Properties

Label 400.8.c.u.49.3
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,-4292] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 69x^{4} + 1164x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{16}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(-0.117290i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.u.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.5033i q^{3} +1504.61i q^{7} +1976.65 q^{9} +8170.56 q^{11} +5760.03i q^{13} -18837.0i q^{17} +52325.6 q^{19} +21821.8 q^{21} -29526.1i q^{23} -60386.8i q^{27} +237925. q^{29} -178366. q^{31} -118500. i q^{33} +150224. i q^{37} +83539.5 q^{39} -284583. q^{41} -586286. i q^{43} +20542.9i q^{47} -1.44030e6 q^{49} -273199. q^{51} +1.36322e6i q^{53} -758895. i q^{57} +543514. q^{59} +1.13350e6 q^{61} +2.97408e6i q^{63} -936593. i q^{67} -428227. q^{69} +1.12222e6 q^{71} +3.33421e6i q^{73} +1.22935e7i q^{77} +5.90757e6 q^{79} +3.44713e6 q^{81} -5.14032e6i q^{83} -3.45071e6i q^{87} -9.43725e6 q^{89} -8.66657e6 q^{91} +2.58690e6i q^{93} -1.59539e7i q^{97} +1.61504e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4292 q^{9} + 5318 q^{11} + 111498 q^{19} - 123124 q^{21} - 131056 q^{29} + 289196 q^{31} + 1600008 q^{39} + 599486 q^{41} - 4720974 q^{49} + 3724630 q^{51} + 1966736 q^{59} + 11420236 q^{61} - 10781396 q^{69}+ \cdots + 106633020 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 14.5033i − 0.310130i −0.987904 0.155065i \(-0.950441\pi\)
0.987904 0.155065i \(-0.0495586\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1504.61i 1.65798i 0.559262 + 0.828991i \(0.311084\pi\)
−0.559262 + 0.828991i \(0.688916\pi\)
\(8\) 0 0
\(9\) 1976.65 0.903820
\(10\) 0 0
\(11\) 8170.56 1.85088 0.925438 0.378900i \(-0.123698\pi\)
0.925438 + 0.378900i \(0.123698\pi\)
\(12\) 0 0
\(13\) 5760.03i 0.727148i 0.931565 + 0.363574i \(0.118444\pi\)
−0.931565 + 0.363574i \(0.881556\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 18837.0i − 0.929908i −0.885335 0.464954i \(-0.846071\pi\)
0.885335 0.464954i \(-0.153929\pi\)
\(18\) 0 0
\(19\) 52325.6 1.75015 0.875077 0.483983i \(-0.160810\pi\)
0.875077 + 0.483983i \(0.160810\pi\)
\(20\) 0 0
\(21\) 21821.8 0.514189
\(22\) 0 0
\(23\) − 29526.1i − 0.506010i −0.967465 0.253005i \(-0.918581\pi\)
0.967465 0.253005i \(-0.0814189\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 60386.8i − 0.590431i
\(28\) 0 0
\(29\) 237925. 1.81154 0.905769 0.423771i \(-0.139294\pi\)
0.905769 + 0.423771i \(0.139294\pi\)
\(30\) 0 0
\(31\) −178366. −1.07534 −0.537670 0.843156i \(-0.680695\pi\)
−0.537670 + 0.843156i \(0.680695\pi\)
\(32\) 0 0
\(33\) − 118500.i − 0.574011i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 150224.i 0.487565i 0.969830 + 0.243782i \(0.0783883\pi\)
−0.969830 + 0.243782i \(0.921612\pi\)
\(38\) 0 0
\(39\) 83539.5 0.225510
\(40\) 0 0
\(41\) −284583. −0.644861 −0.322430 0.946593i \(-0.604500\pi\)
−0.322430 + 0.946593i \(0.604500\pi\)
\(42\) 0 0
\(43\) − 586286.i − 1.12453i −0.826958 0.562263i \(-0.809931\pi\)
0.826958 0.562263i \(-0.190069\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 20542.9i 0.0288615i 0.999896 + 0.0144307i \(0.00459360\pi\)
−0.999896 + 0.0144307i \(0.995406\pi\)
\(48\) 0 0
\(49\) −1.44030e6 −1.74890
\(50\) 0 0
\(51\) −273199. −0.288392
\(52\) 0 0
\(53\) 1.36322e6i 1.25776i 0.777501 + 0.628882i \(0.216487\pi\)
−0.777501 + 0.628882i \(0.783513\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 758895.i − 0.542775i
\(58\) 0 0
\(59\) 543514. 0.344531 0.172266 0.985051i \(-0.444891\pi\)
0.172266 + 0.985051i \(0.444891\pi\)
\(60\) 0 0
\(61\) 1.13350e6 0.639392 0.319696 0.947520i \(-0.396419\pi\)
0.319696 + 0.947520i \(0.396419\pi\)
\(62\) 0 0
\(63\) 2.97408e6i 1.49852i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 936593.i − 0.380442i −0.981741 0.190221i \(-0.939079\pi\)
0.981741 0.190221i \(-0.0609205\pi\)
\(68\) 0 0
\(69\) −428227. −0.156929
\(70\) 0 0
\(71\) 1.12222e6 0.372111 0.186055 0.982539i \(-0.440430\pi\)
0.186055 + 0.982539i \(0.440430\pi\)
\(72\) 0 0
\(73\) 3.33421e6i 1.00314i 0.865116 + 0.501572i \(0.167245\pi\)
−0.865116 + 0.501572i \(0.832755\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.22935e7i 3.06872i
\(78\) 0 0
\(79\) 5.90757e6 1.34807 0.674037 0.738697i \(-0.264559\pi\)
