Properties

Label 4000.2.c.e
Level $4000$
Weight $2$
Character orbit 4000.c
Analytic conductor $31.940$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,2,Mod(1249,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.268960000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 5x^{6} + 13x^{4} - 20x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1) q^{3} + \beta_{3} q^{7} + (\beta_{2} + 2) q^{9} - \beta_{4} q^{11} - \beta_{6} q^{13} - \beta_{5} q^{17} - \beta_{7} q^{19} - q^{21} + ( - \beta_{3} + 4 \beta_1) q^{23} + (4 \beta_{3} - 3 \beta_1) q^{27}+ \cdots + ( - \beta_{7} - 2 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{9} - 8 q^{21} + 36 q^{29} + 20 q^{41} + 44 q^{49} + 36 q^{61} + 24 q^{69} - 8 q^{81} - 52 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 5x^{6} + 13x^{4} - 20x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} - \nu^{5} + \nu^{3} ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{6} + 5\nu^{4} - 9\nu^{2} + 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 3\nu^{5} + 7\nu^{3} - 6\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} + 5\nu^{5} - 13\nu^{3} + 28\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{6} - 5\nu^{4} + 17\nu^{2} - 20 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3\nu^{6} - 7\nu^{4} + 11\nu^{2} - 8 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\nu^{7} + 4\nu^{5} - 6\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 2\beta_{3} - 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{5} + 2\beta_{2} + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} + \beta_{4} + 8\beta_{3} - 6\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( \beta_{6} + 2\beta_{5} + 10\beta_{2} + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3\beta_{7} + 10\beta_{3} + 4\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 5\beta_{6} + \beta_{5} + 16\beta_{2} - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 2\beta_{7} - \beta_{4} + 2\beta_{3} + 42\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1249.1
1.15995 0.809017i
−1.15995 0.809017i
1.38004 0.309017i
−1.38004 0.309017i
1.38004 + 0.309017i
−1.38004 + 0.309017i
1.15995 + 0.809017i
−1.15995 + 0.809017i
0 1.61803i 0 0 0 0.618034i 0 0.381966 0
1249.2 0 1.61803i 0 0 0 0.618034i 0 0.381966 0
1249.3 0 0.618034i 0 0 0 1.61803i 0 2.61803 0
1249.4 0 0.618034i 0 0 0 1.61803i 0 2.61803 0
1249.5 0 0.618034i 0 0 0 1.61803i 0 2.61803 0
1249.6 0 0.618034i 0 0 0 1.61803i 0 2.61803 0
1249.7 0 1.61803i 0 0 0 0.618034i 0 0.381966 0
1249.8 0 1.61803i 0 0 0 0.618034i 0 0.381966 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1249.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.c.e 8
4.b odd 2 1 inner 4000.2.c.e 8
5.b even 2 1 inner 4000.2.c.e 8
5.c odd 4 1 4000.2.a.c 4
5.c odd 4 1 4000.2.a.h yes 4
20.d odd 2 1 inner 4000.2.c.e 8
20.e even 4 1 4000.2.a.c 4
20.e even 4 1 4000.2.a.h yes 4
40.i odd 4 1 8000.2.a.bc 4
40.i odd 4 1 8000.2.a.bp 4
40.k even 4 1 8000.2.a.bc 4
40.k even 4 1 8000.2.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.c 4 5.c odd 4 1
4000.2.a.c 4 20.e even 4 1
4000.2.a.h yes 4 5.c odd 4 1
4000.2.a.h yes 4 20.e even 4 1
4000.2.c.e 8 1.a even 1 1 trivial
4000.2.c.e 8 4.b odd 2 1 inner
4000.2.c.e 8 5.b even 2 1 inner
4000.2.c.e 8 20.d odd 2 1 inner
8000.2.a.bc 4 40.i odd 4 1
8000.2.a.bc 4 40.k even 4 1
8000.2.a.bp 4 40.i odd 4 1
8000.2.a.bp 4 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4000, [\chi])\):

\( T_{3}^{4} + 3T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 3T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} - 52T_{11}^{2} + 656 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( (T^{4} + 3 T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} - 52 T^{2} + 656)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 52 T^{2} + 656)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 68 T^{2} + 656)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 68 T^{2} + 656)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 27 T^{2} + 121)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 9 T - 11)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 52 T^{2} + 656)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 88 T^{2} + 656)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 5 T - 5)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 163 T^{2} + 1681)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 103 T^{2} + 121)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 208 T^{2} + 10496)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 260 T^{2} + 16400)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 9 T + 9)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 112 T^{2} + 256)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 68 T^{2} + 656)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 260 T^{2} + 16400)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 88 T^{2} + 656)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 215 T^{2} + 9025)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 13 T + 31)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 260 T^{2} + 16400)^{2} \) Copy content Toggle raw display
show more
show less