Properties

Label 400.8.a.bh.1.3
Level $400$
Weight $8$
Character 400.1
Self dual yes
Analytic conductor $124.954$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(1,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-97,0,0,0,1630] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(124.954010194\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.40101.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 34x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: no (minimal twist has level 200)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.117290\) of defining polynomial
Character \(\chi\) \(=\) 400.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.5033 q^{3} +1504.61 q^{7} -1976.65 q^{9} +8170.56 q^{11} -5760.03 q^{13} -18837.0 q^{17} -52325.6 q^{19} +21821.8 q^{21} +29526.1 q^{23} -60386.8 q^{27} -237925. q^{29} -178366. q^{31} +118500. q^{33} +150224. q^{37} -83539.5 q^{39} -284583. q^{41} +586286. q^{43} +20542.9 q^{47} +1.44030e6 q^{49} -273199. q^{51} -1.36322e6 q^{53} -758895. q^{57} -543514. q^{59} +1.13350e6 q^{61} -2.97408e6 q^{63} -936593. q^{67} +428227. q^{69} +1.12222e6 q^{71} -3.33421e6 q^{73} +1.22935e7 q^{77} -5.90757e6 q^{79} +3.44713e6 q^{81} +5.14032e6 q^{83} -3.45071e6 q^{87} +9.43725e6 q^{89} -8.66657e6 q^{91} -2.58690e6 q^{93} -1.59539e7 q^{97} -1.61504e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 97 q^{3} + 1630 q^{7} + 2146 q^{9} + 2659 q^{11} + 3308 q^{13} - 24481 q^{17} - 55749 q^{19} - 61562 q^{21} - 56910 q^{23} - 300619 q^{27} + 65528 q^{29} + 144598 q^{31} + 657207 q^{33} + 204678 q^{37}+ \cdots - 53316510 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 14.5033 0.310130 0.155065 0.987904i \(-0.450441\pi\)
0.155065 + 0.987904i \(0.450441\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1504.61 1.65798 0.828991 0.559262i \(-0.188916\pi\)
0.828991 + 0.559262i \(0.188916\pi\)
\(8\) 0 0
\(9\) −1976.65 −0.903820
\(10\) 0 0
\(11\) 8170.56 1.85088 0.925438 0.378900i \(-0.123698\pi\)
0.925438 + 0.378900i \(0.123698\pi\)
\(12\) 0 0
\(13\) −5760.03 −0.727148 −0.363574 0.931565i \(-0.618444\pi\)
−0.363574 + 0.931565i \(0.618444\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −18837.0 −0.929908 −0.464954 0.885335i \(-0.653929\pi\)
−0.464954 + 0.885335i \(0.653929\pi\)
\(18\) 0 0
\(19\) −52325.6 −1.75015 −0.875077 0.483983i \(-0.839190\pi\)
−0.875077 + 0.483983i \(0.839190\pi\)
\(20\) 0 0
\(21\) 21821.8 0.514189
\(22\) 0 0
\(23\) 29526.1 0.506010 0.253005 0.967465i \(-0.418581\pi\)
0.253005 + 0.967465i \(0.418581\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −60386.8 −0.590431
\(28\) 0 0
\(29\) −237925. −1.81154 −0.905769 0.423771i \(-0.860706\pi\)
−0.905769 + 0.423771i \(0.860706\pi\)
\(30\) 0 0
\(31\) −178366. −1.07534 −0.537670 0.843156i \(-0.680695\pi\)
−0.537670 + 0.843156i \(0.680695\pi\)
\(32\) 0 0
\(33\) 118500. 0.574011
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 150224. 0.487565 0.243782 0.969830i \(-0.421612\pi\)
0.243782 + 0.969830i \(0.421612\pi\)
\(38\) 0 0
\(39\) −83539.5 −0.225510
\(40\) 0 0
\(41\) −284583. −0.644861 −0.322430 0.946593i \(-0.604500\pi\)
−0.322430 + 0.946593i \(0.604500\pi\)
\(42\) 0 0
\(43\) 586286. 1.12453 0.562263 0.826958i \(-0.309931\pi\)
0.562263 + 0.826958i \(0.309931\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 20542.9 0.0288615 0.0144307 0.999896i \(-0.495406\pi\)
0.0144307 + 0.999896i \(0.495406\pi\)
\(48\) 0 0
\(49\) 1.44030e6 1.74890
\(50\) 0 0
\(51\) −273199. −0.288392
\(52\) 0 0
\(53\) −1.36322e6 −1.25776 −0.628882 0.777501i \(-0.716487\pi\)
−0.628882 + 0.777501i \(0.716487\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −758895. −0.542775
\(58\) 0 0
\(59\) −543514. −0.344531 −0.172266 0.985051i \(-0.555109\pi\)
−0.172266 + 0.985051i \(0.555109\pi\)
\(60\) 0 0
\(61\) 1.13350e6 0.639392 0.319696 0.947520i \(-0.396419\pi\)
0.319696 + 0.947520i \(0.396419\pi\)
\(62\) 0 0
\(63\) −2.97408e6 −1.49852
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −936593. −0.380442 −0.190221 0.981741i \(-0.560921\pi\)
−0.190221 + 0.981741i \(0.560921\pi\)
\(68\) 0 0
\(69\) 428227. 0.156929
\(70\) 0 0
\(71\) 1.12222e6 0.372111 0.186055 0.982539i \(-0.440430\pi\)