0.674037 + 0.738697i \(0.264559\pi\)
\(80\) 0 0
\(81\) 3.44713e6 0.720710
\(82\) 0 0
\(83\) − 5.14032e6i − 0.986771i −0.869811 0.493386i \(-0.835759\pi\)
0.869811 0.493386i \(-0.164241\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 3.45071e6i − 0.561812i
\(88\) 0 0
\(89\) −9.43725e6 −1.41899 −0.709497 0.704709i \(-0.751078\pi\)
−0.709497 + 0.704709i \(0.751078\pi\)
\(90\) 0 0
\(91\) −8.66657e6 −1.20560
\(92\) 0 0
\(93\) 2.58690e6i 0.333495i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.59539e7i − 1.77487i −0.460935 0.887434i \(-0.652486\pi\)
0.460935 0.887434i \(-0.347514\pi\)
\(98\) 0 0
\(99\) 1.61504e7 1.67286
\(100\) 0 0
\(101\) −1.01924e7 −0.984358 −0.492179 0.870494i \(-0.663800\pi\)
−0.492179 + 0.870494i \(0.663800\pi\)
\(102\) 0 0
\(103\) − 1.06382e7i − 0.959263i −0.877470 0.479631i \(-0.840770\pi\)
0.877470 0.479631i \(-0.159230\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.02381e7i − 0.807931i −0.914774 0.403966i \(-0.867631\pi\)
0.914774 0.403966i \(-0.132369\pi\)
\(108\) 0 0
\(109\) 2.39817e6 0.177373 0.0886865 0.996060i \(-0.471733\pi\)
0.0886865 + 0.996060i \(0.471733\pi\)
\(110\) 0 0
\(111\) 2.17874e6 0.151208
\(112\) 0 0
\(113\) 8.06232e6i 0.525637i 0.964845 + 0.262818i \(0.0846520\pi\)
−0.964845 + 0.262818i \(0.915348\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.13856e7i 0.657210i
\(118\) 0 0
\(119\) 2.83422e7 1.54177
\(120\) 0 0
\(121\) 4.72708e7 2.42574
\(122\) 0 0
\(123\) 4.12740e6i 0.199990i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 4.13601e7i − 1.79171i −0.444343 0.895857i \(-0.646563\pi\)
0.444343 0.895857i \(-0.353437\pi\)
\(128\) 0 0
\(129\) −8.50310e6 −0.348749
\(130\) 0 0
\(131\) 6.39953e6 0.248713 0.124357 0.992238i \(-0.460313\pi\)
0.124357 + 0.992238i \(0.460313\pi\)
\(132\) 0 0
\(133\) 7.87294e7i 2.90172i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.67069e7i 0.887364i 0.896184 + 0.443682i \(0.146328\pi\)
−0.896184 + 0.443682i \(0.853672\pi\)
\(138\) 0 0
\(139\) −1.41131e7 −0.445727 −0.222864 0.974850i \(-0.571540\pi\)
−0.222864 + 0.974850i \(0.571540\pi\)
\(140\) 0 0
\(141\) 297940. 0.00895079
\(142\) 0 0
\(143\) 4.70626e7i 1.34586i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.08891e7i 0.542386i
\(148\) 0 0
\(149\) −2.24351e7 −0.555619 −0.277809 0.960636i \(-0.589608\pi\)
−0.277809 + 0.960636i \(0.589608\pi\)
\(150\) 0 0
\(151\) 1.88005e7 0.444375 0.222187 0.975004i \(-0.428680\pi\)
0.222187 + 0.975004i \(0.428680\pi\)
\(152\) 0 0
\(153\) − 3.72342e7i − 0.840469i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 4.56503e7i − 0.941444i −0.882281 0.470722i \(-0.843993\pi\)
0.882281 0.470722i \(-0.156007\pi\)
\(158\) 0 0
\(159\) 1.97712e7 0.390070
\(160\) 0 0
\(161\) 4.44252e7 0.838955
\(162\) 0 0
\(163\) 1.76081e7i 0.318461i 0.987241 + 0.159231i \(0.0509013\pi\)
−0.987241 + 0.159231i \(0.949099\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.91771e7i 1.14936i 0.818380 + 0.574678i \(0.194873\pi\)
−0.818380 + 0.574678i \(0.805127\pi\)
\(168\) 0 0
\(169\) 2.95706e7 0.471256
\(170\) 0 0
\(171\) 1.03430e8 1.58182
\(172\) 0 0
\(173\) 3.58362e7i 0.526212i 0.964767 + 0.263106i \(0.0847468\pi\)
−0.964767 + 0.263106i \(0.915253\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 7.88276e6i − 0.106849i
\(178\) 0 0
\(179\) 6.21415e7 0.809834 0.404917 0.914353i \(-0.367300\pi\)
0.404917 + 0.914353i \(0.367300\pi\)
\(180\) 0 0
\(181\) −5.35093e6 −0.0670741 −0.0335370 0.999437i \(-0.510677\pi\)
−0.0335370 + 0.999437i \(0.510677\pi\)
\(182\) 0 0
\(183\) − 1.64395e7i − 0.198294i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.53909e8i − 1.72114i
\(188\) 0 0
\(189\) 9.08584e7 0.978923
\(190\) 0 0
\(191\) −1.36197e6 −0.0141433 −0.00707163 0.999975i \(-0.502251\pi\)
−0.00707163 + 0.999975i \(0.502251\pi\)
\(192\) 0 0
\(193\) 4.04742e7i 0.405255i 0.979256 + 0.202627i \(0.0649480\pi\)
−0.979256 + 0.202627i \(0.935052\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 8.57389e7i − 0.798999i −0.916733 0.399499i \(-0.869184\pi\)
0.916733 0.399499i \(-0.130816\pi\)
\(198\) 0 0
\(199\) −8.83997e7 −0.795179 −0.397589 0.917563i \(-0.630153\pi\)
−0.397589 + 0.917563i \(0.630153\pi\)
\(200\) 0 0
\(201\) −1.35837e7 −0.117986
