Properties

Label 400.8.c.r.49.4
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-2936] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2521})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1261x^{2} + 396900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.4
Root \(-24.6048i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.r.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+70.2096i q^{3} -441.257i q^{7} -2742.38 q^{9} -3399.43 q^{11} +10512.7i q^{13} +36255.5i q^{17} +54919.5 q^{19} +30980.5 q^{21} -13459.2i q^{23} -38993.2i q^{27} +214891. q^{29} -99804.6 q^{31} -238673. i q^{33} +242589. i q^{37} -738091. q^{39} -191194. q^{41} +762206. i q^{43} -756534. i q^{47} +628835. q^{49} -2.54548e6 q^{51} +932053. i q^{53} +3.85587e6i q^{57} +1.55254e6 q^{59} -568835. q^{61} +1.21010e6i q^{63} -1.20006e6i q^{67} +944966. q^{69} -3.45325e6 q^{71} +1.31744e6i q^{73} +1.50002e6i q^{77} -4.35327e6 q^{79} -3.25990e6 q^{81} +3.64469e6i q^{83} +1.50874e7i q^{87} +4.59832e6 q^{89} +4.63880e6 q^{91} -7.00723e6i q^{93} -3.13274e6i q^{97} +9.32254e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2936 q^{9} - 4560 q^{11} + 41936 q^{19} + 71704 q^{21} + 461904 q^{29} - 429344 q^{31} - 1787504 q^{39} + 898164 q^{41} + 2852748 q^{49} - 5521488 q^{51} - 1887648 q^{59} + 2532728 q^{61} + 3370152 q^{69}+ \cdots + 21498240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 70.2096i 1.50132i 0.660691 + 0.750658i \(0.270263\pi\)
−0.660691 + 0.750658i \(0.729737\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 441.257i − 0.486238i −0.969996 0.243119i \(-0.921829\pi\)
0.969996 0.243119i \(-0.0781705\pi\)
\(8\) 0 0
\(9\) −2742.38 −1.25395
\(10\) 0 0
\(11\) −3399.43 −0.770073 −0.385036 0.922901i \(-0.625811\pi\)
−0.385036 + 0.922901i \(0.625811\pi\)
\(12\) 0 0
\(13\) 10512.7i 1.32713i 0.748120 + 0.663563i \(0.230957\pi\)
−0.748120 + 0.663563i \(0.769043\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 36255.5i 1.78979i 0.446273 + 0.894897i \(0.352751\pi\)
−0.446273 + 0.894897i \(0.647249\pi\)
\(18\) 0 0
\(19\) 54919.5 1.83691 0.918457 0.395522i \(-0.129436\pi\)
0.918457 + 0.395522i \(0.129436\pi\)
\(20\) 0 0
\(21\) 30980.5 0.729996
\(22\) 0 0
\(23\) − 13459.2i − 0.230660i −0.993327 0.115330i \(-0.963207\pi\)
0.993327 0.115330i \(-0.0367926\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 38993.2i − 0.381255i
\(28\) 0 0
\(29\) 214891. 1.63616 0.818079 0.575106i \(-0.195039\pi\)
0.818079 + 0.575106i \(0.195039\pi\)
\(30\) 0 0
\(31\) −99804.6 −0.601706 −0.300853 0.953670i \(-0.597271\pi\)
−0.300853 + 0.953670i \(0.597271\pi\)
\(32\) 0 0
\(33\) − 238673.i − 1.15612i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 242589.i 0.787346i 0.919250 + 0.393673i \(0.128796\pi\)
−0.919250 + 0.393673i \(0.871204\pi\)
\(38\) 0 0
\(39\) −738091. −1.99243
\(40\) 0 0
\(41\) −191194. −0.433243 −0.216621 0.976256i \(-0.569504\pi\)
−0.216621 + 0.976256i \(0.569504\pi\)
\(42\) 0 0
\(43\) 762206.i 1.46195i 0.682404 + 0.730975i \(0.260935\pi\)
−0.682404 + 0.730975i \(0.739065\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 756534.i − 1.06288i −0.847094 0.531442i \(-0.821650\pi\)