0.186055 + 0.982539i \(0.440430\pi\)
\(72\) 0 0
\(73\) −3.33421e6 −1.00314 −0.501572 0.865116i \(-0.667245\pi\)
−0.501572 + 0.865116i \(0.667245\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.22935e7 3.06872
\(78\) 0 0
\(79\) −5.90757e6 −1.34807 −0.674037 0.738697i \(-0.735441\pi\)
−0.674037 + 0.738697i \(0.735441\pi\)
\(80\) 0 0
\(81\) 3.44713e6 0.720710
\(82\) 0 0
\(83\) 5.14032e6 0.986771 0.493386 0.869811i \(-0.335759\pi\)
0.493386 + 0.869811i \(0.335759\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.45071e6 −0.561812
\(88\) 0 0
\(89\) 9.43725e6 1.41899 0.709497 0.704709i \(-0.248922\pi\)
0.709497 + 0.704709i \(0.248922\pi\)
\(90\) 0 0
\(91\) −8.66657e6 −1.20560
\(92\) 0 0
\(93\) −2.58690e6 −0.333495
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.59539e7 −1.77487 −0.887434 0.460935i \(-0.847514\pi\)
−0.887434 + 0.460935i \(0.847514\pi\)
\(98\) 0 0
\(99\) −1.61504e7 −1.67286
\(100\) 0 0
\(101\) −1.01924e7 −0.984358 −0.492179 0.870494i \(-0.663800\pi\)
−0.492179 + 0.870494i \(0.663800\pi\)
\(102\) 0 0
\(103\) 1.06382e7 0.959263 0.479631 0.877470i \(-0.340770\pi\)
0.479631 + 0.877470i \(0.340770\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.02381e7 −0.807931 −0.403966 0.914774i \(-0.632369\pi\)
−0.403966 + 0.914774i \(0.632369\pi\)
\(108\) 0 0
\(109\) −2.39817e6 −0.177373 −0.0886865 0.996060i \(-0.528267\pi\)
−0.0886865 + 0.996060i \(0.528267\pi\)
\(110\) 0 0
\(111\) 2.17874e6 0.151208
\(112\) 0 0
\(113\) −8.06232e6 −0.525637 −0.262818 0.964845i \(-0.584652\pi\)
−0.262818 + 0.964845i \(0.584652\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.13856e7 0.657210
\(118\) 0 0
\(119\) −2.83422e7 −1.54177
\(120\) 0 0
\(121\) 4.72708e7 2.42574
\(122\) 0 0
\(123\) −4.12740e6 −0.199990
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.13601e7 −1.79171 −0.895857 0.444343i \(-0.853437\pi\)
−0.895857 + 0.444343i \(0.853437\pi\)
\(128\) 0 0
\(129\) 8.50310e6 0.348749
\(130\) 0 0
\(131\) 6.39953e6 0.248713 0.124357 0.992238i \(-0.460313\pi\)
0.124357 + 0.992238i \(0.460313\pi\)
\(132\) 0 0
\(133\) −7.87294e7 −2.90172
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.67069e7 0.887364 0.443682 0.896184i \(-0.353672\pi\)
0.443682 + 0.896184i \(0.353672\pi\)
\(138\) 0 0
\(139\) 1.41131e7 0.445727 0.222864 0.974850i \(-0.428460\pi\)
0.222864 + 0.974850i \(0.428460\pi\)
\(140\) 0 0
\(141\) 297940. 0.00895079
\(142\) 0 0
\(143\) −4.70626e7 −1.34586
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.08891e7 0.542386
\(148\) 0 0
\(149\) 2.24351e7 0.555619 0.277809 0.960636i \(-0.410392\pi\)
0.277809 + 0.960636i \(0.410392\pi\)
\(150\) 0 0
\(151\) 1.88005e7 0.444375 0.222187 0.975004i \(-0.428680\pi\)
0.222187 + 0.975004i \(0.428680\pi\)
\(152\) 0 0
\(153\) 3.72342e7 0.840469
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.56503e7 −0.941444 −0.470722 0.882281i \(-0.656007\pi\)
−0.470722 + 0.882281i \(0.656007\pi\)
\(158\) 0 0
\(159\) −1.97712e7 −0.390070
\(160\) 0 0
\(161\) 4.44252e7 0.838955
\(162\) 0 0
\(163\) −1.76081e7 −0.318461 −0.159231 0.987241i \(-0.550901\pi\)
−0.159231 + 0.987241i \(0.550901\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.91771e7 1.14936 0.574678 0.818380i \(-0.305127\pi\)
0.574678 + 0.818380i \(0.305127\pi\)
\(168\) 0 0
\(169\) −2.95706e7 −0.471256
\(170\) 0 0
\(171\) 1.03430e8 1.58182
\(172\) 0 0
\(173\) −3.58362e7 −0.526212 −0.263106 0.964767i \(-0.584747\pi\)
−0.263106 + 0.964767i \(0.584747\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −7.88276e6 −0.106849
\(178\) 0 0
\(179\) −6.21415e7 −0.809834 −0.404917 0.914353i \(-0.632700\pi\)
−0.404917 + 0.914353i \(0.632700\pi\)
\(180\) 0 0
\(181\) −5.35093e6 −0.0670741 −0.0335370 0.999437i \(-0.510677\pi\)
−0.0335370 + 0.999437i \(0.510677\pi\)
\(182\) 0 0
\(183\) 1.64395e7 0.198294
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.53909e8 −1.72114
\(188\) 0 0
\(189\) −9.08584e7 −0.978923
\(190\) 0 0
\(191\) −1.36197e6 −0.0141433 −0.00707163 0.999975i \(-0.502251\pi\)
−0.00707163 + 0.999975i \(0.502251\pi\)
\(192\) 0 0
\(193\) −4.04742e7 −0.405255 −0.202627 0.979256i \(-0.564948\pi\)
−0.202627 + 0.979256i \(0.564948\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.57389e7 −0.798999 −0.399499 0.916733i \(-0.630816\pi\)