\(202\) 0 0
\(203\) 3.57984e8i 3.00350i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 5.83629e7i − 0.457342i
\(208\) 0 0
\(209\) 4.27529e8 3.23932
\(210\) 0 0
\(211\) 1.36506e7 0.100037 0.0500187 0.998748i \(-0.484072\pi\)
0.0500187 + 0.998748i \(0.484072\pi\)
\(212\) 0 0
\(213\) − 1.62759e7i − 0.115403i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 2.68370e8i − 1.78289i
\(218\) 0 0
\(219\) 4.83572e7 0.311105
\(220\) 0 0
\(221\) 1.08501e8 0.676180
\(222\) 0 0
\(223\) 2.28723e8i 1.38116i 0.723257 + 0.690579i \(0.242644\pi\)
−0.723257 + 0.690579i \(0.757356\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.52906e8i 0.867629i 0.901002 + 0.433814i \(0.142833\pi\)
−0.901002 + 0.433814i \(0.857167\pi\)
\(228\) 0 0
\(229\) 8.25002e7 0.453974 0.226987 0.973898i \(-0.427113\pi\)
0.226987 + 0.973898i \(0.427113\pi\)
\(230\) 0 0
\(231\) 1.78296e8 0.951700
\(232\) 0 0
\(233\) 3.46346e8i 1.79376i 0.442272 + 0.896881i \(0.354172\pi\)
−0.442272 + 0.896881i \(0.645828\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 8.56794e7i − 0.418078i
\(238\) 0 0
\(239\) 2.10609e7 0.0997894 0.0498947 0.998754i \(-0.484111\pi\)
0.0498947 + 0.998754i \(0.484111\pi\)
\(240\) 0 0
\(241\) −2.19190e8 −1.00870 −0.504349 0.863500i \(-0.668268\pi\)
−0.504349 + 0.863500i \(0.668268\pi\)
\(242\) 0 0
\(243\) − 1.82061e8i − 0.813944i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.01397e8i 1.27262i
\(248\) 0 0
\(249\) −7.45517e7 −0.306027
\(250\) 0 0
\(251\) 8.35072e7 0.333323 0.166662 0.986014i \(-0.446701\pi\)
0.166662 + 0.986014i \(0.446701\pi\)
\(252\) 0 0
\(253\) − 2.41245e8i − 0.936561i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.26230e8i 0.831351i 0.909513 + 0.415676i \(0.136455\pi\)
−0.909513 + 0.415676i \(0.863545\pi\)
\(258\) 0 0
\(259\) −2.26027e8 −0.808373
\(260\) 0 0
\(261\) 4.70296e8 1.63730
\(262\) 0 0
\(263\) 1.93601e8i 0.656241i 0.944636 + 0.328121i \(0.106415\pi\)
−0.944636 + 0.328121i \(0.893585\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.36872e8i 0.440072i
\(268\) 0 0
\(269\) 1.56593e8 0.490501 0.245250 0.969460i \(-0.421130\pi\)
0.245250 + 0.969460i \(0.421130\pi\)
\(270\) 0 0
\(271\) 3.46729e8 1.05827 0.529136 0.848537i \(-0.322516\pi\)
0.529136 + 0.848537i \(0.322516\pi\)
\(272\) 0 0
\(273\) 1.25694e8i 0.373891i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.96707e8i 0.556084i 0.960569 + 0.278042i \(0.0896855\pi\)
−0.960569 + 0.278042i \(0.910314\pi\)
\(278\) 0 0
\(279\) −3.52567e8 −0.971913
\(280\) 0 0
\(281\) −5.11263e8 −1.37459 −0.687294 0.726379i \(-0.741202\pi\)
−0.687294 + 0.726379i \(0.741202\pi\)
\(282\) 0 0
\(283\) 6.72694e8i 1.76427i 0.470998 + 0.882134i \(0.343894\pi\)
−0.470998 + 0.882134i \(0.656106\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.28186e8i − 1.06917i
\(288\) 0 0
\(289\) 5.55071e7 0.135271
\(290\) 0 0
\(291\) −2.31385e8 −0.550439
\(292\) 0 0
\(293\) 4.62188e8i 1.07345i 0.843757 + 0.536725i \(0.180339\pi\)
−0.843757 + 0.536725i \(0.819661\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.93394e8i − 1.09281i
\(298\) 0 0
\(299\) 1.70071e8 0.367944
\(300\) 0 0
\(301\) 8.82129e8 1.86444
\(302\) 0 0
\(303\) 1.47824e8i 0.305279i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.24848e8i − 1.23251i −0.787547 0.616254i \(-0.788649\pi\)
0.787547 0.616254i \(-0.211351\pi\)
\(308\) 0 0
\(309\) −1.54289e8 −0.297496
\(310\) 0 0
\(311\) −5.28722e8 −0.996703 −0.498352 0.866975i \(-0.666061\pi\)
−0.498352 + 0.866975i \(0.666061\pi\)
\(312\) 0 0
\(313\) − 2.08317e8i − 0.383989i −0.981396 0.191995i \(-0.938504\pi\)
0.981396 0.191995i \(-0.0614956\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.88124e6i 0.0174222i 0.999962 + 0.00871112i \(0.00277287\pi\)
−0.999962 + 0.00871112i \(0.997227\pi\)
\(318\) 0 0
\(319\) 1.94398e9 3.35293
\(320\) 0 0
\(321\) −1.48486e8 −0.250563
\(322\) 0 0
\(323\) − 9.85656e8i − 1.62748i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3.47815e7i − 0.0550086i
\(328\) 0 0
\(329\) −3.09089e7 −0.0478518
\(330\) 0 0
\(331\) 5.47351e8 0.829599 0.414799 0.909913i \(-0.363852\pi\)
0.414799 + 0.909913i \(0.363852\pi\)
\(332\) 0 0
\(333\) 2.96940e8i 0.440671i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.95141e8i 0.562403i 0.959649 + 0.281201i \(0.0907329\pi\)