0.847094 0.531442i \(-0.178350\pi\)
\(48\) 0 0
\(49\) 628835. 0.763573
\(50\) 0 0
\(51\) −2.54548e6 −2.68704
\(52\) 0 0
\(53\) 932053.i 0.859954i 0.902840 + 0.429977i \(0.141478\pi\)
−0.902840 + 0.429977i \(0.858522\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.85587e6i 2.75779i
\(58\) 0 0
\(59\) 1.55254e6 0.984147 0.492074 0.870554i \(-0.336239\pi\)
0.492074 + 0.870554i \(0.336239\pi\)
\(60\) 0 0
\(61\) −568835. −0.320872 −0.160436 0.987046i \(-0.551290\pi\)
−0.160436 + 0.987046i \(0.551290\pi\)
\(62\) 0 0
\(63\) 1.21010e6i 0.609717i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.20006e6i − 0.487463i −0.969843 0.243732i \(-0.921628\pi\)
0.969843 0.243732i \(-0.0783716\pi\)
\(68\) 0 0
\(69\) 944966. 0.346293
\(70\) 0 0
\(71\) −3.45325e6 −1.14505 −0.572525 0.819887i \(-0.694036\pi\)
−0.572525 + 0.819887i \(0.694036\pi\)
\(72\) 0 0
\(73\) 1.31744e6i 0.396370i 0.980165 + 0.198185i \(0.0635047\pi\)
−0.980165 + 0.198185i \(0.936495\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50002e6i 0.374439i
\(78\) 0 0
\(79\) −4.35327e6 −0.993393 −0.496697 0.867924i \(-0.665454\pi\)
−0.496697 + 0.867924i \(0.665454\pi\)
\(80\) 0 0
\(81\) −3.25990e6 −0.681564
\(82\) 0 0
\(83\) 3.64469e6i 0.699660i 0.936813 + 0.349830i \(0.113761\pi\)
−0.936813 + 0.349830i \(0.886239\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.50874e7i 2.45639i
\(88\) 0 0
\(89\) 4.59832e6 0.691408 0.345704 0.938344i \(-0.387640\pi\)
0.345704 + 0.938344i \(0.387640\pi\)
\(90\) 0 0
\(91\) 4.63880e6 0.645299
\(92\) 0 0
\(93\) − 7.00723e6i − 0.903351i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 3.13274e6i − 0.348517i −0.984700 0.174258i \(-0.944247\pi\)
0.984700 0.174258i \(-0.0557528\pi\)
\(98\) 0 0
\(99\) 9.32254e6 0.965630
\(100\) 0 0
\(101\) −1.70809e7 −1.64963 −0.824815 0.565402i \(-0.808721\pi\)
−0.824815 + 0.565402i \(0.808721\pi\)
\(102\) 0 0
\(103\) − 1.76460e7i − 1.59117i −0.605844 0.795584i \(-0.707164\pi\)
0.605844 0.795584i \(-0.292836\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 858442.i 0.0677435i 0.999426 + 0.0338718i \(0.0107838\pi\)
−0.999426 + 0.0338718i \(0.989216\pi\)
\(108\) 0 0
\(109\) −1.91116e7 −1.41352 −0.706762 0.707451i \(-0.749845\pi\)
−0.706762 + 0.707451i \(0.749845\pi\)
\(110\) 0 0
\(111\) −1.70321e7 −1.18206
\(112\) 0 0
\(113\) 1.50866e7i 0.983593i 0.870710 + 0.491797i \(0.163660\pi\)
−0.870710 + 0.491797i \(0.836340\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.88298e7i − 1.66415i
\(118\) 0 0
\(119\) 1.59980e7 0.870266
\(120\) 0 0
\(121\) −7.93105e6 −0.406988
\(122\) 0 0
\(123\) − 1.34237e7i − 0.650434i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.06922e7i − 0.463185i −0.972813 0.231592i \(-0.925606\pi\)
0.972813 0.231592i \(-0.0743936\pi\)
\(128\) 0 0
\(129\) −5.35141e7 −2.19485
\(130\) 0 0
\(131\) 3.95488e7 1.53704 0.768518 0.639828i \(-0.220994\pi\)
0.768518 + 0.639828i \(0.220994\pi\)
\(132\) 0 0
\(133\) − 2.42336e7i − 0.893177i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.16362e6i 0.171566i 0.996314 + 0.0857832i \(0.0273392\pi\)
−0.996314 + 0.0857832i \(0.972661\pi\)