−0.399499 + 0.916733i \(0.630816\pi\)
\(198\) 0 0
\(199\) 8.83997e7 0.795179 0.397589 0.917563i \(-0.369847\pi\)
0.397589 + 0.917563i \(0.369847\pi\)
\(200\) 0 0
\(201\) −1.35837e7 −0.117986
\(202\) 0 0
\(203\) −3.57984e8 −3.00350
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −5.83629e7 −0.457342
\(208\) 0 0
\(209\) −4.27529e8 −3.23932
\(210\) 0 0
\(211\) 1.36506e7 0.100037 0.0500187 0.998748i \(-0.484072\pi\)
0.0500187 + 0.998748i \(0.484072\pi\)
\(212\) 0 0
\(213\) 1.62759e7 0.115403
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.68370e8 −1.78289
\(218\) 0 0
\(219\) −4.83572e7 −0.311105
\(220\) 0 0
\(221\) 1.08501e8 0.676180
\(222\) 0 0
\(223\) −2.28723e8 −1.38116 −0.690579 0.723257i \(-0.742644\pi\)
−0.690579 + 0.723257i \(0.742644\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.52906e8 0.867629 0.433814 0.901002i \(-0.357167\pi\)
0.433814 + 0.901002i \(0.357167\pi\)
\(228\) 0 0
\(229\) −8.25002e7 −0.453974 −0.226987 0.973898i \(-0.572887\pi\)
−0.226987 + 0.973898i \(0.572887\pi\)
\(230\) 0 0
\(231\) 1.78296e8 0.951700
\(232\) 0 0
\(233\) −3.46346e8 −1.79376 −0.896881 0.442272i \(-0.854172\pi\)
−0.896881 + 0.442272i \(0.854172\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.56794e7 −0.418078
\(238\) 0 0
\(239\) −2.10609e7 −0.0997894 −0.0498947 0.998754i \(-0.515889\pi\)
−0.0498947 + 0.998754i \(0.515889\pi\)
\(240\) 0 0
\(241\) −2.19190e8 −1.00870 −0.504349 0.863500i \(-0.668268\pi\)
−0.504349 + 0.863500i \(0.668268\pi\)
\(242\) 0 0
\(243\) 1.82061e8 0.813944
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.01397e8 1.27262
\(248\) 0 0
\(249\) 7.45517e7 0.306027
\(250\) 0 0
\(251\) 8.35072e7 0.333323 0.166662 0.986014i \(-0.446701\pi\)
0.166662 + 0.986014i \(0.446701\pi\)
\(252\) 0 0
\(253\) 2.41245e8 0.936561
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.26230e8 0.831351 0.415676 0.909513i \(-0.363545\pi\)
0.415676 + 0.909513i \(0.363545\pi\)
\(258\) 0 0
\(259\) 2.26027e8 0.808373
\(260\) 0 0
\(261\) 4.70296e8 1.63730
\(262\) 0 0
\(263\) −1.93601e8 −0.656241 −0.328121 0.944636i \(-0.606415\pi\)
−0.328121 + 0.944636i \(0.606415\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.36872e8 0.440072
\(268\) 0 0
\(269\) −1.56593e8 −0.490501 −0.245250 0.969460i \(-0.578870\pi\)
−0.245250 + 0.969460i \(0.578870\pi\)
\(270\) 0 0
\(271\) 3.46729e8 1.05827 0.529136 0.848537i \(-0.322516\pi\)
0.529136 + 0.848537i \(0.322516\pi\)
\(272\) 0 0
\(273\) −1.25694e8 −0.373891
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.96707e8 0.556084 0.278042 0.960569i \(-0.410314\pi\)
0.278042 + 0.960569i \(0.410314\pi\)
\(278\) 0 0
\(279\) 3.52567e8 0.971913
\(280\) 0 0
\(281\) −5.11263e8 −1.37459 −0.687294 0.726379i \(-0.741202\pi\)
−0.687294 + 0.726379i \(0.741202\pi\)
\(282\) 0 0
\(283\) −6.72694e8 −1.76427 −0.882134 0.470998i \(-0.843894\pi\)
−0.882134 + 0.470998i \(0.843894\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.28186e8 −1.06917
\(288\) 0 0
\(289\) −5.55071e7 −0.135271
\(290\) 0 0
\(291\) −2.31385e8 −0.550439
\(292\) 0 0
\(293\) −4.62188e8 −1.07345 −0.536725 0.843757i \(-0.680339\pi\)
−0.536725 + 0.843757i \(0.680339\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.93394e8 −1.09281
\(298\) 0 0
\(299\) −1.70071e8 −0.367944
\(300\) 0 0
\(301\) 8.82129e8 1.86444
\(302\) 0 0
\(303\) −1.47824e8 −0.305279
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −6.24848e8 −1.23251 −0.616254 0.787547i \(-0.711351\pi\)
−0.616254 + 0.787547i \(0.711351\pi\)
\(308\) 0 0
\(309\) 1.54289e8 0.297496
\(310\) 0 0
\(311\) −5.28722e8 −0.996703 −0.498352 0.866975i \(-0.666061\pi\)
−0.498352 + 0.866975i \(0.666061\pi\)
\(312\) 0 0
\(313\) 2.08317e8 0.383989 0.191995 0.981396i \(-0.438504\pi\)
0.191995 + 0.981396i \(0.438504\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.88124e6 0.0174222 0.00871112 0.999962i \(-0.497227\pi\)
0.00871112 + 0.999962i \(0.497227\pi\)
\(318\) 0 0
\(319\) −1.94398e9 −3.35293
\(320\) 0 0
\(321\) −1.48486e8 −0.250563
\(322\) 0 0
\(323\) 9.85656e8 1.62748
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.47815e7 −0.0550086
\(328\) 0 0
\(329\) 3.09089e7 0.0478518
\(330\) 0 0