−0.959649 + 0.281201i \(0.909267\pi\)
\(338\) 0 0
\(339\) 1.16930e8 0.163015
\(340\) 0 0
\(341\) −1.45735e9 −1.99032
\(342\) 0 0
\(343\) − 9.27970e8i − 1.24167i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 4.53902e7i − 0.0583189i −0.999575 0.0291595i \(-0.990717\pi\)
0.999575 0.0291595i \(-0.00928306\pi\)
\(348\) 0 0
\(349\) −1.07430e9 −1.35281 −0.676404 0.736531i \(-0.736463\pi\)
−0.676404 + 0.736531i \(0.736463\pi\)
\(350\) 0 0
\(351\) 3.47830e8 0.429330
\(352\) 0 0
\(353\) − 5.76841e8i − 0.697983i −0.937126 0.348991i \(-0.886524\pi\)
0.937126 0.348991i \(-0.113476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.11057e8i − 0.478148i
\(358\) 0 0
\(359\) −7.63547e8 −0.870974 −0.435487 0.900195i \(-0.643424\pi\)
−0.435487 + 0.900195i \(0.643424\pi\)
\(360\) 0 0
\(361\) 1.84409e9 2.06304
\(362\) 0 0
\(363\) − 6.85584e8i − 0.752294i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.55202e8i 0.163895i 0.996637 + 0.0819475i \(0.0261140\pi\)
−0.996637 + 0.0819475i \(0.973886\pi\)
\(368\) 0 0
\(369\) −5.62522e8 −0.582838
\(370\) 0 0
\(371\) −2.05110e9 −2.08535
\(372\) 0 0
\(373\) − 3.02866e8i − 0.302183i −0.988520 0.151091i \(-0.951721\pi\)
0.988520 0.151091i \(-0.0482788\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.37046e9i 1.31726i
\(378\) 0 0
\(379\) −1.12044e9 −1.05718 −0.528591 0.848877i \(-0.677279\pi\)
−0.528591 + 0.848877i \(0.677279\pi\)
\(380\) 0 0
\(381\) −5.99859e8 −0.555663
\(382\) 0 0
\(383\) − 7.36644e8i − 0.669980i −0.942222 0.334990i \(-0.891267\pi\)
0.942222 0.334990i \(-0.108733\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.15888e9i − 1.01637i
\(388\) 0 0
\(389\) −1.81700e9 −1.56506 −0.782530 0.622612i \(-0.786071\pi\)
−0.782530 + 0.622612i \(0.786071\pi\)
\(390\) 0 0
\(391\) −5.56183e8 −0.470543
\(392\) 0 0
\(393\) − 9.28145e7i − 0.0771333i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.38033e9i 1.90928i 0.297757 + 0.954642i \(0.403762\pi\)
−0.297757 + 0.954642i \(0.596238\pi\)
\(398\) 0 0
\(399\) 1.14184e9 0.899910
\(400\) 0 0
\(401\) 2.00554e9 1.55320 0.776599 0.629995i \(-0.216943\pi\)
0.776599 + 0.629995i \(0.216943\pi\)
\(402\) 0 0
\(403\) − 1.02739e9i − 0.781931i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.22741e9i 0.902422i
\(408\) 0 0
\(409\) −3.92629e8 −0.283760 −0.141880 0.989884i \(-0.545315\pi\)
−0.141880 + 0.989884i \(0.545315\pi\)
\(410\) 0 0
\(411\) 3.87339e8 0.275198
\(412\) 0 0
\(413\) 8.17775e8i 0.571227i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.04686e8i 0.138233i
\(418\) 0 0
\(419\) 1.08234e9 0.718808 0.359404 0.933182i \(-0.382980\pi\)
0.359404 + 0.933182i \(0.382980\pi\)
\(420\) 0 0
\(421\) −1.90157e9 −1.24201 −0.621004 0.783808i \(-0.713275\pi\)
−0.621004 + 0.783808i \(0.713275\pi\)
\(422\) 0 0
\(423\) 4.06061e7i 0.0260856i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.70547e9i 1.06010i
\(428\) 0 0
\(429\) 6.82564e8 0.417391
\(430\) 0 0
\(431\) 1.07717e9 0.648060 0.324030 0.946047i \(-0.394962\pi\)
0.324030 + 0.946047i \(0.394962\pi\)
\(432\) 0 0
\(433\) − 4.78186e8i − 0.283067i −0.989933 0.141533i \(-0.954797\pi\)
0.989933 0.141533i \(-0.0452033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.54497e9i − 0.885595i
\(438\) 0 0
\(439\) −3.30634e9 −1.86519 −0.932593 0.360929i \(-0.882460\pi\)
−0.932593 + 0.360929i \(0.882460\pi\)
\(440\) 0 0
\(441\) −2.84697e9 −1.58069
\(442\) 0 0
\(443\) 2.15148e9i 1.17578i 0.808942 + 0.587888i \(0.200040\pi\)
−0.808942 + 0.587888i \(0.799960\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.25384e8i 0.172314i
\(448\) 0 0
\(449\) −2.08607e9 −1.08759 −0.543796 0.839217i \(-0.683013\pi\)
−0.543796 + 0.839217i \(0.683013\pi\)
\(450\) 0 0
\(451\) −2.32520e9 −1.19356
\(452\) 0 0
\(453\) − 2.72669e8i − 0.137814i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3.50830e9i − 1.71945i −0.510755 0.859727i \(-0.670634\pi\)
0.510755 0.859727i \(-0.329366\pi\)
\(458\) 0 0
\(459\) −1.13751e9 −0.549046
\(460\) 0 0
\(461\) −1.29629e9 −0.616237 −0.308118 0.951348i \(-0.599699\pi\)
−0.308118 + 0.951348i \(0.599699\pi\)
\(462\) 0 0
\(463\) − 3.89525e9i − 1.82390i −0.410298 0.911952i \(-0.634575\pi\)
0.410298 0.911952i \(-0.365425\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.07448e9i − 1.39689i −0.715663 0.698446i \(-0.753875\pi\)