\(138\) 0 0
\(139\) −5.76675e7 −1.82129 −0.910645 0.413189i \(-0.864415\pi\)
−0.910645 + 0.413189i \(0.864415\pi\)
\(140\) 0 0
\(141\) 5.31159e7 1.59572
\(142\) 0 0
\(143\) − 3.57372e7i − 1.02198i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.41502e7i 1.14636i
\(148\) 0 0
\(149\) 6.03696e7 1.49509 0.747544 0.664212i \(-0.231233\pi\)
0.747544 + 0.664212i \(0.231233\pi\)
\(150\) 0 0
\(151\) 5.16114e7 1.21990 0.609952 0.792438i \(-0.291189\pi\)
0.609952 + 0.792438i \(0.291189\pi\)
\(152\) 0 0
\(153\) − 9.94265e7i − 2.24431i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.39259e7i 0.287193i 0.989636 + 0.143596i \(0.0458667\pi\)
−0.989636 + 0.143596i \(0.954133\pi\)
\(158\) 0 0
\(159\) −6.54391e7 −1.29106
\(160\) 0 0
\(161\) −5.93898e6 −0.112156
\(162\) 0 0
\(163\) − 5.05328e7i − 0.913938i −0.889483 0.456969i \(-0.848935\pi\)
0.889483 0.456969i \(-0.151065\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 6.11316e7i − 1.01568i −0.861451 0.507841i \(-0.830444\pi\)
0.861451 0.507841i \(-0.169556\pi\)
\(168\) 0 0
\(169\) −4.77682e7 −0.761264
\(170\) 0 0
\(171\) −1.50610e8 −2.30339
\(172\) 0 0
\(173\) − 1.22519e8i − 1.79905i −0.436869 0.899525i \(-0.643913\pi\)
0.436869 0.899525i \(-0.356087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.09003e8i 1.47752i
\(178\) 0 0
\(179\) −3.21175e7 −0.418559 −0.209280 0.977856i \(-0.567112\pi\)
−0.209280 + 0.977856i \(0.567112\pi\)
\(180\) 0 0
\(181\) −2.65874e7 −0.333273 −0.166637 0.986018i \(-0.553291\pi\)
−0.166637 + 0.986018i \(0.553291\pi\)
\(182\) 0 0
\(183\) − 3.99376e7i − 0.481730i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.23248e8i − 1.37827i
\(188\) 0 0
\(189\) −1.72060e7 −0.185380
\(190\) 0 0
\(191\) −6.15505e7 −0.639168 −0.319584 0.947558i \(-0.603543\pi\)
−0.319584 + 0.947558i \(0.603543\pi\)
\(192\) 0 0
\(193\) 1.27483e8i 1.27645i 0.769852 + 0.638223i \(0.220330\pi\)
−0.769852 + 0.638223i \(0.779670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.77703e7i 0.911119i 0.890205 + 0.455560i \(0.150561\pi\)
−0.890205 + 0.455560i \(0.849439\pi\)
\(198\) 0 0
\(199\) −2.64808e7 −0.238202 −0.119101 0.992882i \(-0.538001\pi\)
−0.119101 + 0.992882i \(0.538001\pi\)
\(200\) 0 0
\(201\) 8.42558e7 0.731836
\(202\) 0 0
\(203\) − 9.48222e7i − 0.795562i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.69103e7i 0.289235i
\(208\) 0 0
\(209\) −1.86695e8 −1.41456
\(210\) 0 0
\(211\) −1.28704e8 −0.943199 −0.471600 0.881813i \(-0.656323\pi\)
−0.471600 + 0.881813i \(0.656323\pi\)
\(212\) 0 0
\(213\) − 2.42451e8i − 1.71908i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.40395e7i 0.292572i
\(218\) 0 0
\(219\) −9.24969e7 −0.595076
\(220\) 0 0
\(221\) −3.81143e8 −2.37528
\(222\) 0 0
\(223\) 8.69653e7i 0.525145i 0.964912 + 0.262572i \(0.0845708\pi\)
−0.964912 + 0.262572i \(0.915429\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.88984e8i 1.07234i 0.844109 + 0.536172i \(0.180130\pi\)
−0.844109 + 0.536172i \(0.819870\pi\)
\(228\) 0 0
\(229\) 3.32292e8 1.82850 0.914252 0.405145i \(-0.132779\pi\)
0.914252 + 0.405145i \(0.132779\pi\)
\(230\) 0 0
\(231\) −1.05316e8 −0.562150