\(331\) 5.47351e8 0.829599 0.414799 0.909913i \(-0.363852\pi\)
0.414799 + 0.909913i \(0.363852\pi\)
\(332\) 0 0
\(333\) −2.96940e8 −0.440671
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.95141e8 0.562403 0.281201 0.959649i \(-0.409267\pi\)
0.281201 + 0.959649i \(0.409267\pi\)
\(338\) 0 0
\(339\) −1.16930e8 −0.163015
\(340\) 0 0
\(341\) −1.45735e9 −1.99032
\(342\) 0 0
\(343\) 9.27970e8 1.24167
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.53902e7 −0.0583189 −0.0291595 0.999575i \(-0.509283\pi\)
−0.0291595 + 0.999575i \(0.509283\pi\)
\(348\) 0 0
\(349\) 1.07430e9 1.35281 0.676404 0.736531i \(-0.263537\pi\)
0.676404 + 0.736531i \(0.263537\pi\)
\(350\) 0 0
\(351\) 3.47830e8 0.429330
\(352\) 0 0
\(353\) 5.76841e8 0.697983 0.348991 0.937126i \(-0.386524\pi\)
0.348991 + 0.937126i \(0.386524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.11057e8 −0.478148
\(358\) 0 0
\(359\) 7.63547e8 0.870974 0.435487 0.900195i \(-0.356576\pi\)
0.435487 + 0.900195i \(0.356576\pi\)
\(360\) 0 0
\(361\) 1.84409e9 2.06304
\(362\) 0 0
\(363\) 6.85584e8 0.752294
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.55202e8 0.163895 0.0819475 0.996637i \(-0.473886\pi\)
0.0819475 + 0.996637i \(0.473886\pi\)
\(368\) 0 0
\(369\) 5.62522e8 0.582838
\(370\) 0 0
\(371\) −2.05110e9 −2.08535
\(372\) 0 0
\(373\) 3.02866e8 0.302183 0.151091 0.988520i \(-0.451721\pi\)
0.151091 + 0.988520i \(0.451721\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.37046e9 1.31726
\(378\) 0 0
\(379\) 1.12044e9 1.05718 0.528591 0.848877i \(-0.322721\pi\)
0.528591 + 0.848877i \(0.322721\pi\)
\(380\) 0 0
\(381\) −5.99859e8 −0.555663
\(382\) 0 0
\(383\) 7.36644e8 0.669980 0.334990 0.942222i \(-0.391267\pi\)
0.334990 + 0.942222i \(0.391267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.15888e9 −1.01637
\(388\) 0 0
\(389\) 1.81700e9 1.56506 0.782530 0.622612i \(-0.213929\pi\)
0.782530 + 0.622612i \(0.213929\pi\)
\(390\) 0 0
\(391\) −5.56183e8 −0.470543
\(392\) 0 0
\(393\) 9.28145e7 0.0771333
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.38033e9 1.90928 0.954642 0.297757i \(-0.0962385\pi\)
0.954642 + 0.297757i \(0.0962385\pi\)
\(398\) 0 0
\(399\) −1.14184e9 −0.899910
\(400\) 0 0
\(401\) 2.00554e9 1.55320 0.776599 0.629995i \(-0.216943\pi\)
0.776599 + 0.629995i \(0.216943\pi\)
\(402\) 0 0
\(403\) 1.02739e9 0.781931
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.22741e9 0.902422
\(408\) 0 0
\(409\) 3.92629e8 0.283760 0.141880 0.989884i \(-0.454685\pi\)
0.141880 + 0.989884i \(0.454685\pi\)
\(410\) 0 0
\(411\) 3.87339e8 0.275198
\(412\) 0 0
\(413\) −8.17775e8 −0.571227
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.04686e8 0.138233
\(418\) 0 0
\(419\) −1.08234e9 −0.718808 −0.359404 0.933182i \(-0.617020\pi\)
−0.359404 + 0.933182i \(0.617020\pi\)
\(420\) 0 0
\(421\) −1.90157e9 −1.24201 −0.621004 0.783808i \(-0.713275\pi\)
−0.621004 + 0.783808i \(0.713275\pi\)
\(422\) 0 0
\(423\) −4.06061e7 −0.0260856
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.70547e9 1.06010
\(428\) 0 0
\(429\) −6.82564e8 −0.417391
\(430\) 0 0
\(431\) 1.07717e9 0.648060 0.324030 0.946047i \(-0.394962\pi\)
0.324030 + 0.946047i \(0.394962\pi\)
\(432\) 0 0
\(433\) 4.78186e8 0.283067 0.141533 0.989933i \(-0.454797\pi\)
0.141533 + 0.989933i \(0.454797\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.54497e9 −0.885595
\(438\) 0 0
\(439\) 3.30634e9 1.86519 0.932593 0.360929i \(-0.117540\pi\)
0.932593 + 0.360929i \(0.117540\pi\)
\(440\) 0 0
\(441\) −2.84697e9 −1.58069
\(442\) 0 0
\(443\) −2.15148e9 −1.17578 −0.587888 0.808942i \(-0.700040\pi\)
−0.587888 + 0.808942i \(0.700040\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.25384e8 0.172314
\(448\) 0 0
\(449\) 2.08607e9 1.08759 0.543796 0.839217i \(-0.316987\pi\)
0.543796 + 0.839217i \(0.316987\pi\)
\(450\) 0 0
\(451\) −2.32520e9 −1.19356
\(452\) 0 0
\(453\) 2.72669e8 0.137814
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.50830e9 −1.71945 −0.859727 0.510755i \(-0.829366\pi\)
−0.859727 + 0.510755i \(0.829366\pi\)
\(458\) 0 0
\(459\) 1.13751e9 0.549046
\(460\) 0 0
\(461\) −1.29629e9 −0.616237 −0.308118 0.951348i \(-0.599699\pi\)
−0.308118 + 0.951348i \(0.599699\pi\)
