Properties

Label 400.8.c.s.49.3
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,4552] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{649})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 325x^{2} + 26244 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 25)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.3
Root \(-13.2377i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.s.49.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.47548i q^{3} +769.970i q^{7} +2157.02 q^{9} -5356.43 q^{11} +14037.0i q^{13} -12402.4i q^{17} -5038.89 q^{19} -4215.95 q^{21} +75190.5i q^{23} +23785.6i q^{27} -195529. q^{29} +93568.2 q^{31} -29329.0i q^{33} -161554. i q^{37} -76859.3 q^{39} -28767.5 q^{41} -739076. i q^{43} +1.06799e6i q^{47} +230689. q^{49} +67908.9 q^{51} +626442. i q^{53} -27590.3i q^{57} +2.14861e6 q^{59} -2.57497e6 q^{61} +1.66084e6i q^{63} -807676. i q^{67} -411704. q^{69} +1.72722e6 q^{71} -1.74519e6i q^{73} -4.12429e6i q^{77} -2.46887e6 q^{79} +4.58716e6 q^{81} -6.90850e6i q^{83} -1.07061e6i q^{87} -2.63567e6 q^{89} -1.08081e7 q^{91} +512331. i q^{93} +1.01234e7i q^{97} -1.15539e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4552 q^{9} - 8688 q^{11} + 36400 q^{19} - 133032 q^{21} - 111600 q^{29} + 603552 q^{31} + 177616 q^{39} - 216972 q^{41} - 1645172 q^{49} + 638992 q^{51} + 4135200 q^{59} + 1164088 q^{61} - 9582936 q^{69}+ \cdots - 22866944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.47548i 0.117084i 0.998285 + 0.0585420i \(0.0186452\pi\)
−0.998285 + 0.0585420i \(0.981355\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 769.970i 0.848459i 0.905555 + 0.424229i \(0.139455\pi\)
−0.905555 + 0.424229i \(0.860545\pi\)
\(8\) 0 0
\(9\) 2157.02 0.986291
\(10\) 0 0
\(11\) −5356.43 −1.21339 −0.606696 0.794934i \(-0.707506\pi\)
−0.606696 + 0.794934i \(0.707506\pi\)
\(12\) 0 0
\(13\) 14037.0i 1.77204i 0.463651 + 0.886018i \(0.346539\pi\)
−0.463651 + 0.886018i \(0.653461\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 12402.4i − 0.612256i −0.951990 0.306128i \(-0.900966\pi\)
0.951990 0.306128i \(-0.0990336\pi\)
\(18\) 0 0
\(19\) −5038.89 −0.168538 −0.0842689 0.996443i \(-0.526855\pi\)
−0.0842689 + 0.996443i \(0.526855\pi\)
\(20\) 0 0
\(21\) −4215.95 −0.0993410
\(22\) 0 0
\(23\) 75190.5i 1.28859i 0.764776 + 0.644296i \(0.222849\pi\)
−0.764776 + 0.644296i \(0.777151\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 23785.6i 0.232563i
\(28\) 0 0
\(29\) −195529. −1.48874 −0.744368 0.667770i \(-0.767249\pi\)
−0.744368 + 0.667770i \(0.767249\pi\)
\(30\) 0 0
\(31\) 93568.2 0.564108 0.282054 0.959399i \(-0.408984\pi\)
0.282054 + 0.959399i \(0.408984\pi\)
\(32\) 0 0
\(33\) − 29329.0i − 0.142069i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 161554.i − 0.524338i −0.965022 0.262169i \(-0.915562\pi\)
0.965022 0.262169i \(-0.0844379\pi\)
\(38\) 0 0
\(39\) −76859.3 −0.207477
\(40\) 0 0
\(41\) −28767.5 −0.0651867 −0.0325933 0.999469i \(-0.510377\pi\)
−0.0325933 + 0.999469i \(0.510377\pi\)
\(42\) 0 0
\(43\) − 739076.i − 1.41759i −0.705417 0.708793i \(-0.749240\pi\)
0.705417 0.708793i \(-0.250760\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.06799e6i 1.50046i 0.661178 + 0.750229i \(0.270057\pi\)
−0.661178 + 0.750229i \(0.729943\pi\)
\(48\) 0 0
\(49\) 230689. 0.280118
\(50\) 0 0
\(51\) 67908.9 0.0716855
\(52\) 0 0
\(53\) 626442.i 0.577983i 0.957332 + 0.288992i \(0.0933200\pi\)
−0.957332 + 0.288992i \(0.906680\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 27590.3i − 0.0197331i
\(58\) 0 0
\(59\) 2.14861e6 1.36199 0.680997 0.732287i \(-0.261547\pi\)
0.680997 + 0.732287i \(0.261547\pi\)
\(60\) 0 0
\(61\) −2.57497e6 −1.45251 −0.726253 0.687428i \(-0.758740\pi\)
−0.726253 + 0.687428i \(0.758740\pi\)
\(62\) 0 0
\(63\) 1.66084e6i 0.836827i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 807676.i − 0.328077i −0.986454 0.164038i \(-0.947548\pi\)
0.986454 0.164038i \(-0.0524521\pi\)
\(68\) 0 0
\(69\) −411704. −0.150874
\(70\) 0 0
\(71\) 1.72722e6 0.572722 0.286361 0.958122i \(-0.407554\pi\)
0.286361 + 0.958122i \(0.407554\pi\)
\(72\) 0 0
\(73\) − 1.74519e6i − 0.525064i −0.964923 0.262532i \(-0.915442\pi\)
0.964923 0.262532i \(-0.0845575\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.12429e6i − 1.02951i
\(78\) 0 0