0.715663 0.698446i \(-0.246125\pi\)
\(468\) 0 0
\(469\) 1.40920e9 0.630766
\(470\) 0 0
\(471\) −6.62081e8 −0.291970
\(472\) 0 0
\(473\) − 4.79028e9i − 2.08136i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.69460e9i 1.13679i
\(478\) 0 0
\(479\) −3.39731e8 −0.141241 −0.0706205 0.997503i \(-0.522498\pi\)
−0.0706205 + 0.997503i \(0.522498\pi\)
\(480\) 0 0
\(481\) −8.65292e8 −0.354532
\(482\) 0 0
\(483\) − 6.44313e8i − 0.260185i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.11700e9i 1.61521i 0.589723 + 0.807606i \(0.299237\pi\)
−0.589723 + 0.807606i \(0.700763\pi\)
\(488\) 0 0
\(489\) 2.55376e8 0.0987642
\(490\) 0 0
\(491\) 3.89331e8 0.148434 0.0742170 0.997242i \(-0.476354\pi\)
0.0742170 + 0.997242i \(0.476354\pi\)
\(492\) 0 0
\(493\) − 4.48179e9i − 1.68456i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.68849e9i 0.616953i
\(498\) 0 0
\(499\) −8.82005e7 −0.0317775 −0.0158887 0.999874i \(-0.505058\pi\)
−0.0158887 + 0.999874i \(0.505058\pi\)
\(500\) 0 0
\(501\) 1.00330e9 0.356449
\(502\) 0 0
\(503\) − 1.01491e9i − 0.355583i −0.984068 0.177792i \(-0.943105\pi\)
0.984068 0.177792i \(-0.0568953\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 4.28872e8i − 0.146151i
\(508\) 0 0
\(509\) 4.60125e9 1.54655 0.773275 0.634071i \(-0.218617\pi\)
0.773275 + 0.634071i \(0.218617\pi\)
\(510\) 0 0
\(511\) −5.01667e9 −1.66319
\(512\) 0 0
\(513\) − 3.15978e9i − 1.03335i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.67847e8i 0.0534190i
\(518\) 0 0
\(519\) 5.19744e8 0.163194
\(520\) 0 0
\(521\) −4.06999e9 −1.26084 −0.630422 0.776252i \(-0.717118\pi\)
−0.630422 + 0.776252i \(0.717118\pi\)
\(522\) 0 0
\(523\) 2.22584e9i 0.680360i 0.940360 + 0.340180i \(0.110488\pi\)
−0.940360 + 0.340180i \(0.889512\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.35987e9i 0.999967i
\(528\) 0 0
\(529\) 2.53303e9 0.743954
\(530\) 0 0
\(531\) 1.07434e9 0.311394
\(532\) 0 0
\(533\) − 1.63921e9i − 0.468909i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 9.01258e8i − 0.251153i
\(538\) 0 0
\(539\) −1.17680e10 −3.23700
\(540\) 0 0
\(541\) −4.94448e7 −0.0134255 −0.00671275 0.999977i \(-0.502137\pi\)
−0.00671275 + 0.999977i \(0.502137\pi\)
\(542\) 0 0
\(543\) 7.76063e7i 0.0208017i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.84946e9i 0.483158i 0.970381 + 0.241579i \(0.0776652\pi\)
−0.970381 + 0.241579i \(0.922335\pi\)
\(548\) 0 0
\(549\) 2.24054e9 0.577895
\(550\) 0 0
\(551\) 1.24496e10 3.17047
\(552\) 0 0
\(553\) 8.88856e9i 2.23508i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 5.03461e9i − 1.23445i −0.786788 0.617224i \(-0.788257\pi\)
0.786788 0.617224i \(-0.211743\pi\)
\(558\) 0 0
\(559\) 3.37702e9 0.817697
\(560\) 0 0
\(561\) −2.23219e9 −0.533778
\(562\) 0 0
\(563\) − 4.54798e7i − 0.0107409i −0.999986 0.00537043i \(-0.998291\pi\)
0.999986 0.00537043i \(-0.00170947\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.18657e9i 1.19492i
\(568\) 0 0
\(569\) −3.35165e9 −0.762722 −0.381361 0.924426i \(-0.624545\pi\)
−0.381361 + 0.924426i \(0.624545\pi\)
\(570\) 0 0
\(571\) −4.29937e9 −0.966448 −0.483224 0.875497i \(-0.660534\pi\)
−0.483224 + 0.875497i \(0.660534\pi\)
\(572\) 0 0
\(573\) 1.97530e7i 0.00438625i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 3.41602e9i − 0.740296i −0.928973 0.370148i \(-0.879307\pi\)
0.928973 0.370148i \(-0.120693\pi\)
\(578\) 0 0
\(579\) 5.87011e8 0.125681
\(580\) 0 0
\(581\) 7.73415e9 1.63605
\(582\) 0 0
\(583\) 1.11382e10i 2.32796i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 4.45218e9i − 0.908530i −0.890867 0.454265i \(-0.849902\pi\)
0.890867 0.454265i \(-0.150098\pi\)
\(588\) 0 0
\(589\) −9.33309e9 −1.88201
\(590\) 0 0
\(591\) −1.24350e9 −0.247793
\(592\) 0 0
\(593\) 5.98158e9i 1.17794i 0.808154 + 0.588972i \(0.200467\pi\)
−0.808154 + 0.588972i \(0.799533\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.28209e9i 0.246609i
\(598\) 0 0
\(599\) −9.84141e7 −0.0187096 −0.00935478 0.999956i \(-0.502978\pi\)
−0.00935478 + 0.999956i \(0.502978\pi\)
\(600\) 0 0
\(601\) 2.67831e9 0.503269 0.251635 0.967822i \(-0.419032\pi\)
0.251635 + 0.967822i \(0.419032\pi\)
\(602\) 0 0