\(232\) 0 0
\(233\) − 6.91582e7i − 0.358177i −0.983833 0.179089i \(-0.942685\pi\)
0.983833 0.179089i \(-0.0573149\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3.05641e8i − 1.49140i
\(238\) 0 0
\(239\) −3.82039e6 −0.0181015 −0.00905077 0.999959i \(-0.502881\pi\)
−0.00905077 + 0.999959i \(0.502881\pi\)
\(240\) 0 0
\(241\) −2.11029e8 −0.971140 −0.485570 0.874198i \(-0.661388\pi\)
−0.485570 + 0.874198i \(0.661388\pi\)
\(242\) 0 0
\(243\) − 3.14154e8i − 1.40450i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.77351e8i 2.43782i
\(248\) 0 0
\(249\) −2.55892e8 −1.05041
\(250\) 0 0
\(251\) −2.01112e7 −0.0802751 −0.0401375 0.999194i \(-0.512780\pi\)
−0.0401375 + 0.999194i \(0.512780\pi\)
\(252\) 0 0
\(253\) 4.57537e7i 0.177625i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.41797e8i 1.62352i 0.583994 + 0.811758i \(0.301489\pi\)
−0.583994 + 0.811758i \(0.698511\pi\)
\(258\) 0 0
\(259\) 1.07044e8 0.382838
\(260\) 0 0
\(261\) −5.89313e8 −2.05165
\(262\) 0 0
\(263\) 1.24901e8i 0.423369i 0.977338 + 0.211685i \(0.0678950\pi\)
−0.977338 + 0.211685i \(0.932105\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.22846e8i 1.03802i
\(268\) 0 0
\(269\) −3.10603e8 −0.972908 −0.486454 0.873706i \(-0.661710\pi\)
−0.486454 + 0.873706i \(0.661710\pi\)
\(270\) 0 0
\(271\) −2.55577e8 −0.780063 −0.390031 0.920802i \(-0.627536\pi\)
−0.390031 + 0.920802i \(0.627536\pi\)
\(272\) 0 0
\(273\) 3.25688e8i 0.968797i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 6.49357e7i − 0.183571i −0.995779 0.0917856i \(-0.970743\pi\)
0.995779 0.0917856i \(-0.0292574\pi\)
\(278\) 0 0
\(279\) 2.73702e8 0.754508
\(280\) 0 0
\(281\) 2.74082e8 0.736901 0.368450 0.929647i \(-0.379888\pi\)
0.368450 + 0.929647i \(0.379888\pi\)
\(282\) 0 0
\(283\) − 1.94443e8i − 0.509965i −0.966946 0.254982i \(-0.917930\pi\)
0.966946 0.254982i \(-0.0820697\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.43658e7i 0.210659i
\(288\) 0 0
\(289\) −9.04125e8 −2.20336
\(290\) 0 0
\(291\) 2.19949e8 0.523234
\(292\) 0 0
\(293\) − 2.29968e8i − 0.534110i −0.963681 0.267055i \(-0.913949\pi\)
0.963681 0.267055i \(-0.0860506\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.32555e8i 0.293594i
\(298\) 0 0
\(299\) 1.41493e8 0.306115
\(300\) 0 0
\(301\) 3.36329e8 0.710856
\(302\) 0 0
\(303\) − 1.19924e9i − 2.47662i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.12658e8i − 1.20847i −0.796808 0.604233i \(-0.793480\pi\)
0.796808 0.604233i \(-0.206520\pi\)
\(308\) 0 0
\(309\) 1.23892e9 2.38884
\(310\) 0 0
\(311\) 2.83965e8 0.535308 0.267654 0.963515i \(-0.413752\pi\)
0.267654 + 0.963515i \(0.413752\pi\)
\(312\) 0 0
\(313\) − 2.19538e8i − 0.404674i −0.979316 0.202337i \(-0.935146\pi\)
0.979316 0.202337i \(-0.0648537\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.04184e9i − 1.83693i −0.395504 0.918464i \(-0.629430\pi\)
0.395504 0.918464i \(-0.370570\pi\)
\(318\) 0 0
\(319\) −7.30507e8 −1.25996
\(320\) 0 0
\(321\) −6.02708e7 −0.101704
\(322\) 0 0
\(323\) 1.99113e9i 3.28770i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 1.34181e9i − 2.12214i
\(328\) 0 0
\(329\) −3.33826e8 −0.516815