\(79\) −2.46887e6 −0.563382 −0.281691 0.959505i \(-0.590895\pi\)
−0.281691 + 0.959505i \(0.590895\pi\)
\(80\) 0 0
\(81\) 4.58716e6 0.959062
\(82\) 0 0
\(83\) − 6.90850e6i − 1.32620i −0.748529 0.663102i \(-0.769240\pi\)
0.748529 0.663102i \(-0.230760\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1.07061e6i − 0.174307i
\(88\) 0 0
\(89\) −2.63567e6 −0.396302 −0.198151 0.980171i \(-0.563494\pi\)
−0.198151 + 0.980171i \(0.563494\pi\)
\(90\) 0 0
\(91\) −1.08081e7 −1.50350
\(92\) 0 0
\(93\) 512331.i 0.0660480i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.01234e7i 1.12622i 0.826381 + 0.563112i \(0.190396\pi\)
−0.826381 + 0.563112i \(0.809604\pi\)
\(98\) 0 0
\(99\) −1.15539e7 −1.19676
\(100\) 0 0
\(101\) −8.33196e6 −0.804679 −0.402339 0.915491i \(-0.631803\pi\)
−0.402339 + 0.915491i \(0.631803\pi\)
\(102\) 0 0
\(103\) 7.75782e6i 0.699535i 0.936837 + 0.349767i \(0.113739\pi\)
−0.936837 + 0.349767i \(0.886261\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.86598e6i 0.699654i 0.936814 + 0.349827i \(0.113760\pi\)
−0.936814 + 0.349827i \(0.886240\pi\)
\(108\) 0 0
\(109\) −1.55125e6 −0.114734 −0.0573668 0.998353i \(-0.518270\pi\)
−0.0573668 + 0.998353i \(0.518270\pi\)
\(110\) 0 0
\(111\) 884585. 0.0613917
\(112\) 0 0
\(113\) − 1.80311e7i − 1.17557i −0.809019 0.587783i \(-0.800001\pi\)
0.809019 0.587783i \(-0.199999\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.02781e7i 1.74774i
\(118\) 0 0
\(119\) 9.54945e6 0.519474
\(120\) 0 0
\(121\) 9.20422e6 0.472322
\(122\) 0 0
\(123\) − 157516.i − 0.00763232i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.98814e7i − 0.861258i −0.902529 0.430629i \(-0.858292\pi\)
0.902529 0.430629i \(-0.141708\pi\)
\(128\) 0 0
\(129\) 4.04679e6 0.165977
\(130\) 0 0
\(131\) 5.81990e6 0.226186 0.113093 0.993584i \(-0.463924\pi\)
0.113093 + 0.993584i \(0.463924\pi\)
\(132\) 0 0
\(133\) − 3.87979e6i − 0.142997i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.83328e7i − 1.27365i −0.771010 0.636823i \(-0.780248\pi\)
0.771010 0.636823i \(-0.219752\pi\)
\(138\) 0 0
\(139\) −3.60826e7 −1.13958 −0.569791 0.821789i \(-0.692976\pi\)
−0.569791 + 0.821789i \(0.692976\pi\)
\(140\) 0 0
\(141\) −5.84775e6 −0.175680
\(142\) 0 0
\(143\) − 7.51883e7i − 2.15018i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.26313e6i 0.0327973i
\(148\) 0 0
\(149\) 4.91341e6 0.121683 0.0608416 0.998147i \(-0.480622\pi\)
0.0608416 + 0.998147i \(0.480622\pi\)
\(150\) 0 0
\(151\) −4.95186e7 −1.17044 −0.585220 0.810874i \(-0.698992\pi\)
−0.585220 + 0.810874i \(0.698992\pi\)
\(152\) 0 0
\(153\) − 2.67521e7i − 0.603863i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.84517e6i 0.120545i 0.998182 + 0.0602724i \(0.0191969\pi\)
−0.998182 + 0.0602724i \(0.980803\pi\)
\(158\) 0 0
\(159\) −3.43007e6 −0.0676726
\(160\) 0 0
\(161\) −5.78944e7 −1.09332
\(162\) 0 0
\(163\) − 1.79731e7i − 0.325062i −0.986703 0.162531i \(-0.948034\pi\)
0.986703 0.162531i \(-0.0519658\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.72460e7i 0.951124i 0.879682 + 0.475562i \(0.157755\pi\)
−0.879682 + 0.475562i \(0.842245\pi\)
\(168\) 0 0
\(169\) −1.34289e8 −2.14011
\(170\) 0 0
\(171\) −1.08690e7 −0.166227
\(172\) 0 0
\(173\) − 1.09265e8i − 1.60442i −0.597039 0.802212i \(-0.703656\pi\)
0.597039 0.802212i \(-0.296344\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.17647e7i 0.159468i
\(178\) 0 0
\(179\) 1.98072e7 0.258130 0.129065 0.991636i \(-0.458802\pi\)
0.129065 + 0.991636i \(0.458802\pi\)
\(180\) 0 0
\(181\) −1.00547e8 −1.26036 −0.630178 0.776451i \(-0.717018\pi\)
−0.630178 + 0.776451i \(0.717018\pi\)
\(182\) 0 0
\(183\) − 1.40992e7i − 0.170065i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.64325e7i 0.742908i
\(188\) 0 0
\(189\) −1.83142e7 −0.197320
\(190\) 0 0
\(191\) −2.28106e7 −0.236875 −0.118437 0.992962i \(-0.537789\pi\)
−0.118437 + 0.992962i \(0.537789\pi\)
\(192\) 0 0
\(193\) − 1.92250e6i − 0.0192493i −0.999954 0.00962465i \(-0.996936\pi\)
0.999954 0.00962465i \(-0.00306367\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.98118e7i 0.184626i 0.995730 + 0.0923129i \(0.0294260\pi\)
−0.995730 + 0.0923129i \(0.970574\pi\)
\(198\) 0 0
\(199\) −1.14071e8 −1.02610 −0.513048 0.858360i \(-0.671484\pi\)
−0.513048 + 0.858360i \(0.671484\pi\)
\(200\) 0 0