\(603\) − 1.85132e9i − 0.343851i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 3.14307e9i − 0.570419i −0.958465 0.285209i \(-0.907937\pi\)
0.958465 0.285209i \(-0.0920632\pi\)
\(608\) 0 0
\(609\) 5.19196e9 0.931473
\(610\) 0 0
\(611\) −1.18327e8 −0.0209865
\(612\) 0 0
\(613\) − 1.02572e10i − 1.79852i −0.437415 0.899260i \(-0.644106\pi\)
0.437415 0.899260i \(-0.355894\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.20512e9i 1.57772i 0.614570 + 0.788862i \(0.289330\pi\)
−0.614570 + 0.788862i \(0.710670\pi\)
\(618\) 0 0
\(619\) −5.97483e9 −1.01253 −0.506266 0.862377i \(-0.668975\pi\)
−0.506266 + 0.862377i \(0.668975\pi\)
\(620\) 0 0
\(621\) −1.78299e9 −0.298764
\(622\) 0 0
\(623\) − 1.41993e10i − 2.35266i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 6.20059e9i − 1.00461i
\(628\) 0 0
\(629\) 2.82976e9 0.453390
\(630\) 0 0
\(631\) 6.00181e8 0.0950997 0.0475498 0.998869i \(-0.484859\pi\)
0.0475498 + 0.998869i \(0.484859\pi\)
\(632\) 0 0
\(633\) − 1.97979e8i − 0.0310246i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 8.29614e9i − 1.27171i
\(638\) 0 0
\(639\) 2.21823e9 0.336321
\(640\) 0 0
\(641\) 6.33607e8 0.0950204 0.0475102 0.998871i \(-0.484871\pi\)
0.0475102 + 0.998871i \(0.484871\pi\)
\(642\) 0 0
\(643\) 1.03486e10i 1.53513i 0.640973 + 0.767563i \(0.278531\pi\)
−0.640973 + 0.767563i \(0.721469\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.73480e9i 0.251817i 0.992042 + 0.125909i \(0.0401846\pi\)
−0.992042 + 0.125909i \(0.959815\pi\)
\(648\) 0 0
\(649\) 4.44081e9 0.637685
\(650\) 0 0
\(651\) −3.89226e9 −0.552928
\(652\) 0 0
\(653\) 3.78848e9i 0.532438i 0.963913 + 0.266219i \(0.0857745\pi\)
−0.963913 + 0.266219i \(0.914226\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.59058e9i 0.906661i
\(658\) 0 0
\(659\) 1.23763e10 1.68457 0.842287 0.539029i \(-0.181209\pi\)
0.842287 + 0.539029i \(0.181209\pi\)
\(660\) 0 0
\(661\) 9.16365e8 0.123414 0.0617068 0.998094i \(-0.480346\pi\)
0.0617068 + 0.998094i \(0.480346\pi\)
\(662\) 0 0
\(663\) − 1.57363e9i − 0.209704i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 7.02501e9i − 0.916656i
\(668\) 0 0
\(669\) 3.31725e9 0.428338
\(670\) 0 0
\(671\) 9.26133e9 1.18344
\(672\) 0 0
\(673\) − 4.23791e8i − 0.0535919i −0.999641 0.0267959i \(-0.991470\pi\)
0.999641 0.0267959i \(-0.00853043\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 7.40587e9i − 0.917310i −0.888614 0.458655i \(-0.848331\pi\)
0.888614 0.458655i \(-0.151669\pi\)
\(678\) 0 0
\(679\) 2.40043e10 2.94270
\(680\) 0 0
\(681\) 2.21765e9 0.269077
\(682\) 0 0
\(683\) − 3.56998e9i − 0.428740i −0.976753 0.214370i \(-0.931230\pi\)
0.976753 0.214370i \(-0.0687698\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.19653e9i − 0.140791i
\(688\) 0 0
\(689\) −7.85215e9 −0.914580
\(690\) 0 0
\(691\) −4.70529e9 −0.542517 −0.271259 0.962507i \(-0.587440\pi\)
−0.271259 + 0.962507i \(0.587440\pi\)
\(692\) 0 0
\(693\) 2.42999e10i 2.77357i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.36069e9i 0.599661i
\(698\) 0 0
\(699\) 5.02317e9 0.556299
\(700\) 0 0
\(701\) 7.33356e7 0.00804084 0.00402042 0.999992i \(-0.498720\pi\)
0.00402042 + 0.999992i \(0.498720\pi\)
\(702\) 0 0
\(703\) 7.86054e9i 0.853314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.53356e10i − 1.63205i
\(708\) 0 0
\(709\) −1.43028e10 −1.50716 −0.753580 0.657356i \(-0.771675\pi\)
−0.753580 + 0.657356i \(0.771675\pi\)
\(710\) 0 0
\(711\) 1.16772e10 1.21842
\(712\) 0 0
\(713\) 5.26645e9i 0.544132i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.05453e8i − 0.0309477i
\(718\) 0 0
\(719\) 8.95195e9 0.898186 0.449093 0.893485i \(-0.351747\pi\)
0.449093 + 0.893485i \(0.351747\pi\)
\(720\) 0 0
\(721\) 1.60063e10 1.59044
\(722\) 0 0
\(723\) 3.17899e9i 0.312827i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.69358e10i 1.63469i 0.576149 + 0.817345i \(0.304555\pi\)
−0.576149 + 0.817345i \(0.695445\pi\)
\(728\) 0 0
\(729\) 4.89839e9 0.468281
\(730\) 0 0
\(731\) −1.10439e10 −1.04571
\(732\) 0 0
\(733\) 1.11259e10i 1.04345i 0.853115 + 0.521723i \(0.174711\pi\)
−0.853115 + 0.521723i \(0.825289\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 7.65248e9i − 0.704151i
\(738\) 0 0
\(739\) 2.21789e9 0.202155 0.101078 0.994879i \(-0.467771\pi\)
0.101078 + 0.994879i \(0.467771\pi\)