\(330\) 0 0
\(331\) −1.76873e8 −0.268079 −0.134040 0.990976i \(-0.542795\pi\)
−0.134040 + 0.990976i \(0.542795\pi\)
\(332\) 0 0
\(333\) − 6.65273e8i − 0.987291i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 3.07250e8i − 0.437307i −0.975803 0.218654i \(-0.929833\pi\)
0.975803 0.218654i \(-0.0701665\pi\)
\(338\) 0 0
\(339\) −1.05922e9 −1.47668
\(340\) 0 0
\(341\) 3.39279e8 0.463358
\(342\) 0 0
\(343\) − 6.40872e8i − 0.857516i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.16301e8i − 0.277911i −0.990299 0.138956i \(-0.955625\pi\)
0.990299 0.138956i \(-0.0443745\pi\)
\(348\) 0 0
\(349\) 1.03009e9 1.29713 0.648567 0.761157i \(-0.275369\pi\)
0.648567 + 0.761157i \(0.275369\pi\)
\(350\) 0 0
\(351\) 4.09923e8 0.505973
\(352\) 0 0
\(353\) − 2.36545e8i − 0.286222i −0.989707 0.143111i \(-0.954289\pi\)
0.989707 0.143111i \(-0.0457106\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.12321e9i 1.30654i
\(358\) 0 0
\(359\) 2.52947e8 0.288536 0.144268 0.989539i \(-0.453917\pi\)
0.144268 + 0.989539i \(0.453917\pi\)
\(360\) 0 0
\(361\) 2.12228e9 2.37425
\(362\) 0 0
\(363\) − 5.56835e8i − 0.611017i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.01344e9i 1.07021i 0.844787 + 0.535103i \(0.179727\pi\)
−0.844787 + 0.535103i \(0.820273\pi\)
\(368\) 0 0
\(369\) 5.24328e8 0.543263
\(370\) 0 0
\(371\) 4.11275e8 0.418142
\(372\) 0 0
\(373\) − 5.02965e8i − 0.501830i −0.968009 0.250915i \(-0.919268\pi\)
0.968009 0.250915i \(-0.0807315\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.25908e9i 2.17139i
\(378\) 0 0
\(379\) 2.99749e8 0.282827 0.141413 0.989951i \(-0.454835\pi\)
0.141413 + 0.989951i \(0.454835\pi\)
\(380\) 0 0
\(381\) 7.50695e8 0.695387
\(382\) 0 0
\(383\) 1.40661e9i 1.27932i 0.768659 + 0.639659i \(0.220924\pi\)
−0.768659 + 0.639659i \(0.779076\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.09026e9i − 1.83321i
\(388\) 0 0
\(389\) −1.50654e9 −1.29765 −0.648824 0.760938i \(-0.724739\pi\)
−0.648824 + 0.760938i \(0.724739\pi\)
\(390\) 0 0
\(391\) 4.87971e8 0.412834
\(392\) 0 0
\(393\) 2.77671e9i 2.30758i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.48209e8i − 0.519934i −0.965617 0.259967i \(-0.916288\pi\)
0.965617 0.259967i \(-0.0837117\pi\)
\(398\) 0 0
\(399\) 1.70143e9 1.34094
\(400\) 0 0
\(401\) −5.27771e8 −0.408733 −0.204367 0.978894i \(-0.565513\pi\)
−0.204367 + 0.978894i \(0.565513\pi\)
\(402\) 0 0
\(403\) − 1.04921e9i − 0.798540i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.24666e8i − 0.606314i
\(408\) 0 0
\(409\) −5.10465e7 −0.0368922 −0.0184461 0.999830i \(-0.505872\pi\)
−0.0184461 + 0.999830i \(0.505872\pi\)
\(410\) 0 0
\(411\) −3.62535e8 −0.257575
\(412\) 0 0
\(413\) − 6.85069e8i − 0.478530i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 4.04881e9i − 2.73433i
\(418\) 0 0
\(419\) 7.59761e8 0.504577 0.252289 0.967652i \(-0.418817\pi\)
0.252289 + 0.967652i \(0.418817\pi\)
\(420\) 0 0
\(421\) 1.31573e9 0.859370 0.429685 0.902979i \(-0.358625\pi\)
0.429685 + 0.902979i \(0.358625\pi\)
\(422\) 0 0
\(423\) 2.07471e9i 1.33280i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.51003e8i 0.156020i