\(201\) 4.42241e6 0.0384125
\(202\) 0 0
\(203\) − 1.50551e8i − 1.26313i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.62187e8i 1.27093i
\(208\) 0 0
\(209\) 2.69905e7 0.204503
\(210\) 0 0
\(211\) −9.50285e6 −0.0696410 −0.0348205 0.999394i \(-0.511086\pi\)
−0.0348205 + 0.999394i \(0.511086\pi\)
\(212\) 0 0
\(213\) 9.45736e6i 0.0670566i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 7.20447e7i 0.478622i
\(218\) 0 0
\(219\) 9.55574e6 0.0614766
\(220\) 0 0
\(221\) 1.74092e8 1.08494
\(222\) 0 0
\(223\) − 1.92299e8i − 1.16121i −0.814187 0.580603i \(-0.802817\pi\)
0.814187 0.580603i \(-0.197183\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1.60189e8i − 0.908955i −0.890758 0.454478i \(-0.849826\pi\)
0.890758 0.454478i \(-0.150174\pi\)
\(228\) 0 0
\(229\) −1.97660e8 −1.08766 −0.543832 0.839194i \(-0.683027\pi\)
−0.543832 + 0.839194i \(0.683027\pi\)
\(230\) 0 0
\(231\) 2.25825e7 0.120540
\(232\) 0 0
\(233\) − 1.99180e8i − 1.03157i −0.856717 0.515786i \(-0.827500\pi\)
0.856717 0.515786i \(-0.172500\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.35182e7i − 0.0659630i
\(238\) 0 0
\(239\) −3.31111e8 −1.56885 −0.784424 0.620225i \(-0.787041\pi\)
−0.784424 + 0.620225i \(0.787041\pi\)
\(240\) 0 0
\(241\) −3.68270e8 −1.69475 −0.847377 0.530991i \(-0.821820\pi\)
−0.847377 + 0.530991i \(0.821820\pi\)
\(242\) 0 0
\(243\) 7.71360e7i 0.344854i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 7.07309e7i − 0.298655i
\(248\) 0 0
\(249\) 3.78273e7 0.155277
\(250\) 0 0
\(251\) −3.74255e8 −1.49386 −0.746929 0.664903i \(-0.768473\pi\)
−0.746929 + 0.664903i \(0.768473\pi\)
\(252\) 0 0
\(253\) − 4.02753e8i − 1.56357i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.57062e8i 1.67961i 0.542885 + 0.839807i \(0.317332\pi\)
−0.542885 + 0.839807i \(0.682668\pi\)
\(258\) 0 0
\(259\) 1.24392e8 0.444880
\(260\) 0 0
\(261\) −4.21759e8 −1.46833
\(262\) 0 0
\(263\) − 6.77338e7i − 0.229594i −0.993389 0.114797i \(-0.963378\pi\)
0.993389 0.114797i \(-0.0366217\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1.44316e7i − 0.0464007i
\(268\) 0 0
\(269\) −2.21000e7 −0.0692244 −0.0346122 0.999401i \(-0.511020\pi\)
−0.0346122 + 0.999401i \(0.511020\pi\)
\(270\) 0 0
\(271\) −4.22269e8 −1.28883 −0.644416 0.764675i \(-0.722900\pi\)
−0.644416 + 0.764675i \(0.722900\pi\)
\(272\) 0 0
\(273\) − 5.91793e7i − 0.176036i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1.98868e8i − 0.562195i −0.959679 0.281097i \(-0.909302\pi\)
0.959679 0.281097i \(-0.0906984\pi\)
\(278\) 0 0
\(279\) 2.01828e8 0.556375
\(280\) 0 0
\(281\) 3.88135e8 1.04354 0.521771 0.853085i \(-0.325271\pi\)
0.521771 + 0.853085i \(0.325271\pi\)
\(282\) 0 0
\(283\) − 2.98951e8i − 0.784056i −0.919953 0.392028i \(-0.871774\pi\)
0.919953 0.392028i \(-0.128226\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2.21501e7i − 0.0553082i
\(288\) 0 0
\(289\) 2.56520e8 0.625142
\(290\) 0 0
\(291\) −5.54304e7 −0.131863
\(292\) 0 0
\(293\) 1.77029e8i 0.411158i 0.978641 + 0.205579i \(0.0659077\pi\)
−0.978641 + 0.205579i \(0.934092\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.27406e8i − 0.282190i
\(298\) 0 0
\(299\) −1.05545e9 −2.28343
\(300\) 0 0
\(301\) 5.69066e8 1.20276
\(302\) 0 0
\(303\) − 4.56215e7i − 0.0942150i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.25726e8i 0.445243i 0.974905 + 0.222622i \(0.0714614\pi\)
−0.974905 + 0.222622i \(0.928539\pi\)
\(308\) 0 0
\(309\) −4.24778e7 −0.0819044
\(310\) 0 0
\(311\) 8.14288e8 1.53503 0.767515 0.641031i \(-0.221493\pi\)
0.767515 + 0.641031i \(0.221493\pi\)
\(312\) 0 0
\(313\) 6.60615e7i 0.121771i 0.998145 + 0.0608854i \(0.0193924\pi\)
−0.998145 + 0.0608854i \(0.980608\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 6.63770e7i − 0.117033i −0.998286 0.0585167i \(-0.981363\pi\)
0.998286 0.0585167i \(-0.0186371\pi\)
\(318\) 0 0
\(319\) 1.04734e9 1.80642
\(320\) 0 0
\(321\) −4.85455e7 −0.0819184
\(322\) 0 0
\(323\) 6.24942e7i 0.103188i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 8.49386e6i − 0.0134335i
\(328\) 0 0
\(329\) −8.22319e8 −1.27308
\(330\) 0 0
\(331\) 5.59199e8 0.847557 0.423778 0.905766i \(-0.360704\pi\)
0.423778 + 0.905766i \(0.360704\pi\)
\(332\) 0 0
\(333\) − 3.48475e8i − 0.517150i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.77074e8i 0.679018i 0.940603 + 0.339509i \(0.110261\pi\)