\(462\) 0 0
\(463\) 3.89525e9 1.82390 0.911952 0.410298i \(-0.134575\pi\)
0.911952 + 0.410298i \(0.134575\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.07448e9 −1.39689 −0.698446 0.715663i \(-0.746125\pi\)
−0.698446 + 0.715663i \(0.746125\pi\)
\(468\) 0 0
\(469\) −1.40920e9 −0.630766
\(470\) 0 0
\(471\) −6.62081e8 −0.291970
\(472\) 0 0
\(473\) 4.79028e9 2.08136
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.69460e9 1.13679
\(478\) 0 0
\(479\) 3.39731e8 0.141241 0.0706205 0.997503i \(-0.477502\pi\)
0.0706205 + 0.997503i \(0.477502\pi\)
\(480\) 0 0
\(481\) −8.65292e8 −0.354532
\(482\) 0 0
\(483\) 6.44313e8 0.260185
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 4.11700e9 1.61521 0.807606 0.589723i \(-0.200763\pi\)
0.807606 + 0.589723i \(0.200763\pi\)
\(488\) 0 0
\(489\) −2.55376e8 −0.0987642
\(490\) 0 0
\(491\) 3.89331e8 0.148434 0.0742170 0.997242i \(-0.476354\pi\)
0.0742170 + 0.997242i \(0.476354\pi\)
\(492\) 0 0
\(493\) 4.48179e9 1.68456
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.68849e9 0.616953
\(498\) 0 0
\(499\) 8.82005e7 0.0317775 0.0158887 0.999874i \(-0.494942\pi\)
0.0158887 + 0.999874i \(0.494942\pi\)
\(500\) 0 0
\(501\) 1.00330e9 0.356449
\(502\) 0 0
\(503\) 1.01491e9 0.355583 0.177792 0.984068i \(-0.443105\pi\)
0.177792 + 0.984068i \(0.443105\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.28872e8 −0.146151
\(508\) 0 0
\(509\) −4.60125e9 −1.54655 −0.773275 0.634071i \(-0.781383\pi\)
−0.773275 + 0.634071i \(0.781383\pi\)
\(510\) 0 0
\(511\) −5.01667e9 −1.66319
\(512\) 0 0
\(513\) 3.15978e9 1.03335
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.67847e8 0.0534190
\(518\) 0 0
\(519\) −5.19744e8 −0.163194
\(520\) 0 0
\(521\) −4.06999e9 −1.26084 −0.630422 0.776252i \(-0.717118\pi\)
−0.630422 + 0.776252i \(0.717118\pi\)
\(522\) 0 0
\(523\) −2.22584e9 −0.680360 −0.340180 0.940360i \(-0.610488\pi\)
−0.340180 + 0.940360i \(0.610488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.35987e9 0.999967
\(528\) 0 0
\(529\) −2.53303e9 −0.743954
\(530\) 0 0
\(531\) 1.07434e9 0.311394
\(532\) 0 0
\(533\) 1.63921e9 0.468909
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −9.01258e8 −0.251153
\(538\) 0 0
\(539\) 1.17680e10 3.23700
\(540\) 0 0
\(541\) −4.94448e7 −0.0134255 −0.00671275 0.999977i \(-0.502137\pi\)
−0.00671275 + 0.999977i \(0.502137\pi\)
\(542\) 0 0
\(543\) −7.76063e7 −0.0208017
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.84946e9 0.483158 0.241579 0.970381i \(-0.422335\pi\)
0.241579 + 0.970381i \(0.422335\pi\)
\(548\) 0 0
\(549\) −2.24054e9 −0.577895
\(550\) 0 0
\(551\) 1.24496e10 3.17047
\(552\) 0 0
\(553\) −8.88856e9 −2.23508
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.03461e9 −1.23445 −0.617224 0.786788i \(-0.711743\pi\)
−0.617224 + 0.786788i \(0.711743\pi\)
\(558\) 0 0
\(559\) −3.37702e9 −0.817697
\(560\) 0 0
\(561\) −2.23219e9 −0.533778
\(562\) 0 0
\(563\) 4.54798e7 0.0107409 0.00537043 0.999986i \(-0.498291\pi\)
0.00537043 + 0.999986i \(0.498291\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.18657e9 1.19492
\(568\) 0 0
\(569\) 3.35165e9 0.762722 0.381361 0.924426i \(-0.375455\pi\)
0.381361 + 0.924426i \(0.375455\pi\)
\(570\) 0 0
\(571\) −4.29937e9 −0.966448 −0.483224 0.875497i \(-0.660534\pi\)
−0.483224 + 0.875497i \(0.660534\pi\)
\(572\) 0 0
\(573\) −1.97530e7 −0.00438625
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3.41602e9 −0.740296 −0.370148 0.928973i \(-0.620693\pi\)
−0.370148 + 0.928973i \(0.620693\pi\)
\(578\) 0 0
\(579\) −5.87011e8 −0.125681
\(580\) 0 0
\(581\) 7.73415e9 1.63605
\(582\) 0 0
\(583\) −1.11382e10 −2.32796
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.45218e9 −0.908530 −0.454265 0.890867i \(-0.650098\pi\)
−0.454265 + 0.890867i \(0.650098\pi\)
\(588\) 0 0
\(589\) 9.33309e9 1.88201
\(590\) 0 0
\(591\) −1.24350e9 −0.247793
\(592\) 0 0
\(593\) −5.98158e9 −1.17794 −0.588972 0.808154i \(-0.700467\pi\)
−0.588972 + 0.808154i \(0.700467\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.28209e9 0.246609
\(598\) 0 0
\(599\) 9.84141e7 0.0187096 0.00935478 0.999956i \(-0.497022\pi\)
0.00935478 + 0.999956i \(0.497022\pi\)
\(600\) 0 0
\(601\) 2.67831e9 0.503269 0.251635 0.967822i \(-0.419032\pi\)
