Properties

Label 2-4000-5.4-c1-0-36
Degree $2$
Conductor $4000$
Sign $-i$
Analytic cond. $31.9401$
Root an. cond. $5.65156$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61i·3-s + 0.618i·7-s + 0.381·9-s + 4.63·11-s − 4.63i·13-s + 7.50i·17-s − 7.50·19-s − 1.00·21-s − 4.61i·23-s + 5.47i·27-s + 10.0·29-s − 4.63·31-s + 7.50i·33-s − 2.86i·37-s + 7.50·39-s + ⋯
L(s)  = 1  + 0.934i·3-s + 0.233i·7-s + 0.127·9-s + 1.39·11-s − 1.28i·13-s + 1.82i·17-s − 1.72·19-s − 0.218·21-s − 0.962i·23-s + 1.05i·27-s + 1.87·29-s − 0.833·31-s + 1.30i·33-s − 0.471i·37-s + 1.20·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4000 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4000\)    =    \(2^{5} \cdot 5^{3}\)
Sign: $-i$
Analytic conductor: \(31.9401\)
Root analytic conductor: \(5.65156\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4000} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4000,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.045482961\)
\(L(\frac12)\) \(\approx\) \(2.045482961\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 1.61iT - 3T^{2} \)
7 \( 1 - 0.618iT - 7T^{2} \)
11 \( 1 - 4.63T + 11T^{2} \)
13 \( 1 + 4.63iT - 13T^{2} \)
17 \( 1 - 7.50iT - 17T^{2} \)
19 \( 1 + 7.50T + 19T^{2} \)
23 \( 1 + 4.61iT - 23T^{2} \)
29 \( 1 - 10.0T + 29T^{2} \)
31 \( 1 + 4.63T + 31T^{2} \)
37 \( 1 + 2.86iT - 37T^{2} \)
41 \( 1 + 0.854T + 41T^{2} \)
43 \( 1 - 3.32iT - 43T^{2} \)
47 \( 1 - 10.0iT - 47T^{2} \)
53 \( 1 - 9.27iT - 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 - 7.85T + 61T^{2} \)
67 \( 1 - 1.52iT - 67T^{2} \)
71 \( 1 - 7.50T + 71T^{2} \)
73 \( 1 + 10.3iT - 73T^{2} \)
79 \( 1 + 2.86T + 79T^{2} \)
83 \( 1 - 7.56iT - 83T^{2} \)
89 \( 1 + 9.85T + 89T^{2} \)
97 \( 1 + 10.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.510479783363709412132053863036, −8.318029366587653047888160432561, −7.04495768900563695729393784423, −6.28168208173730776326092101640, −5.77419171206552223966325471386, −4.57491401038162028604853061324, −4.16528987718960114160712951621, −3.43182410906491614551828974976, −2.29044976993426780892005412851, −1.10157069213622129244525142039, 0.68297509971162117950912920572, 1.69201047273722483810939653880, 2.42100394661581418740121015500, 3.78454744475473825904213194454, 4.34745373760192315377419290788, 5.29267744534205828491445866847, 6.51022527462073768743624980098, 6.82463952348028599811133482830, 7.18392081619419449209245729257, 8.341484176209007022373468854918

Graph of the $Z$-function along the critical line