−0.940603 + 0.339509i \(0.889739\pi\)
\(338\) 0 0
\(339\) 9.87287e7 0.137640
\(340\) 0 0
\(341\) −5.01192e8 −0.684485
\(342\) 0 0
\(343\) 8.11727e8i 1.08613i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5.49825e8i 0.706433i 0.935542 + 0.353217i \(0.114912\pi\)
−0.935542 + 0.353217i \(0.885088\pi\)
\(348\) 0 0
\(349\) 2.51578e8 0.316799 0.158400 0.987375i \(-0.449367\pi\)
0.158400 + 0.987375i \(0.449367\pi\)
\(350\) 0 0
\(351\) −3.33878e8 −0.412110
\(352\) 0 0
\(353\) 8.04432e8i 0.973370i 0.873577 + 0.486685i \(0.161794\pi\)
−0.873577 + 0.486685i \(0.838206\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5.22878e7i 0.0608222i
\(358\) 0 0
\(359\) 1.13834e8 0.129850 0.0649250 0.997890i \(-0.479319\pi\)
0.0649250 + 0.997890i \(0.479319\pi\)
\(360\) 0 0
\(361\) −8.68481e8 −0.971595
\(362\) 0 0
\(363\) 5.03975e7i 0.0553014i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.25920e8i 0.238574i 0.992860 + 0.119287i \(0.0380609\pi\)
−0.992860 + 0.119287i \(0.961939\pi\)
\(368\) 0 0
\(369\) −6.20521e7 −0.0642931
\(370\) 0 0
\(371\) −4.82342e8 −0.490395
\(372\) 0 0
\(373\) 8.19128e8i 0.817280i 0.912696 + 0.408640i \(0.133997\pi\)
−0.912696 + 0.408640i \(0.866003\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.74464e9i − 2.63809i
\(378\) 0 0
\(379\) −1.86356e8 −0.175836 −0.0879178 0.996128i \(-0.528021\pi\)
−0.0879178 + 0.996128i \(0.528021\pi\)
\(380\) 0 0
\(381\) 1.08860e8 0.100840
\(382\) 0 0
\(383\) − 1.43839e9i − 1.30822i −0.756400 0.654109i \(-0.773044\pi\)
0.756400 0.654109i \(-0.226956\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.59420e9i − 1.39815i
\(388\) 0 0
\(389\) 1.00373e9 0.864558 0.432279 0.901740i \(-0.357710\pi\)
0.432279 + 0.901740i \(0.357710\pi\)
\(390\) 0 0
\(391\) 9.32540e8 0.788949
\(392\) 0 0
\(393\) 3.18668e7i 0.0264828i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.05187e8i 0.726058i 0.931778 + 0.363029i \(0.118257\pi\)
−0.931778 + 0.363029i \(0.881743\pi\)
\(398\) 0 0
\(399\) 2.12437e7 0.0167427
\(400\) 0 0
\(401\) 2.05917e9 1.59473 0.797363 0.603500i \(-0.206228\pi\)
0.797363 + 0.603500i \(0.206228\pi\)
\(402\) 0 0
\(403\) 1.31342e9i 0.999619i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.65354e8i 0.636229i
\(408\) 0 0
\(409\) 6.09853e8 0.440751 0.220376 0.975415i \(-0.429272\pi\)
0.220376 + 0.975415i \(0.429272\pi\)
\(410\) 0 0
\(411\) 2.09891e8 0.149124
\(412\) 0 0
\(413\) 1.65436e9i 1.15559i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.97569e8i − 0.133427i
\(418\) 0 0
\(419\) 2.76626e9 1.83715 0.918574 0.395248i \(-0.129341\pi\)
0.918574 + 0.395248i \(0.129341\pi\)
\(420\) 0 0
\(421\) 1.11034e9 0.725219 0.362609 0.931941i \(-0.381886\pi\)
0.362609 + 0.931941i \(0.381886\pi\)
\(422\) 0 0
\(423\) 2.30367e9i 1.47989i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 1.98265e9i − 1.23239i
\(428\) 0 0
\(429\) 4.11692e8 0.251751
\(430\) 0 0
\(431\) 1.55134e9 0.933331 0.466666 0.884434i \(-0.345455\pi\)
0.466666 + 0.884434i \(0.345455\pi\)
\(432\) 0 0
\(433\) − 1.19534e9i − 0.707593i −0.935322 0.353797i \(-0.884891\pi\)
0.935322 0.353797i \(-0.115109\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 3.78876e8i − 0.217176i
\(438\) 0 0
\(439\) −2.81223e8 −0.158644 −0.0793221 0.996849i \(-0.525276\pi\)
−0.0793221 + 0.996849i \(0.525276\pi\)
\(440\) 0 0
\(441\) 4.97601e8 0.276278
\(442\) 0 0
\(443\) 2.07780e9i 1.13551i 0.823197 + 0.567756i \(0.192188\pi\)
−0.823197 + 0.567756i \(0.807812\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.69033e7i 0.0142472i
\(448\) 0 0
\(449\) 1.73277e9 0.903397 0.451698 0.892171i \(-0.350818\pi\)
0.451698 + 0.892171i \(0.350818\pi\)
\(450\) 0 0
\(451\) 1.54091e8 0.0790971
\(452\) 0 0
\(453\) − 2.71138e8i − 0.137040i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.78846e9i 0.876541i 0.898843 + 0.438270i \(0.144409\pi\)
−0.898843 + 0.438270i \(0.855591\pi\)
\(458\) 0 0
\(459\) 2.94998e8 0.142388
\(460\) 0 0
\(461\) −3.91667e8 −0.186193 −0.0930965 0.995657i \(-0.529677\pi\)
−0.0930965 + 0.995657i \(0.529677\pi\)
\(462\) 0 0
\(463\) 1.05509e9i 0.494034i 0.969011 + 0.247017i \(0.0794503\pi\)
−0.969011 + 0.247017i \(0.920550\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.73541e9i − 0.788485i −0.919006 0.394243i \(-0.871007\pi\)