0.251635 + 0.967822i \(0.419032\pi\)
\(602\) 0 0
\(603\) 1.85132e9 0.343851
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.14307e9 −0.570419 −0.285209 0.958465i \(-0.592063\pi\)
−0.285209 + 0.958465i \(0.592063\pi\)
\(608\) 0 0
\(609\) −5.19196e9 −0.931473
\(610\) 0 0
\(611\) −1.18327e8 −0.0209865
\(612\) 0 0
\(613\) 1.02572e10 1.79852 0.899260 0.437415i \(-0.144106\pi\)
0.899260 + 0.437415i \(0.144106\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.20512e9 1.57772 0.788862 0.614570i \(-0.210670\pi\)
0.788862 + 0.614570i \(0.210670\pi\)
\(618\) 0 0
\(619\) 5.97483e9 1.01253 0.506266 0.862377i \(-0.331025\pi\)
0.506266 + 0.862377i \(0.331025\pi\)
\(620\) 0 0
\(621\) −1.78299e9 −0.298764
\(622\) 0 0
\(623\) 1.41993e10 2.35266
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −6.20059e9 −1.00461
\(628\) 0 0
\(629\) −2.82976e9 −0.453390
\(630\) 0 0
\(631\) 6.00181e8 0.0950997 0.0475498 0.998869i \(-0.484859\pi\)
0.0475498 + 0.998869i \(0.484859\pi\)
\(632\) 0 0
\(633\) 1.97979e8 0.0310246
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −8.29614e9 −1.27171
\(638\) 0 0
\(639\) −2.21823e9 −0.336321
\(640\) 0 0
\(641\) 6.33607e8 0.0950204 0.0475102 0.998871i \(-0.484871\pi\)
0.0475102 + 0.998871i \(0.484871\pi\)
\(642\) 0 0
\(643\) −1.03486e10 −1.53513 −0.767563 0.640973i \(-0.778531\pi\)
−0.767563 + 0.640973i \(0.778531\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.73480e9 0.251817 0.125909 0.992042i \(-0.459815\pi\)
0.125909 + 0.992042i \(0.459815\pi\)
\(648\) 0 0
\(649\) −4.44081e9 −0.637685
\(650\) 0 0
\(651\) −3.89226e9 −0.552928
\(652\) 0 0
\(653\) −3.78848e9 −0.532438 −0.266219 0.963913i \(-0.585774\pi\)
−0.266219 + 0.963913i \(0.585774\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.59058e9 0.906661
\(658\) 0 0
\(659\) −1.23763e10 −1.68457 −0.842287 0.539029i \(-0.818791\pi\)
−0.842287 + 0.539029i \(0.818791\pi\)
\(660\) 0 0
\(661\) 9.16365e8 0.123414 0.0617068 0.998094i \(-0.480346\pi\)
0.0617068 + 0.998094i \(0.480346\pi\)
\(662\) 0 0
\(663\) 1.57363e9 0.209704
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.02501e9 −0.916656
\(668\) 0 0
\(669\) −3.31725e9 −0.428338
\(670\) 0 0
\(671\) 9.26133e9 1.18344
\(672\) 0 0
\(673\) 4.23791e8 0.0535919 0.0267959 0.999641i \(-0.491470\pi\)
0.0267959 + 0.999641i \(0.491470\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.40587e9 −0.917310 −0.458655 0.888614i \(-0.651669\pi\)
−0.458655 + 0.888614i \(0.651669\pi\)
\(678\) 0 0
\(679\) −2.40043e10 −2.94270
\(680\) 0 0
\(681\) 2.21765e9 0.269077
\(682\) 0 0
\(683\) 3.56998e9 0.428740 0.214370 0.976753i \(-0.431230\pi\)
0.214370 + 0.976753i \(0.431230\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1.19653e9 −0.140791
\(688\) 0 0
\(689\) 7.85215e9 0.914580
\(690\) 0 0
\(691\) −4.70529e9 −0.542517 −0.271259 0.962507i \(-0.587440\pi\)
−0.271259 + 0.962507i \(0.587440\pi\)
\(692\) 0 0
\(693\) −2.42999e10 −2.77357
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.36069e9 0.599661
\(698\) 0 0
\(699\) −5.02317e9 −0.556299
\(700\) 0 0
\(701\) 7.33356e7 0.00804084 0.00402042 0.999992i \(-0.498720\pi\)
0.00402042 + 0.999992i \(0.498720\pi\)
\(702\) 0 0
\(703\) −7.86054e9 −0.853314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.53356e10 −1.63205
\(708\) 0 0
\(709\) 1.43028e10 1.50716 0.753580 0.657356i \(-0.228325\pi\)
0.753580 + 0.657356i \(0.228325\pi\)
\(710\) 0 0
\(711\) 1.16772e10 1.21842
\(712\) 0 0
\(713\) −5.26645e9 −0.544132
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −3.05453e8 −0.0309477
\(718\) 0 0
\(719\) −8.95195e9 −0.898186 −0.449093 0.893485i \(-0.648253\pi\)
−0.449093 + 0.893485i \(0.648253\pi\)
\(720\) 0 0
\(721\) 1.60063e10 1.59044
\(722\) 0 0
\(723\) −3.17899e9 −0.312827
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.69358e10 1.63469 0.817345 0.576149i \(-0.195445\pi\)
0.817345 + 0.576149i \(0.195445\pi\)
\(728\) 0 0
\(729\) −4.89839e9 −0.468281
\(730\) 0 0
\(731\) −1.10439e10 −1.04571
\(732\) 0 0
\(733\) −1.11259e10 −1.04345 −0.521723 0.853115i \(-0.674711\pi\)
−0.521723 + 0.853115i \(0.674711\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.65248e9 −0.704151
\(738\) 0 0