\(740\) 0 0
\(741\) 4.37125e9 0.394677
\(742\) 0 0
\(743\) 1.05759e10i 0.945928i 0.881082 + 0.472964i \(0.156816\pi\)
−0.881082 + 0.472964i \(0.843184\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.01606e10i − 0.891863i
\(748\) 0 0
\(749\) 1.54042e10 1.33954
\(750\) 0 0
\(751\) 8.78857e9 0.757144 0.378572 0.925572i \(-0.376415\pi\)
0.378572 + 0.925572i \(0.376415\pi\)
\(752\) 0 0
\(753\) − 1.21113e9i − 0.103373i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.48486e10i 1.24408i 0.782984 + 0.622042i \(0.213697\pi\)
−0.782984 + 0.622042i \(0.786303\pi\)
\(758\) 0 0
\(759\) −3.49885e9 −0.290455
\(760\) 0 0
\(761\) 7.44711e9 0.612550 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(762\) 0 0
\(763\) 3.60830e9i 0.294081i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.13066e9i 0.250525i
\(768\) 0 0
\(769\) −6.62137e9 −0.525056 −0.262528 0.964924i \(-0.584556\pi\)
−0.262528 + 0.964924i \(0.584556\pi\)
\(770\) 0 0
\(771\) 3.28109e9 0.257827
\(772\) 0 0
\(773\) 9.09632e9i 0.708333i 0.935182 + 0.354166i \(0.115235\pi\)
−0.935182 + 0.354166i \(0.884765\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.27815e9i 0.250700i
\(778\) 0 0
\(779\) −1.48910e10 −1.12861
\(780\) 0 0
\(781\) 9.16913e9 0.688731
\(782\) 0 0
\(783\) − 1.43676e10i − 1.06959i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.90436e10i − 1.39264i −0.717732 0.696319i \(-0.754820\pi\)
0.717732 0.696319i \(-0.245180\pi\)
\(788\) 0 0
\(789\) 2.80786e9 0.203520
\(790\) 0 0
\(791\) −1.21306e10 −0.871496
\(792\) 0 0
\(793\) 6.52899e9i 0.464933i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.49063e10i 1.04295i 0.853265 + 0.521477i \(0.174619\pi\)
−0.853265 + 0.521477i \(0.825381\pi\)
\(798\) 0 0
\(799\) 3.86965e8 0.0268385
\(800\) 0 0
\(801\) −1.86542e10 −1.28251
\(802\) 0 0
\(803\) 2.72424e10i 1.85669i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.27112e9i − 0.152119i
\(808\) 0 0
\(809\) −2.51640e10 −1.67094 −0.835469 0.549538i \(-0.814804\pi\)
−0.835469 + 0.549538i \(0.814804\pi\)
\(810\) 0 0
\(811\) −3.37190e9 −0.221974 −0.110987 0.993822i \(-0.535401\pi\)
−0.110987 + 0.993822i \(0.535401\pi\)
\(812\) 0 0
\(813\) − 5.02872e9i − 0.328201i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.06777e10i − 1.96810i
\(818\) 0 0
\(819\) −1.71308e10 −1.08964
\(820\) 0 0
\(821\) −3.02251e10 −1.90619 −0.953096 0.302669i \(-0.902122\pi\)
−0.953096 + 0.302669i \(0.902122\pi\)
\(822\) 0 0
\(823\) − 1.81107e10i − 1.13249i −0.824236 0.566246i \(-0.808395\pi\)
0.824236 0.566246i \(-0.191605\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 8.31258e9i − 0.511054i −0.966802 0.255527i \(-0.917751\pi\)
0.966802 0.255527i \(-0.0822490\pi\)
\(828\) 0 0
\(829\) −3.19126e9 −0.194545 −0.0972726 0.995258i \(-0.531012\pi\)
−0.0972726 + 0.995258i \(0.531012\pi\)
\(830\) 0 0
\(831\) 2.85291e9 0.172458
\(832\) 0 0
\(833\) 2.71308e10i 1.62632i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.07709e10i 0.634914i
\(838\) 0 0
\(839\) 2.11602e10 1.23695 0.618477 0.785803i \(-0.287750\pi\)
0.618477 + 0.785803i \(0.287750\pi\)
\(840\) 0 0
\(841\) 3.93586e10 2.28167
\(842\) 0 0
\(843\) 7.41502e9i 0.426300i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.11239e10i 4.02183i
\(848\) 0 0
\(849\) 9.75630e9 0.547152
\(850\) 0 0
\(851\) 4.43552e9 0.246713
\(852\) 0 0
\(853\) − 2.57804e10i − 1.42222i −0.703079 0.711112i \(-0.748192\pi\)
0.703079 0.711112i \(-0.251808\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.67728e10i − 1.45298i −0.687176 0.726491i \(-0.741150\pi\)
0.687176 0.726491i \(-0.258850\pi\)
\(858\) 0 0
\(859\) 1.88350e10 1.01389 0.506944 0.861979i \(-0.330775\pi\)
0.506944 + 0.861979i \(0.330775\pi\)
\(860\) 0 0
\(861\) −6.21012e9 −0.331580
\(862\) 0 0
\(863\) 4.36753e9i 0.231312i 0.993289 + 0.115656i \(0.0368970\pi\)
−0.993289 + 0.115656i \(0.963103\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 8.05037e8i − 0.0419517i
\(868\) 0 0
\(869\) 4.82681e10 2.49512
\(870\) 0 0
\(871\) 5.39480e9 0.276638
\(872\) 0 0
\(873\) − 3.15353e10i − 1.60416i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 5.63412e9i − 0.282051i −0.990006 0.141025i \(-0.954960\pi\)
0.990006 0.141025i \(-0.0450399\pi\)
\(878\) 0 0
\(879\) 6.70326e9 0.332909