0.919006 0.394243i \(-0.128993\pi\)
\(468\) 0 0
\(469\) 6.21886e8 0.278360
\(470\) 0 0
\(471\) −3.20051e7 −0.0141139
\(472\) 0 0
\(473\) 3.95881e9i 1.72009i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.35125e9i 0.570060i
\(478\) 0 0
\(479\) 2.46088e8 0.102310 0.0511548 0.998691i \(-0.483710\pi\)
0.0511548 + 0.998691i \(0.483710\pi\)
\(480\) 0 0
\(481\) 2.26773e9 0.929146
\(482\) 0 0
\(483\) − 3.17000e8i − 0.128010i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.60089e9i 1.02040i 0.860055 + 0.510201i \(0.170429\pi\)
−0.860055 + 0.510201i \(0.829571\pi\)
\(488\) 0 0
\(489\) 9.84114e7 0.0380596
\(490\) 0 0
\(491\) −3.18729e9 −1.21517 −0.607584 0.794256i \(-0.707861\pi\)
−0.607584 + 0.794256i \(0.707861\pi\)
\(492\) 0 0
\(493\) 2.42502e9i 0.911488i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.32991e9i 0.485931i
\(498\) 0 0
\(499\) −3.08098e9 −1.11004 −0.555018 0.831838i \(-0.687289\pi\)
−0.555018 + 0.831838i \(0.687289\pi\)
\(500\) 0 0
\(501\) −3.13449e8 −0.111361
\(502\) 0 0
\(503\) − 2.17354e9i − 0.761517i −0.924674 0.380759i \(-0.875663\pi\)
0.924674 0.380759i \(-0.124337\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 7.35295e8i − 0.250573i
\(508\) 0 0
\(509\) 1.91522e9 0.643733 0.321866 0.946785i \(-0.395690\pi\)
0.321866 + 0.946785i \(0.395690\pi\)
\(510\) 0 0
\(511\) 1.34374e9 0.445495
\(512\) 0 0
\(513\) − 1.19853e8i − 0.0391957i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 5.72061e9i − 1.82065i
\(518\) 0 0
\(519\) 5.98278e8 0.187853
\(520\) 0 0
\(521\) −6.78513e8 −0.210197 −0.105098 0.994462i \(-0.533516\pi\)
−0.105098 + 0.994462i \(0.533516\pi\)
\(522\) 0 0
\(523\) 5.85186e9i 1.78870i 0.447366 + 0.894351i \(0.352362\pi\)
−0.447366 + 0.894351i \(0.647638\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.16047e9i − 0.345379i
\(528\) 0 0
\(529\) −2.24878e9 −0.660468
\(530\) 0 0
\(531\) 4.63459e9 1.34332
\(532\) 0 0
\(533\) − 4.03810e8i − 0.115513i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.08454e8i 0.0302229i
\(538\) 0 0
\(539\) −1.23567e9 −0.339893
\(540\) 0 0
\(541\) −7.71811e8 −0.209566 −0.104783 0.994495i \(-0.533415\pi\)
−0.104783 + 0.994495i \(0.533415\pi\)
\(542\) 0 0
\(543\) − 5.50542e8i − 0.147568i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.26686e9i − 1.37593i −0.725744 0.687965i \(-0.758504\pi\)
0.725744 0.687965i \(-0.241496\pi\)
\(548\) 0 0
\(549\) −5.55426e9 −1.43259
\(550\) 0 0
\(551\) 9.85247e8 0.250908
\(552\) 0 0
\(553\) − 1.90095e9i − 0.478006i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.78323e7i 0.0215358i 0.999942 + 0.0107679i \(0.00342760\pi\)
−0.999942 + 0.0107679i \(0.996572\pi\)
\(558\) 0 0
\(559\) 1.03744e10 2.51201
\(560\) 0 0
\(561\) −3.63750e8 −0.0869826
\(562\) 0 0
\(563\) − 5.32226e8i − 0.125695i −0.998023 0.0628473i \(-0.979982\pi\)
0.998023 0.0628473i \(-0.0200181\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.53198e9i 0.813724i
\(568\) 0 0
\(569\) 7.55216e9 1.71861 0.859306 0.511461i \(-0.170896\pi\)
0.859306 + 0.511461i \(0.170896\pi\)
\(570\) 0 0
\(571\) 2.55147e9 0.573541 0.286771 0.957999i \(-0.407418\pi\)
0.286771 + 0.957999i \(0.407418\pi\)
\(572\) 0 0
\(573\) − 1.24899e8i − 0.0277343i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 5.53852e9i − 1.20027i −0.799899 0.600135i \(-0.795114\pi\)
0.799899 0.600135i \(-0.204886\pi\)
\(578\) 0 0
\(579\) 1.05266e7 0.00225379
\(580\) 0 0
\(581\) 5.31934e9 1.12523
\(582\) 0 0
\(583\) − 3.35550e9i − 0.701321i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.73642e9i 0.966533i 0.875473 + 0.483266i \(0.160550\pi\)
−0.875473 + 0.483266i \(0.839450\pi\)
\(588\) 0 0
\(589\) −4.71480e8 −0.0950735
\(590\) 0 0
\(591\) −1.08479e8 −0.0216167
\(592\) 0 0
\(593\) 1.44860e9i 0.285272i 0.989775 + 0.142636i \(0.0455578\pi\)
−0.989775 + 0.142636i \(0.954442\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 6.24591e8i − 0.120139i
\(598\) 0 0
\(599\) 1.04150e9 0.198001 0.0990005 0.995087i \(-0.468435\pi\)
0.0990005 + 0.995087i \(0.468435\pi\)
\(600\) 0 0
\(601\) −7.31995e9 −1.37546 −0.687729 0.725967i \(-0.741392\pi\)
−0.687729 + 0.725967i \(0.741392\pi\)
\(602\) 0 0
\(603\) − 1.74217e9i − 0.323579i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.16291e9i 1.11847i 0.829008 + 0.559237i \(0.188906\pi\)