\(739\) −2.21789e9 −0.202155 −0.101078 0.994879i \(-0.532229\pi\)
−0.101078 + 0.994879i \(0.532229\pi\)
\(740\) 0 0
\(741\) 4.37125e9 0.394677
\(742\) 0 0
\(743\) −1.05759e10 −0.945928 −0.472964 0.881082i \(-0.656816\pi\)
−0.472964 + 0.881082i \(0.656816\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.01606e10 −0.891863
\(748\) 0 0
\(749\) −1.54042e10 −1.33954
\(750\) 0 0
\(751\) 8.78857e9 0.757144 0.378572 0.925572i \(-0.376415\pi\)
0.378572 + 0.925572i \(0.376415\pi\)
\(752\) 0 0
\(753\) 1.21113e9 0.103373
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.48486e10 1.24408 0.622042 0.782984i \(-0.286303\pi\)
0.622042 + 0.782984i \(0.286303\pi\)
\(758\) 0 0
\(759\) 3.49885e9 0.290455
\(760\) 0 0
\(761\) 7.44711e9 0.612550 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(762\) 0 0
\(763\) −3.60830e9 −0.294081
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.13066e9 0.250525
\(768\) 0 0
\(769\) 6.62137e9 0.525056 0.262528 0.964924i \(-0.415444\pi\)
0.262528 + 0.964924i \(0.415444\pi\)
\(770\) 0 0
\(771\) 3.28109e9 0.257827
\(772\) 0 0
\(773\) −9.09632e9 −0.708333 −0.354166 0.935182i \(-0.615235\pi\)
−0.354166 + 0.935182i \(0.615235\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.27815e9 0.250700
\(778\) 0 0
\(779\) 1.48910e10 1.12861
\(780\) 0 0
\(781\) 9.16913e9 0.688731
\(782\) 0 0
\(783\) 1.43676e10 1.06959
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1.90436e10 −1.39264 −0.696319 0.717732i \(-0.745180\pi\)
−0.696319 + 0.717732i \(0.745180\pi\)
\(788\) 0 0
\(789\) −2.80786e9 −0.203520
\(790\) 0 0
\(791\) −1.21306e10 −0.871496
\(792\) 0 0
\(793\) −6.52899e9 −0.464933
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.49063e10 1.04295 0.521477 0.853265i \(-0.325381\pi\)
0.521477 + 0.853265i \(0.325381\pi\)
\(798\) 0 0
\(799\) −3.86965e8 −0.0268385
\(800\) 0 0
\(801\) −1.86542e10 −1.28251
\(802\) 0 0
\(803\) −2.72424e10 −1.85669
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.27112e9 −0.152119
\(808\) 0 0
\(809\) 2.51640e10 1.67094 0.835469 0.549538i \(-0.185196\pi\)
0.835469 + 0.549538i \(0.185196\pi\)
\(810\) 0 0
\(811\) −3.37190e9 −0.221974 −0.110987 0.993822i \(-0.535401\pi\)
−0.110987 + 0.993822i \(0.535401\pi\)
\(812\) 0 0
\(813\) 5.02872e9 0.328201
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.06777e10 −1.96810
\(818\) 0 0
\(819\) 1.71308e10 1.08964
\(820\) 0 0
\(821\) −3.02251e10 −1.90619 −0.953096 0.302669i \(-0.902122\pi\)
−0.953096 + 0.302669i \(0.902122\pi\)
\(822\) 0 0
\(823\) 1.81107e10 1.13249 0.566246 0.824236i \(-0.308395\pi\)
0.566246 + 0.824236i \(0.308395\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.31258e9 −0.511054 −0.255527 0.966802i \(-0.582249\pi\)
−0.255527 + 0.966802i \(0.582249\pi\)
\(828\) 0 0
\(829\) 3.19126e9 0.194545 0.0972726 0.995258i \(-0.468988\pi\)
0.0972726 + 0.995258i \(0.468988\pi\)
\(830\) 0 0
\(831\) 2.85291e9 0.172458
\(832\) 0 0
\(833\) −2.71308e10 −1.62632
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.07709e10 0.634914
\(838\) 0 0
\(839\) −2.11602e10 −1.23695 −0.618477 0.785803i \(-0.712250\pi\)
−0.618477 + 0.785803i \(0.712250\pi\)
\(840\) 0 0
\(841\) 3.93586e10 2.28167
\(842\) 0 0
\(843\) −7.41502e9 −0.426300
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.11239e10 4.02183
\(848\) 0 0
\(849\) −9.75630e9 −0.547152
\(850\) 0 0
\(851\) 4.43552e9 0.246713
\(852\) 0 0
\(853\) 2.57804e10 1.42222 0.711112 0.703079i \(-0.248192\pi\)
0.711112 + 0.703079i \(0.248192\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.67728e10 −1.45298 −0.726491 0.687176i \(-0.758850\pi\)
−0.726491 + 0.687176i \(0.758850\pi\)
\(858\) 0 0
\(859\) −1.88350e10 −1.01389 −0.506944 0.861979i \(-0.669225\pi\)
−0.506944 + 0.861979i \(0.669225\pi\)
\(860\) 0 0
\(861\) −6.21012e9 −0.331580
\(862\) 0 0
\(863\) −4.36753e9 −0.231312 −0.115656 0.993289i \(-0.536897\pi\)
−0.115656 + 0.993289i \(0.536897\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −8.05037e8 −0.0419517
\(868\) 0 0
\(869\) −4.82681e10 −2.49512
\(870\) 0 0
\(871\) 5.39480e9 0.276638
\(872\) 0 0
\(873\) 3.15353e10 1.60416
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5.63412e9 −0.282051 −0.141025 0.990006i \(-0.545040\pi\)
−0.141025 + 0.990006i \(0.545040\pi\)
