Properties

Label 4000.2
Level 4000
Weight 2
Dimension 247552
Nonzero newspaces 30
Sturm bound 1920000
Trace bound 37

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 30 \)
Sturm bound: \(1920000\)
Trace bound: \(37\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4000))\).

Total New Old
Modular forms 485760 250112 235648
Cusp forms 474241 247552 226689
Eisenstein series 11519 2560 8959

Trace form

\( 247552 q - 256 q^{2} - 192 q^{3} - 256 q^{4} - 320 q^{5} - 464 q^{6} - 192 q^{7} - 256 q^{8} - 384 q^{9} - 320 q^{10} - 348 q^{11} - 256 q^{12} - 256 q^{13} - 256 q^{14} - 240 q^{15} - 464 q^{16} - 128 q^{17}+ \cdots - 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4000))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4000.2.a \(\chi_{4000}(1, \cdot)\) 4000.2.a.a 4 1
4000.2.a.b 4
4000.2.a.c 4
4000.2.a.d 4
4000.2.a.e 4
4000.2.a.f 4
4000.2.a.g 4
4000.2.a.h 4
4000.2.a.i 4
4000.2.a.j 4
4000.2.a.k 6
4000.2.a.l 6
4000.2.a.m 6
4000.2.a.n 6
4000.2.a.o 8
4000.2.a.p 8
4000.2.a.q 8
4000.2.a.r 8
4000.2.c \(\chi_{4000}(1249, \cdot)\) 4000.2.c.a 8 1
4000.2.c.b 8
4000.2.c.c 8
4000.2.c.d 8
4000.2.c.e 8
4000.2.c.f 12
4000.2.c.g 12
4000.2.c.h 16
4000.2.c.i 16
4000.2.d \(\chi_{4000}(2001, \cdot)\) 4000.2.d.a 4 1
4000.2.d.b 4
4000.2.d.c 40
4000.2.d.d 48
4000.2.f \(\chi_{4000}(3249, \cdot)\) 4000.2.f.a 4 1
4000.2.f.b 4
4000.2.f.c 20
4000.2.f.d 20
4000.2.f.e 48
4000.2.j \(\chi_{4000}(2807, \cdot)\) None 0 2
4000.2.l \(\chi_{4000}(1001, \cdot)\) None 0 2
4000.2.n \(\chi_{4000}(2943, \cdot)\) n/a 192 2
4000.2.o \(\chi_{4000}(943, \cdot)\) n/a 192 2
4000.2.q \(\chi_{4000}(249, \cdot)\) None 0 2
4000.2.s \(\chi_{4000}(807, \cdot)\) None 0 2
4000.2.u \(\chi_{4000}(801, \cdot)\) n/a 360 4
4000.2.v \(\chi_{4000}(307, \cdot)\) n/a 1536 4
4000.2.y \(\chi_{4000}(501, \cdot)\) n/a 1536 4
4000.2.ba \(\chi_{4000}(749, \cdot)\) n/a 1536 4
4000.2.bb \(\chi_{4000}(1307, \cdot)\) n/a 1536 4
4000.2.be \(\chi_{4000}(49, \cdot)\) n/a 336 4
4000.2.bg \(\chi_{4000}(449, \cdot)\) n/a 360 4
4000.2.bj \(\chi_{4000}(401, \cdot)\) n/a 336 4
4000.2.bl \(\chi_{4000}(7, \cdot)\) None 0 8
4000.2.bm \(\chi_{4000}(201, \cdot)\) None 0 8
4000.2.bp \(\chi_{4000}(143, \cdot)\) n/a 672 8
4000.2.bq \(\chi_{4000}(543, \cdot)\) n/a 720 8
4000.2.bt \(\chi_{4000}(649, \cdot)\) None 0 8
4000.2.bu \(\chi_{4000}(407, \cdot)\) None 0 8
4000.2.bw \(\chi_{4000}(161, \cdot)\) n/a 3000 20
4000.2.by \(\chi_{4000}(43, \cdot)\) n/a 5664 16
4000.2.bz \(\chi_{4000}(149, \cdot)\) n/a 5664 16
4000.2.cb \(\chi_{4000}(101, \cdot)\) n/a 5664 16
4000.2.ce \(\chi_{4000}(107, \cdot)\) n/a 5664 16
4000.2.ch \(\chi_{4000}(81, \cdot)\) n/a 2960 20
4000.2.cj \(\chi_{4000}(209, \cdot)\) n/a 2960 20
4000.2.ck \(\chi_{4000}(129, \cdot)\) n/a 3000 20
4000.2.cn \(\chi_{4000}(9, \cdot)\) None 0 40
4000.2.co \(\chi_{4000}(87, \cdot)\) None 0 40
4000.2.cr \(\chi_{4000}(47, \cdot)\) n/a 5920 40
4000.2.cs \(\chi_{4000}(63, \cdot)\) n/a 6000 40
4000.2.cv \(\chi_{4000}(23, \cdot)\) None 0 40
4000.2.cw \(\chi_{4000}(41, \cdot)\) None 0 40
4000.2.cy \(\chi_{4000}(3, \cdot)\) n/a 47840 80
4000.2.da \(\chi_{4000}(29, \cdot)\) n/a 47840 80
4000.2.dd \(\chi_{4000}(21, \cdot)\) n/a 47840 80
4000.2.df \(\chi_{4000}(67, \cdot)\) n/a 47840 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4000))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4000)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(125))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(250))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(500))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(800))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1000))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2000))\)\(^{\oplus 2}\)