pi\)
\(912\) 0 0
\(913\) −602.155 347.654i −0.659534 0.380782i
\(914\) 381.031 + 219.988i 0.416883 + 0.240687i
\(915\) 0 0
\(916\) 125.904 + 218.073i 0.137450 + 0.238071i
\(917\) 160.286 0.174793
\(918\) 0 0
\(919\) −153.887 −0.167450 −0.0837250 0.996489i \(-0.526682\pi\)
−0.0837250 + 0.996489i \(0.526682\pi\)
\(920\) −7.93718 + 47.7480i −0.00862737 + 0.0519000i
\(921\) 0 0
\(922\) 198.871 + 114.818i 0.215696 + 0.124532i
\(923\) 361.429 626.014i 0.391581 0.678238i
\(924\) 0 0
\(925\) 1058.27 + 1212.10i 1.14408 + 1.31038i
\(926\) 92.0376i 0.0993926i
\(927\) 0 0
\(928\) 804.992i 0.867448i
\(929\) 665.491 384.221i 0.716352 0.413586i −0.0970567 0.995279i \(-0.530943\pi\)
0.813408 + 0.581693i \(0.197609\pi\)
\(930\) 0 0
\(931\) −418.968 + 725.674i −0.450020 + 0.779457i
\(932\) −525.276 + 909.805i −0.563601 + 0.976186i
\(933\) 0 0
\(934\) 35.5461 + 61.5677i 0.0380579 + 0.0659183i
\(935\) 358.064 435.325i 0.382956 0.465588i
\(936\) 0 0
\(937\) 359.563i 0.383738i −0.981421 0.191869i \(-0.938545\pi\)
0.981421 0.191869i \(-0.0614549\pi\)
\(938\) −11.3853 19.7199i −0.0121378 0.0210233i
\(939\) 0 0
\(940\) 1626.39 610.087i 1.73020 0.649029i
\(941\) −183.507 105.948i −0.195013 0.112591i 0.399314 0.916814i \(-0.369248\pi\)
−0.594327 + 0.804223i \(0.702582\pi\)
\(942\) 0 0
\(943\) −81.8551 + 47.2591i −0.0868029 + 0.0501157i
\(944\) 744.325i 0.788479i
\(945\) 0 0
\(946\) −329.856 −0.348685
\(947\) 773.466 + 1339.68i 0.816754 + 1.41466i 0.908062 + 0.418837i \(0.137562\pi\)
−0.0913074 + 0.995823i \(0.529105\pi\)
\(948\) 0 0
\(949\) −160.714 + 278.365i −0.169351 + 0.293324i
\(950\) −253.509 86.6772i −0.266852 0.0912392i
\(951\) 0 0
\(952\) 119.490 68.9874i 0.125514 0.0724657i
\(953\) 1453.97 1.52568 0.762838 0.646589i \(-0.223805\pi\)
0.762838 + 0.646589i \(0.223805\pi\)
\(954\) 0 0
\(955\) 464.885 565.196i 0.486791 0.591828i
\(956\) 1186.93 685.276i 1.24156 0.716816i
\(957\) 0 0
\(958\) −326.317 188.399i −0.340624 0.196659i
\(959\) 137.955 + 79.6486i 0.143853 + 0.0830538i
\(960\) 0 0
\(961\) 46.9491 + 81.3183i 0.0488544 + 0.0846184i
\(962\) −462.473 −0.480741
\(963\) 0 0
\(964\) −1380.66 −1.43222
\(965\) −643.188 106.918i −0.666517 0.110795i
\(966\) 0 0
\(967\) −331.339 191.299i −0.342646 0.197827i 0.318795 0.947824i \(-0.396722\pi\)
−0.661442 + 0.749997i \(0.730055\pi\)
\(968\) 73.1583 126.714i 0.0755768 0.130903i
\(969\) 0 0
\(970\) 162.675 + 27.0415i 0.167706 + 0.0278779i
\(971\) 1474.96i 1.51901i 0.650503 + 0.759504i \(0.274558\pi\)
−0.650503 + 0.759504i \(0.725442\pi\)