−0.829008 + 0.559237i \(0.811094\pi\)
\(608\) 0 0
\(609\) 8.24340e8 0.147892
\(610\) 0 0
\(611\) −1.49914e10 −2.65887
\(612\) 0 0
\(613\) 3.18382e8i 0.0558260i 0.999610 + 0.0279130i \(0.00888614\pi\)
−0.999610 + 0.0279130i \(0.991114\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.13555e9i 1.22301i 0.791241 + 0.611505i \(0.209435\pi\)
−0.791241 + 0.611505i \(0.790565\pi\)
\(618\) 0 0
\(619\) −9.96303e9 −1.68840 −0.844198 0.536031i \(-0.819923\pi\)
−0.844198 + 0.536031i \(0.819923\pi\)
\(620\) 0 0
\(621\) −1.78845e9 −0.299679
\(622\) 0 0
\(623\) − 2.02939e9i − 0.336246i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.47786e8i 0.0239440i
\(628\) 0 0
\(629\) −2.00365e9 −0.321030
\(630\) 0 0
\(631\) 4.94300e9 0.783227 0.391614 0.920130i \(-0.371917\pi\)
0.391614 + 0.920130i \(0.371917\pi\)
\(632\) 0 0
\(633\) − 5.20326e7i − 0.00815385i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.23818e9i 0.496379i
\(638\) 0 0
\(639\) 3.72565e9 0.564871
\(640\) 0 0
\(641\) −2.18024e9 −0.326965 −0.163482 0.986546i \(-0.552273\pi\)
−0.163482 + 0.986546i \(0.552273\pi\)
\(642\) 0 0
\(643\) − 8.70849e9i − 1.29183i −0.763411 0.645913i \(-0.776477\pi\)
0.763411 0.645913i \(-0.223523\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.57610e9i 0.664249i 0.943236 + 0.332124i \(0.107765\pi\)
−0.943236 + 0.332124i \(0.892235\pi\)
\(648\) 0 0
\(649\) −1.15089e10 −1.65263
\(650\) 0 0
\(651\) −3.94479e8 −0.0560390
\(652\) 0 0
\(653\) − 9.23098e9i − 1.29733i −0.761072 0.648667i \(-0.775327\pi\)
0.761072 0.648667i \(-0.224673\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.76440e9i − 0.517866i
\(658\) 0 0
\(659\) −8.30221e9 −1.13004 −0.565021 0.825077i \(-0.691132\pi\)
−0.565021 + 0.825077i \(0.691132\pi\)
\(660\) 0 0
\(661\) 2.67892e9 0.360791 0.180395 0.983594i \(-0.442262\pi\)
0.180395 + 0.983594i \(0.442262\pi\)
\(662\) 0 0
\(663\) 9.53237e8i 0.127029i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.47019e10i − 1.91837i
\(668\) 0 0
\(669\) 1.05293e9 0.135959
\(670\) 0 0
\(671\) 1.37927e10 1.76246
\(672\) 0 0
\(673\) − 8.63768e9i − 1.09231i −0.837685 0.546153i \(-0.816092\pi\)
0.837685 0.546153i \(-0.183908\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.17701e9i 1.01282i 0.862291 + 0.506412i \(0.169029\pi\)
−0.862291 + 0.506412i \(0.830971\pi\)
\(678\) 0 0
\(679\) −7.79471e9 −0.955555
\(680\) 0 0
\(681\) 8.77112e8 0.106424
\(682\) 0 0
\(683\) 3.81811e9i 0.458539i 0.973363 + 0.229269i \(0.0736337\pi\)
−0.973363 + 0.229269i \(0.926366\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 1.08228e9i − 0.127348i
\(688\) 0 0
\(689\) −8.79336e9 −1.02421
\(690\) 0 0
\(691\) −1.38590e10 −1.59794 −0.798969 0.601372i \(-0.794621\pi\)
−0.798969 + 0.601372i \(0.794621\pi\)
\(692\) 0 0
\(693\) − 8.89618e9i − 1.01540i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.56785e8i 0.0399110i
\(698\) 0 0
\(699\) 1.09061e9 0.120781
\(700\) 0 0
\(701\) −4.38274e9 −0.480543 −0.240271 0.970706i \(-0.577236\pi\)
−0.240271 + 0.970706i \(0.577236\pi\)
\(702\) 0 0
\(703\) 8.14053e8i 0.0883708i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 6.41536e9i − 0.682737i
\(708\) 0 0
\(709\) 5.46537e9 0.575914 0.287957 0.957643i \(-0.407024\pi\)
0.287957 + 0.957643i \(0.407024\pi\)
\(710\) 0 0
\(711\) −5.32539e9 −0.555659
\(712\) 0 0
\(713\) 7.03543e9i 0.726905i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.81299e9i − 0.183687i
\(718\) 0 0
\(719\) −7.24738e9 −0.727160 −0.363580 0.931563i \(-0.618446\pi\)
−0.363580 + 0.931563i \(0.618446\pi\)
\(720\) 0 0
\(721\) −5.97329e9 −0.593526
\(722\) 0 0
\(723\) − 2.01646e9i − 0.198429i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.61701e10i 1.56078i 0.625291 + 0.780392i \(0.284980\pi\)
−0.625291 + 0.780392i \(0.715020\pi\)
\(728\) 0 0
\(729\) 9.60977e9 0.918685
\(730\) 0 0
\(731\) −9.16629e9 −0.867926
\(732\) 0 0
\(733\) 6.59871e9i 0.618864i 0.950922 + 0.309432i \(0.100139\pi\)
−0.950922 + 0.309432i \(0.899861\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.32626e9i 0.398086i
\(738\) 0 0
\(739\) −4.52765e8 −0.0412683 −0.0206342 0.999787i \(-0.506569\pi\)
−0.0206342 + 0.999787i \(0.506569\pi\)
\(740\) 0 0
\(741\) 3.87285e8 0.0349677
\(742\) 0 0
\(743\) − 2.03152e10i − 1.81702i −0.417864 0.908509i \(-0.637221\pi\)