\(428\) 0 0
\(429\) 2.50909e9 1.53432
\(430\) 0 0
\(431\) 1.89700e9 1.14129 0.570645 0.821197i \(-0.306693\pi\)
0.570645 + 0.821197i \(0.306693\pi\)
\(432\) 0 0
\(433\) 2.35825e9i 1.39599i 0.716103 + 0.697995i \(0.245924\pi\)
−0.716103 + 0.697995i \(0.754076\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 7.39173e8i − 0.423702i
\(438\) 0 0
\(439\) −9.29569e8 −0.524392 −0.262196 0.965015i \(-0.584447\pi\)
−0.262196 + 0.965015i \(0.584447\pi\)
\(440\) 0 0
\(441\) −1.72451e9 −0.957480
\(442\) 0 0
\(443\) 2.20109e9i 1.20289i 0.798916 + 0.601443i \(0.205407\pi\)
−0.798916 + 0.601443i \(0.794593\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.23853e9i 2.24460i
\(448\) 0 0
\(449\) 6.13244e6 0.00319721 0.00159860 0.999999i \(-0.499491\pi\)
0.00159860 + 0.999999i \(0.499491\pi\)
\(450\) 0 0
\(451\) 6.49951e8 0.333628
\(452\) 0 0
\(453\) 3.62361e9i 1.83146i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.94414e8i 0.389350i 0.980868 + 0.194675i \(0.0623652\pi\)
−0.980868 + 0.194675i \(0.937635\pi\)
\(458\) 0 0
\(459\) 1.41372e9 0.682367
\(460\) 0 0
\(461\) −4.10368e9 −1.95083 −0.975417 0.220366i \(-0.929275\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(462\) 0 0
\(463\) 2.96925e9i 1.39031i 0.718858 + 0.695157i \(0.244665\pi\)
−0.718858 + 0.695157i \(0.755335\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.59415e9i 0.724303i 0.932119 + 0.362151i \(0.117958\pi\)
−0.932119 + 0.362151i \(0.882042\pi\)
\(468\) 0 0
\(469\) −5.29536e8 −0.237023
\(470\) 0 0
\(471\) −9.77730e8 −0.431167
\(472\) 0 0
\(473\) − 2.59107e9i − 1.12581i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 2.55605e9i − 1.07834i
\(478\) 0 0
\(479\) 3.56500e9 1.48213 0.741064 0.671435i \(-0.234322\pi\)
0.741064 + 0.671435i \(0.234322\pi\)
\(480\) 0 0
\(481\) −2.55027e9 −1.04491
\(482\) 0 0
\(483\) − 4.16973e8i − 0.168381i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.08588e9i 0.818349i 0.912456 + 0.409174i \(0.134183\pi\)
−0.912456 + 0.409174i \(0.865817\pi\)
\(488\) 0 0
\(489\) 3.54789e9 1.37211
\(490\) 0 0
\(491\) −1.60239e9 −0.610918 −0.305459 0.952205i \(-0.598810\pi\)
−0.305459 + 0.952205i \(0.598810\pi\)
\(492\) 0 0
\(493\) 7.79098e9i 2.92838i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.52377e9i 0.556766i
\(498\) 0 0
\(499\) −8.43362e8 −0.303852 −0.151926 0.988392i \(-0.548548\pi\)
−0.151926 + 0.988392i \(0.548548\pi\)
\(500\) 0 0
\(501\) 4.29202e9 1.52486
\(502\) 0 0
\(503\) − 1.82551e9i − 0.639581i −0.947488 0.319790i \(-0.896388\pi\)
0.947488 0.319790i \(-0.103612\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 3.35378e9i − 1.14290i
\(508\) 0 0
\(509\) −4.63020e9 −1.55628 −0.778140 0.628091i \(-0.783837\pi\)
−0.778140 + 0.628091i \(0.783837\pi\)
\(510\) 0 0
\(511\) 5.81330e8 0.192730
\(512\) 0 0
\(513\) − 2.14148e9i − 0.700332i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.57179e9i 0.818498i
\(518\) 0 0
\(519\) 8.60203e9 2.70094
\(520\) 0 0
\(521\) 3.67003e8 0.113694 0.0568471 0.998383i \(-0.481895\pi\)
0.0568471 + 0.998383i \(0.481895\pi\)
\(522\) 0 0
\(523\) 1.39584e9i 0.426657i 0.976981 + 0.213328i \(0.0684304\pi\)