\(972\) 0 0
\(973\) 167.791i 0.172447i
\(974\) 95.5557 55.1691i 0.0981064 0.0566418i
\(975\) 0 0
\(976\) 98.6373 170.845i 0.101063 0.175046i
\(977\) 708.905 1227.86i 0.725593 1.25676i −0.233136 0.972444i \(-0.574899\pi\)
0.958729 0.284320i \(-0.0917680\pi\)
\(978\) 0 0
\(979\) −134.429 232.838i −0.137313 0.237832i
\(980\) 593.997 + 488.575i 0.606119 + 0.498546i
\(981\) 0 0
\(982\) 217.636i 0.221625i
\(983\) 222.160 + 384.792i 0.226002 + 0.391447i 0.956620 0.291340i \(-0.0941011\pi\)
−0.730618 + 0.682787i \(0.760768\pi\)
\(984\) 0 0
\(985\) −873.802 + 327.779i −0.887109 + 0.332771i
\(986\) 195.311 + 112.763i 0.198084 + 0.114364i
\(987\) 0 0
\(988\) −887.282 + 512.272i −0.898058 + 0.518494i
\(989\) 160.289i 0.162072i
\(990\) 0 0
\(991\) 1177.77 1.18847 0.594235 0.804291i \(-0.297455\pi\)
0.594235 + 0.804291i \(0.297455\pi\)
\(992\) −339.483 588.002i −0.342221 0.592744i
\(993\) 0 0
\(994\) −38.9121 + 67.3978i −0.0391470 + 0.0678046i
\(995\) 211.563 79.3613i 0.212626 0.0797601i
\(996\) 0 0
\(997\) 87.6487 50.6040i 0.0879125 0.0507563i −0.455399 0.890287i \(-0.650503\pi\)
0.543312 + 0.839531i \(0.317170\pi\)
\(998\) −176.933 −0.177287
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.h.a.44.5 20
3.2 odd 2 45.3.h.a.14.6 yes 20
5.2 odd 4 675.3.j.e.476.6 20
5.3 odd 4 675.3.j.e.476.5 20
5.4 even 2 inner 135.3.h.a.44.6 20
9.2 odd 6 inner 135.3.h.a.89.6 20
9.4 even 3 405.3.d.a.404.11 20
9.5 odd 6 405.3.d.a.404.10 20
9.7 even 3 45.3.h.a.29.5 yes 20
15.2 even 4 225.3.j.e.176.5 20
15.8 even 4 225.3.j.e.176.6 20
15.14 odd 2 45.3.h.a.14.5 20
45.2 even 12 675.3.j.e.251.6 20
45.4 even 6 405.3.d.a.404.9 20
45.7 odd 12 225.3.j.e.101.5 20
45.14 odd 6 405.3.d.a.404.12 20
45.29 odd 6 inner 135.3.h.a.89.5 20
45.34 even 6 45.3.h.a.29.6 yes 20
45.38 even 12 675.3.j.e.251.5 20
45.43 odd 12 225.3.j.e.101.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.h.a.14.5 20 15.14 odd 2
45.3.h.a.14.6 yes 20 3.2 odd 2
45.3.h.a.29.5 yes 20 9.7 even 3
45.3.h.a.29.6 yes 20 45.34 even 6
135.3.h.a.44.5 20 1.1 even 1 trivial
135.3.h.a.44.6 20 5.4 even 2 inner
135.3.h.a.89.5 20 45.29 odd 6 inner
135.3.h.a.89.6 20 9.2 odd 6 inner
225.3.j.e.101.5 20 45.7 odd 12
225.3.j.e.101.6 20 45.43 odd 12
225.3.j.e.176.5 20 15.2 even 4
225.3.j.e.176.6 20 15.8 even 4
405.3.d.a.404.9 20 45.4 even 6
405.3.d.a.404.10 20 9.5 odd 6
405.3.d.a.404.11 20 9.4 even 3
405.3.d.a.404.12 20 45.14 odd 6
675.3.j.e.251.5 20 45.38 even 12
675.3.j.e.251.6 20 45.2 even 12
675.3.j.e.476.5 20 5.3 odd 4
675.3.j.e.476.6 20 5.2 odd 4