0.417864 0.908509i \(-0.362779\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.49018e10i − 1.30802i
\(748\) 0 0
\(749\) −6.82654e9 −0.593628
\(750\) 0 0
\(751\) −1.40167e10 −1.20755 −0.603776 0.797154i \(-0.706338\pi\)
−0.603776 + 0.797154i \(0.706338\pi\)
\(752\) 0 0
\(753\) − 2.04922e9i − 0.174907i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.74979e10i 1.46605i 0.680200 + 0.733026i \(0.261893\pi\)
−0.680200 + 0.733026i \(0.738107\pi\)
\(758\) 0 0
\(759\) 2.20526e9 0.183069
\(760\) 0 0
\(761\) 7.69298e9 0.632774 0.316387 0.948630i \(-0.397530\pi\)
0.316387 + 0.948630i \(0.397530\pi\)
\(762\) 0 0
\(763\) − 1.19442e9i − 0.0973466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.01600e10i 2.41350i
\(768\) 0 0
\(769\) 6.85942e9 0.543933 0.271967 0.962307i \(-0.412326\pi\)
0.271967 + 0.962307i \(0.412326\pi\)
\(770\) 0 0
\(771\) −2.50263e9 −0.196656
\(772\) 0 0
\(773\) − 8.93170e9i − 0.695514i −0.937585 0.347757i \(-0.886943\pi\)
0.937585 0.347757i \(-0.113057\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.81104e8i 0.0520883i
\(778\) 0 0
\(779\) 1.44956e8 0.0109864
\(780\) 0 0
\(781\) −9.25175e9 −0.694937
\(782\) 0 0
\(783\) − 4.65076e9i − 0.346225i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 5.20674e9i − 0.380762i −0.981710 0.190381i \(-0.939028\pi\)
0.981710 0.190381i \(-0.0609724\pi\)
\(788\) 0 0
\(789\) 3.70875e8 0.0268818
\(790\) 0 0
\(791\) 1.38834e10 0.997419
\(792\) 0 0
\(793\) − 3.61448e10i − 2.57389i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.96111e10i − 1.37214i −0.727538 0.686068i \(-0.759335\pi\)
0.727538 0.686068i \(-0.240665\pi\)
\(798\) 0 0
\(799\) 1.32456e10 0.918666
\(800\) 0 0
\(801\) −5.68520e9 −0.390870
\(802\) 0 0
\(803\) 9.34798e9i 0.637109i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.21008e8i − 0.00810508i
\(808\) 0 0
\(809\) −1.99512e10 −1.32479 −0.662397 0.749153i \(-0.730461\pi\)
−0.662397 + 0.749153i \(0.730461\pi\)
\(810\) 0 0
\(811\) −2.18039e9 −0.143536 −0.0717679 0.997421i \(-0.522864\pi\)
−0.0717679 + 0.997421i \(0.522864\pi\)
\(812\) 0 0
\(813\) − 2.31212e9i − 0.150902i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.72412e9i 0.238917i
\(818\) 0 0
\(819\) −2.33132e10 −1.48289
\(820\) 0 0
\(821\) −2.52847e10 −1.59462 −0.797310 0.603570i \(-0.793744\pi\)
−0.797310 + 0.603570i \(0.793744\pi\)
\(822\) 0 0
\(823\) − 1.86851e10i − 1.16841i −0.811606 0.584205i \(-0.801406\pi\)
0.811606 0.584205i \(-0.198594\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 7.19901e9i − 0.442592i −0.975207 0.221296i \(-0.928971\pi\)
0.975207 0.221296i \(-0.0710287\pi\)
\(828\) 0 0
\(829\) −1.83330e10 −1.11762 −0.558808 0.829297i \(-0.688741\pi\)
−0.558808 + 0.829297i \(0.688741\pi\)
\(830\) 0 0
\(831\) 1.08890e9 0.0658240
\(832\) 0 0
\(833\) − 2.86109e9i − 0.171504i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.22557e9i 0.131191i
\(838\) 0 0
\(839\) 2.42360e10 1.41675 0.708376 0.705835i \(-0.249428\pi\)
0.708376 + 0.705835i \(0.249428\pi\)
\(840\) 0 0
\(841\) 2.09816e10 1.21633
\(842\) 0 0
\(843\) 2.12522e9i 0.122182i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.08698e9i 0.400746i
\(848\) 0 0
\(849\) 1.63690e9 0.0918004
\(850\) 0 0
\(851\) 1.21473e10 0.675658
\(852\) 0 0
\(853\) 3.21411e10i 1.77312i 0.462612 + 0.886561i \(0.346912\pi\)
−0.462612 + 0.886561i \(0.653088\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 9.48584e9i − 0.514805i −0.966304 0.257403i \(-0.917133\pi\)
0.966304 0.257403i \(-0.0828667\pi\)
\(858\) 0 0
\(859\) −1.33721e10 −0.719819 −0.359910 0.932987i \(-0.617192\pi\)
−0.359910 + 0.932987i \(0.617192\pi\)
\(860\) 0 0
\(861\) 1.21283e8 0.00647571
\(862\) 0 0
\(863\) − 1.13928e10i − 0.603381i −0.953406 0.301690i \(-0.902449\pi\)
0.953406 0.301690i \(-0.0975509\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1.40457e9i 0.0731941i
\(868\) 0 0
\(869\) 1.32243e10 0.683604
\(870\) 0 0
\(871\) 1.13373e10 0.581364
\(872\) 0 0
\(873\) 2.18363e10i 1.11079i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.45509e10i − 0.728435i −0.931314 0.364218i \(-0.881336\pi\)
0.931314 0.364218i \(-0.118664\pi\)
\(878\) 0 0
\(879\) −9.69320e8 −0.0481400
\(880\) 0 0
\(881\) −5.46095e9 −0.269062 −0.134531 0.990909i \(-0.542953\pi\)
−0.134531 + 0.990909i \(0.542953\pi\)
\(882\) 0 0