−0.976981 + 0.213328i \(0.931570\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 3.61847e9i − 1.07693i
\(528\) 0 0
\(529\) 3.22368e9 0.946796
\(530\) 0 0
\(531\) −4.25765e9 −1.23407
\(532\) 0 0
\(533\) − 2.00997e9i − 0.574968i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 2.25496e9i − 0.628389i
\(538\) 0 0
\(539\) −2.13768e9 −0.588006
\(540\) 0 0
\(541\) 7.69994e8 0.209072 0.104536 0.994521i \(-0.466664\pi\)
0.104536 + 0.994521i \(0.466664\pi\)
\(542\) 0 0
\(543\) − 1.86669e9i − 0.500348i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.00580e9i − 0.262757i −0.991332 0.131379i \(-0.958060\pi\)
0.991332 0.131379i \(-0.0419404\pi\)
\(548\) 0 0
\(549\) 1.55996e9 0.402357
\(550\) 0 0
\(551\) 1.18017e10 3.00548
\(552\) 0 0
\(553\) 1.92091e9i 0.483025i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.69979e9i 1.88793i 0.330046 + 0.943965i \(0.392936\pi\)
−0.330046 + 0.943965i \(0.607064\pi\)
\(558\) 0 0
\(559\) −8.01284e9 −1.94019
\(560\) 0 0
\(561\) 8.65320e9 2.06922
\(562\) 0 0
\(563\) 7.19305e9i 1.69877i 0.527777 + 0.849383i \(0.323026\pi\)
−0.527777 + 0.849383i \(0.676974\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.43845e9i 0.331402i
\(568\) 0 0
\(569\) 4.07740e9 0.927876 0.463938 0.885868i \(-0.346436\pi\)
0.463938 + 0.885868i \(0.346436\pi\)
\(570\) 0 0
\(571\) −3.94726e9 −0.887298 −0.443649 0.896201i \(-0.646316\pi\)
−0.443649 + 0.896201i \(0.646316\pi\)
\(572\) 0 0
\(573\) − 4.32143e9i − 0.959592i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 2.06436e9i − 0.447372i −0.974661 0.223686i \(-0.928191\pi\)
0.974661 0.223686i \(-0.0718091\pi\)
\(578\) 0 0
\(579\) −8.95054e9 −1.91635
\(580\) 0 0
\(581\) 1.60825e9 0.340201
\(582\) 0 0
\(583\) − 3.16845e9i − 0.662227i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5.42776e9i − 1.10761i −0.832646 0.553806i \(-0.813175\pi\)
0.832646 0.553806i \(-0.186825\pi\)
\(588\) 0 0
\(589\) −5.48121e9 −1.10528
\(590\) 0 0
\(591\) −6.86441e9 −1.36788
\(592\) 0 0
\(593\) − 5.36795e9i − 1.05710i −0.848902 0.528551i \(-0.822736\pi\)
0.848902 0.528551i \(-0.177264\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 1.85921e9i − 0.357616i
\(598\) 0 0
\(599\) −3.96320e9 −0.753446 −0.376723 0.926326i \(-0.622949\pi\)
−0.376723 + 0.926326i \(0.622949\pi\)
\(600\) 0 0
\(601\) −3.57751e9 −0.672233 −0.336117 0.941820i \(-0.609114\pi\)
−0.336117 + 0.941820i \(0.609114\pi\)
\(602\) 0 0
\(603\) 3.29103e9i 0.611253i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.79748e7i 0.00326215i 0.999999 + 0.00163108i \(0.000519188\pi\)
−0.999999 + 0.00163108i \(0.999481\pi\)
\(608\) 0 0
\(609\) 6.65743e9 1.19439
\(610\) 0 0
\(611\) 7.95321e9 1.41058
\(612\) 0 0
\(613\) 9.92247e8i 0.173984i 0.996209 + 0.0869918i \(0.0277254\pi\)
−0.996209 + 0.0869918i \(0.972275\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 5.79730e9i − 0.993637i −0.867854 0.496819i \(-0.834501\pi\)
0.867854 0.496819i \(-0.165499\pi\)
\(618\) 0 0
\(619\) −1.23127e9 −0.208658 −0.104329 0.994543i \(-0.533269\pi\)
−0.104329 + 0.994543i \(0.533269\pi\)
\(620\) 0 0
\(621\) −5.24817e8 −0.0879402
\(622\) 0 0
