Properties

Label 16-4000e8-1.1-c1e8-0-7
Degree $16$
Conductor $6.554\times 10^{28}$
Sign $1$
Analytic cond. $1.08317\times 10^{12}$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·9-s + 36·29-s + 20·41-s + 50·49-s + 36·61-s + 169·81-s − 52·89-s − 68·101-s + 12·109-s + 16·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 6·9-s + 6.68·29-s + 3.12·41-s + 50/7·49-s + 4.60·61-s + 18.7·81-s − 5.51·89-s − 6.76·101-s + 1.14·109-s + 1.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 5^{24}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{40} \cdot 5^{24}\)
Sign: $1$
Analytic conductor: \(1.08317\times 10^{12}\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{40} \cdot 5^{24} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(148.4788423\)
\(L(\frac12)\) \(\approx\) \(148.4788423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( ( 1 - p^{2} T^{2} + 37 T^{4} - p^{4} T^{6} + p^{4} T^{8} )^{2} \)
7 \( ( 1 - 25 T^{2} + 253 T^{4} - 25 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
11 \( ( 1 - 8 T^{2} + 238 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
13 \( ( 1 + 318 T^{4} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 78 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 + 8 T^{2} + 238 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
23 \( ( 1 - 65 T^{2} + 2053 T^{4} - 65 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
29 \( ( 1 - 9 T + 47 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + 72 T^{2} + 3198 T^{4} + 72 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 60 T^{2} + 2358 T^{4} - 60 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 5 T + 77 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{4} \)
43 \( ( 1 - 9 T^{2} - 1243 T^{4} - 9 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 85 T^{2} + 3693 T^{4} - 85 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 4 T^{2} + 5302 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 24 T^{2} + 6606 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
61 \( ( 1 - 9 T + 131 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{4} \)
67 \( ( 1 - 156 T^{2} + 12182 T^{4} - 156 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
71 \( ( 1 + 216 T^{2} + 21246 T^{4} + 216 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
73 \( ( 1 - 32 T^{2} + 10414 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 + 228 T^{2} + 24198 T^{4} + 228 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
83 \( ( 1 - 117 T^{2} + 14669 T^{4} - 117 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 13 T + 209 T^{2} + 13 p T^{3} + p^{2} T^{4} )^{4} \)
97 \( ( 1 - 128 T^{2} + 22414 T^{4} - 128 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.47280120324780030742893062310, −3.43182410906491614551828974976, −3.41702495852586601734652772615, −3.02135565474564956268086812164, −2.91911082851331427151859870547, −2.77037119646334292503654871419, −2.70220944367321993738853576689, −2.59585774011404505065622062933, −2.56983087016007383941277321899, −2.43066483551502325190904658313, −2.42100394661581418740121015500, −2.29044976993426780892005412851, −1.97765129691247100050843085234, −1.85051939187392883374763153374, −1.69201047273722483810939653880, −1.57738329273548393248130792046, −1.42773235487355223101937324935, −1.38215660771820369211985995397, −1.10157069213622129244525142039, −1.02686067417399584818603187381, −1.00101565868482520041730412843, −0.75630258947216390081934954928, −0.68297509971162117950912920572, −0.66300560973275060697483234331, −0.44520424256793308994456921974, 0.44520424256793308994456921974, 0.66300560973275060697483234331, 0.68297509971162117950912920572, 0.75630258947216390081934954928, 1.00101565868482520041730412843, 1.02686067417399584818603187381, 1.10157069213622129244525142039, 1.38215660771820369211985995397, 1.42773235487355223101937324935, 1.57738329273548393248130792046, 1.69201047273722483810939653880, 1.85051939187392883374763153374, 1.97765129691247100050843085234, 2.29044976993426780892005412851, 2.42100394661581418740121015500, 2.43066483551502325190904658313, 2.56983087016007383941277321899, 2.59585774011404505065622062933, 2.70220944367321993738853576689, 2.77037119646334292503654871419, 2.91911082851331427151859870547, 3.02135565474564956268086812164, 3.41702495852586601734652772615, 3.43182410906491614551828974976, 3.47280120324780030742893062310

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.