\(883\) 1.95772e10i 0.956948i 0.878102 + 0.478474i \(0.158810\pi\)
−0.878102 + 0.478474i \(0.841190\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.35654e10i 0.652678i 0.945253 + 0.326339i \(0.105815\pi\)
−0.945253 + 0.326339i \(0.894185\pi\)
\(888\) 0 0
\(889\) 1.53081e10 0.730742
\(890\) 0 0
\(891\) −2.45708e10 −1.16372
\(892\) 0 0
\(893\) − 5.38148e9i − 0.252884i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 5.77908e9i − 0.267353i
\(898\) 0 0
\(899\) −1.82953e10 −0.839807
\(900\) 0 0
\(901\) 7.76936e9 0.353874
\(902\) 0 0
\(903\) 3.11591e9i 0.140824i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 7.63541e9i − 0.339787i −0.985462 0.169894i \(-0.945658\pi\)
0.985462 0.169894i \(-0.0543424\pi\)
\(908\) 0 0
\(909\) −1.79722e10 −0.793648
\(910\) 0 0
\(911\) 2.03069e10 0.889875 0.444937 0.895562i \(-0.353226\pi\)
0.444937 + 0.895562i \(0.353226\pi\)
\(912\) 0 0
\(913\) 3.70049e10i 1.60921i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.48115e9i 0.191910i
\(918\) 0 0
\(919\) 1.93832e10 0.823797 0.411899 0.911230i \(-0.364866\pi\)
0.411899 + 0.911230i \(0.364866\pi\)
\(920\) 0 0
\(921\) −1.23596e9 −0.0521309
\(922\) 0 0
\(923\) 2.42450e10i 1.01488i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.67338e10i 0.689945i
\(928\) 0 0
\(929\) −1.17298e10 −0.479993 −0.239997 0.970774i \(-0.577146\pi\)
−0.239997 + 0.970774i \(0.577146\pi\)
\(930\) 0 0
\(931\) −1.16242e9 −0.0472104
\(932\) 0 0
\(933\) 4.45862e9i 0.179727i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.41104e10i 0.560340i 0.959950 + 0.280170i \(0.0903908\pi\)
−0.959950 + 0.280170i \(0.909609\pi\)
\(938\) 0 0
\(939\) −3.61718e8 −0.0142574
\(940\) 0 0
\(941\) 1.98332e10 0.775942 0.387971 0.921672i \(-0.373176\pi\)
0.387971 + 0.921672i \(0.373176\pi\)
\(942\) 0 0
\(943\) − 2.16304e9i − 0.0839990i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.96249e10i − 1.89878i −0.314098 0.949390i \(-0.601702\pi\)
0.314098 0.949390i \(-0.398298\pi\)
\(948\) 0 0
\(949\) 2.44972e10 0.930432
\(950\) 0 0
\(951\) 3.63446e8 0.0137028
\(952\) 0 0
\(953\) − 3.24475e10i − 1.21438i −0.794555 0.607192i \(-0.792296\pi\)
0.794555 0.607192i \(-0.207704\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.73467e9i 0.211503i
\(958\) 0 0
\(959\) 2.95151e10 1.08064
\(960\) 0 0
\(961\) −1.87576e10 −0.681782
\(962\) 0 0
\(963\) 1.91241e10i 0.690063i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6.43301e9i 0.228782i 0.993436 + 0.114391i \(0.0364917\pi\)
−0.993436 + 0.114391i \(0.963508\pi\)
\(968\) 0 0
\(969\) −3.42186e8 −0.0120817
\(970\) 0 0
\(971\) −7.99885e9 −0.280389 −0.140194 0.990124i \(-0.544773\pi\)
−0.140194 + 0.990124i \(0.544773\pi\)
\(972\) 0 0
\(973\) − 2.77825e10i − 0.966889i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.43029e10i 0.833733i 0.908968 + 0.416866i \(0.136872\pi\)
−0.908968 + 0.416866i \(0.863128\pi\)
\(978\) 0 0
\(979\) 1.41178e10 0.480871
\(980\) 0 0
\(981\) −3.34609e9 −0.113161
\(982\) 0 0
\(983\) 2.05054e10i 0.688544i 0.938870 + 0.344272i \(0.111874\pi\)
−0.938870 + 0.344272i \(0.888126\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 4.50259e9i − 0.149057i
\(988\) 0 0
\(989\) 5.55714e10 1.82669
\(990\) 0 0
\(991\) 3.93587e10 1.28464 0.642322 0.766435i \(-0.277971\pi\)
0.642322 + 0.766435i \(0.277971\pi\)
\(992\) 0 0
\(993\) 3.06188e9i 0.0992353i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.18052e10i − 0.696831i −0.937340 0.348416i \(-0.886720\pi\)
0.937340 0.348416i \(-0.113280\pi\)
\(998\) 0 0
\(999\) 3.84266e9 0.121942
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.s.49.3 4
4.3 odd 2 25.8.b.b.24.3 4
5.2 odd 4 400.8.a.v.1.2 2
5.3 odd 4 400.8.a.bd.1.1 2
5.4 even 2 inner 400.8.c.s.49.2 4
12.11 even 2 225.8.b.l.199.2 4
20.3 even 4 25.8.a.c.1.2 2
20.7 even 4 25.8.a.e.1.1 yes 2
20.19 odd 2 25.8.b.b.24.2 4
60.23 odd 4 225.8.a.v.1.1 2
60.47 odd 4 225.8.a.k.1.2 2
60.59 even 2 225.8.b.l.199.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
25.8.a.c.1.2 2 20.3 even 4
25.8.a.e.1.1 yes 2 20.7 even 4
25.8.b.b.24.2 4 20.19 odd 2
25.8.b.b.24.3 4 4.3 odd 2
225.8.a.k.1.2 2 60.47 odd 4
225.8.a.v.1.1 2 60.23 odd 4
225.8.b.l.199.2 4 12.11 even 2
225.8.b.l.199.3 4 60.59 even 2
400.8.a.v.1.2 2 5.2 odd 4
400.8.a.bd.1.1 2 5.3 odd 4
400.8.c.s.49.2 4 5.4 even 2 inner
400.8.c.s.49.3 4 1.1 even 1 trivial