\(880\) 0 0
\(881\) −2.65172e10 −1.30651 −0.653254 0.757139i \(-0.726597\pi\)
−0.653254 + 0.757139i \(0.726597\pi\)
\(882\) 0 0
\(883\) 1.44647e10i 0.707044i 0.935426 + 0.353522i \(0.115016\pi\)
−0.935426 + 0.353522i \(0.884984\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 2.22645e10i − 1.07123i −0.844464 0.535613i \(-0.820081\pi\)
0.844464 0.535613i \(-0.179919\pi\)
\(888\) 0 0
\(889\) 6.22307e10 2.97063
\(890\) 0 0
\(891\) 2.81650e10 1.33394
\(892\) 0 0
\(893\) 1.07492e9i 0.0505120i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 2.46660e9i − 0.114110i
\(898\) 0 0
\(899\) −4.24377e10 −1.94802
\(900\) 0 0
\(901\) 2.56789e10 1.16960
\(902\) 0 0
\(903\) − 1.27938e10i − 0.578220i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.72710e10i − 0.768583i −0.923212 0.384292i \(-0.874446\pi\)
0.923212 0.384292i \(-0.125554\pi\)
\(908\) 0 0
\(909\) −2.01469e10 −0.889682
\(910\) 0 0
\(911\) 4.28756e10 1.87887 0.939433 0.342733i \(-0.111353\pi\)
0.939433 + 0.342733i \(0.111353\pi\)
\(912\) 0 0
\(913\) − 4.19992e10i − 1.82639i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.62877e9i 0.412362i
\(918\) 0 0
\(919\) −4.37453e9 −0.185921 −0.0929603 0.995670i \(-0.529633\pi\)
−0.0929603 + 0.995670i \(0.529633\pi\)
\(920\) 0 0
\(921\) −9.06237e9 −0.382237
\(922\) 0 0
\(923\) 6.46400e9i 0.270580i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 2.10280e10i − 0.867000i
\(928\) 0 0
\(929\) −1.65493e10 −0.677213 −0.338606 0.940928i \(-0.609956\pi\)
−0.338606 + 0.940928i \(0.609956\pi\)
\(930\) 0 0
\(931\) −7.53643e10 −3.06085
\(932\) 0 0
\(933\) 7.66823e9i 0.309107i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 6.78612e9i − 0.269484i −0.990881 0.134742i \(-0.956979\pi\)
0.990881 0.134742i \(-0.0430205\pi\)
\(938\) 0 0
\(939\) −3.02129e9 −0.119086
\(940\) 0 0
\(941\) −3.05358e10 −1.19466 −0.597332 0.801994i \(-0.703773\pi\)
−0.597332 + 0.801994i \(0.703773\pi\)
\(942\) 0 0
\(943\) 8.40264e9i 0.326306i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.02600e9i 0.0775203i 0.999249 + 0.0387601i \(0.0123408\pi\)
−0.999249 + 0.0387601i \(0.987659\pi\)
\(948\) 0 0
\(949\) −1.92051e10 −0.729434
\(950\) 0 0
\(951\) 1.43311e8 0.00540315
\(952\) 0 0
\(953\) − 6.05056e9i − 0.226449i −0.993569 0.113224i \(-0.963882\pi\)
0.993569 0.113224i \(-0.0361179\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 2.81942e10i − 1.03984i
\(958\) 0 0
\(959\) −4.01834e10 −1.47123
\(960\) 0 0
\(961\) 4.30174e9 0.156355
\(962\) 0 0
\(963\) − 2.02371e10i − 0.730224i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.99403e10i 1.77606i 0.459782 + 0.888032i \(0.347927\pi\)
−0.459782 + 0.888032i \(0.652073\pi\)
\(968\) 0 0
\(969\) −1.42953e10 −0.504731
\(970\) 0 0
\(971\) −1.51420e10 −0.530780 −0.265390 0.964141i \(-0.585501\pi\)
−0.265390 + 0.964141i \(0.585501\pi\)
\(972\) 0 0
\(973\) − 2.12346e10i − 0.739007i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.39541e10i 1.85095i 0.378815 + 0.925473i \(0.376332\pi\)
−0.378815 + 0.925473i \(0.623668\pi\)
\(978\) 0 0
\(979\) −7.71076e10 −2.62638
\(980\) 0 0
\(981\) 4.74035e9 0.160313
\(982\) 0 0
\(983\) − 2.37883e10i − 0.798777i −0.916782 0.399389i \(-0.869222\pi\)
0.916782 0.399389i \(-0.130778\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.48282e8i 0.0148402i
\(988\) 0 0
\(989\) −1.73108e10 −0.569022
\(990\) 0 0
\(991\) 2.15204e10 0.702412 0.351206 0.936298i \(-0.385772\pi\)
0.351206 + 0.936298i \(0.385772\pi\)
\(992\) 0 0
\(993\) − 7.93841e9i − 0.257283i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.83526e10i − 0.906067i −0.891493 0.453034i \(-0.850342\pi\)
0.891493 0.453034i \(-0.149658\pi\)
\(998\) 0 0
\(999\) 9.07153e9 0.287873
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.u.49.3 6
4.3 odd 2 200.8.c.j.49.4 6
5.2 odd 4 400.8.a.bi.1.1 3
5.3 odd 4 400.8.a.bh.1.3 3
5.4 even 2 inner 400.8.c.u.49.4 6
20.3 even 4 200.8.a.p.1.1 yes 3
20.7 even 4 200.8.a.o.1.3 3
20.19 odd 2 200.8.c.j.49.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.8.a.o.1.3 3 20.7 even 4
200.8.a.p.1.1 yes 3 20.3 even 4
200.8.c.j.49.3 6 20.19 odd 2
200.8.c.j.49.4 6 4.3 odd 2
400.8.a.bh.1.3 3 5.3 odd 4
400.8.a.bi.1.1 3 5.2 odd 4
400.8.c.u.49.3 6 1.1 even 1 trivial
400.8.c.u.49.4 6 5.4 even 2 inner