\(878\) 0 0
\(879\) −6.70326e9 −0.332909
\(880\) 0 0
\(881\) −2.65172e10 −1.30651 −0.653254 0.757139i \(-0.726597\pi\)
−0.653254 + 0.757139i \(0.726597\pi\)
\(882\) 0 0
\(883\) −1.44647e10 −0.707044 −0.353522 0.935426i \(-0.615016\pi\)
−0.353522 + 0.935426i \(0.615016\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.22645e10 −1.07123 −0.535613 0.844464i \(-0.679919\pi\)
−0.535613 + 0.844464i \(0.679919\pi\)
\(888\) 0 0
\(889\) −6.22307e10 −2.97063
\(890\) 0 0
\(891\) 2.81650e10 1.33394
\(892\) 0 0
\(893\) −1.07492e9 −0.0505120
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −2.46660e9 −0.114110
\(898\) 0 0
\(899\) 4.24377e10 1.94802
\(900\) 0 0
\(901\) 2.56789e10 1.16960
\(902\) 0 0
\(903\) 1.27938e10 0.578220
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.72710e10 −0.768583 −0.384292 0.923212i \(-0.625554\pi\)
−0.384292 + 0.923212i \(0.625554\pi\)
\(908\) 0 0
\(909\) 2.01469e10 0.889682
\(910\) 0 0
\(911\) 4.28756e10 1.87887 0.939433 0.342733i \(-0.111353\pi\)
0.939433 + 0.342733i \(0.111353\pi\)
\(912\) 0 0
\(913\) 4.19992e10 1.82639
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.62877e9 0.412362
\(918\) 0 0
\(919\) 4.37453e9 0.185921 0.0929603 0.995670i \(-0.470367\pi\)
0.0929603 + 0.995670i \(0.470367\pi\)
\(920\) 0 0
\(921\) −9.06237e9 −0.382237
\(922\) 0 0
\(923\) −6.46400e9 −0.270580
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2.10280e10 −0.867000
\(928\) 0 0
\(929\) 1.65493e10 0.677213 0.338606 0.940928i \(-0.390044\pi\)
0.338606 + 0.940928i \(0.390044\pi\)
\(930\) 0 0
\(931\) −7.53643e10 −3.06085
\(932\) 0 0
\(933\) −7.66823e9 −0.309107
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.78612e9 −0.269484 −0.134742 0.990881i \(-0.543021\pi\)
−0.134742 + 0.990881i \(0.543021\pi\)
\(938\) 0 0
\(939\) 3.02129e9 0.119086
\(940\) 0 0
\(941\) −3.05358e10 −1.19466 −0.597332 0.801994i \(-0.703773\pi\)
−0.597332 + 0.801994i \(0.703773\pi\)
\(942\) 0 0
\(943\) −8.40264e9 −0.326306
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.02600e9 0.0775203 0.0387601 0.999249i \(-0.487659\pi\)
0.0387601 + 0.999249i \(0.487659\pi\)
\(948\) 0 0
\(949\) 1.92051e10 0.729434
\(950\) 0 0
\(951\) 1.43311e8 0.00540315
\(952\) 0 0
\(953\) 6.05056e9 0.226449 0.113224 0.993569i \(-0.463882\pi\)
0.113224 + 0.993569i \(0.463882\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −2.81942e10 −1.03984
\(958\) 0 0
\(959\) 4.01834e10 1.47123
\(960\) 0 0
\(961\) 4.30174e9 0.156355
\(962\) 0 0
\(963\) 2.02371e10 0.730224
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.99403e10 1.77606 0.888032 0.459782i \(-0.152073\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(968\) 0 0
\(969\) 1.42953e10 0.504731
\(970\) 0 0
\(971\) −1.51420e10 −0.530780 −0.265390 0.964141i \(-0.585501\pi\)
−0.265390 + 0.964141i \(0.585501\pi\)
\(972\) 0 0
\(973\) 2.12346e10 0.739007
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.39541e10 1.85095 0.925473 0.378815i \(-0.123668\pi\)
0.925473 + 0.378815i \(0.123668\pi\)
\(978\) 0 0
\(979\) 7.71076e10 2.62638
\(980\) 0 0
\(981\) 4.74035e9 0.160313
\(982\) 0 0
\(983\) 2.37883e10 0.798777 0.399389 0.916782i \(-0.369222\pi\)
0.399389 + 0.916782i \(0.369222\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.48282e8 0.0148402
\(988\) 0 0
\(989\) 1.73108e10 0.569022
\(990\) 0 0
\(991\) 2.15204e10 0.702412 0.351206 0.936298i \(-0.385772\pi\)
0.351206 + 0.936298i \(0.385772\pi\)
\(992\) 0 0
\(993\) 7.93841e9 0.257283
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.83526e10 −0.906067 −0.453034 0.891493i \(-0.649658\pi\)
−0.453034 + 0.891493i \(0.649658\pi\)
\(998\) 0 0
\(999\) −9.07153e9 −0.287873
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.a.bh.1.3 3
4.3 odd 2 200.8.a.p.1.1 yes 3
5.2 odd 4 400.8.c.u.49.3 6
5.3 odd 4 400.8.c.u.49.4 6
5.4 even 2 400.8.a.bi.1.1 3
20.3 even 4 200.8.c.j.49.3 6
20.7 even 4 200.8.c.j.49.4 6
20.19 odd 2 200.8.a.o.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.8.a.o.1.3 3 20.19 odd 2
200.8.a.p.1.1 yes 3 4.3 odd 2
200.8.c.j.49.3 6 20.3 even 4
200.8.c.j.49.4 6 20.7 even 4
400.8.a.bh.1.3 3 1.1 even 1 trivial
400.8.a.bi.1.1 3 5.4 even 2
400.8.c.u.49.3 6 5.2 odd 4
400.8.c.u.49.4 6 5.3 odd 4