\(623\) − 2.02904e9i − 0.336189i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.31078e10i − 2.12370i
\(628\) 0 0
\(629\) −8.79521e9 −1.40919
\(630\) 0 0
\(631\) −4.58423e9 −0.726379 −0.363189 0.931715i \(-0.618312\pi\)
−0.363189 + 0.931715i \(0.618312\pi\)
\(632\) 0 0
\(633\) − 9.03625e9i − 1.41604i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.61075e9i 1.01336i
\(638\) 0 0
\(639\) 9.47014e9 1.43583
\(640\) 0 0
\(641\) 1.09681e9 0.164486 0.0822431 0.996612i \(-0.473792\pi\)
0.0822431 + 0.996612i \(0.473792\pi\)
\(642\) 0 0
\(643\) − 1.12025e10i − 1.66179i −0.556430 0.830894i \(-0.687829\pi\)
0.556430 0.830894i \(-0.312171\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.13092e9i 1.03510i 0.855654 + 0.517548i \(0.173155\pi\)
−0.855654 + 0.517548i \(0.826845\pi\)
\(648\) 0 0
\(649\) −5.27774e9 −0.757865
\(650\) 0 0
\(651\) −3.09199e9 −0.439243
\(652\) 0 0
\(653\) 3.81333e9i 0.535930i 0.963429 + 0.267965i \(0.0863511\pi\)
−0.963429 + 0.267965i \(0.913649\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.61292e9i − 0.497027i
\(658\) 0 0
\(659\) 7.02323e7 0.00955956 0.00477978 0.999989i \(-0.498479\pi\)
0.00477978 + 0.999989i \(0.498479\pi\)
\(660\) 0 0
\(661\) 6.27708e9 0.845381 0.422691 0.906274i \(-0.361086\pi\)
0.422691 + 0.906274i \(0.361086\pi\)
\(662\) 0 0
\(663\) − 2.67599e10i − 3.56605i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 2.89226e9i − 0.377396i
\(668\) 0 0
\(669\) −6.10580e9 −0.788408
\(670\) 0 0
\(671\) 1.93371e9 0.247095
\(672\) 0 0
\(673\) − 7.13029e9i − 0.901684i −0.892604 0.450842i \(-0.851124\pi\)
0.892604 0.450842i \(-0.148876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.73732e9i 0.586776i 0.955993 + 0.293388i \(0.0947829\pi\)
−0.955993 + 0.293388i \(0.905217\pi\)
\(678\) 0 0
\(679\) −1.38235e9 −0.169462
\(680\) 0 0
\(681\) −1.32685e10 −1.60992
\(682\) 0 0
\(683\) 5.84588e9i 0.702066i 0.936363 + 0.351033i \(0.114169\pi\)
−0.936363 + 0.351033i \(0.885831\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 2.33301e10i 2.74516i
\(688\) 0 0
\(689\) −9.79839e9 −1.14127
\(690\) 0 0
\(691\) 9.53623e9 1.09952 0.549761 0.835322i \(-0.314719\pi\)
0.549761 + 0.835322i \(0.314719\pi\)
\(692\) 0 0
\(693\) − 4.11364e9i − 0.469526i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 6.93185e9i − 0.775415i
\(698\) 0 0
\(699\) 4.85557e9 0.537737
\(700\) 0 0
\(701\) 6.30244e9 0.691029 0.345514 0.938414i \(-0.387704\pi\)
0.345514 + 0.938414i \(0.387704\pi\)
\(702\) 0 0
\(703\) 1.33229e10i 1.44629i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.53709e9i 0.802113i
\(708\) 0 0
\(709\) 1.61363e9 0.170036 0.0850182 0.996379i \(-0.472905\pi\)
0.0850182 + 0.996379i \(0.472905\pi\)
\(710\) 0 0
\(711\) 1.19383e10 1.24566
\(712\) 0 0
\(713\) 1.34329e9i 0.138790i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.68228e8i − 0.0271761i
\(718\) 0 0
\(719\) 1.87867e9 0.188495 0.0942474 0.995549i \(-0.469956\pi\)
0.0942474 + 0.995549i \(0.469956\pi\)
\(720\) 0 0
\(721\) −7.78642e9 −0.773686
\(722\) 0 0
\(723\) − 1.48162e10i − 1.45799i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.76641e10i 1.70499i 0.522734 + 0.852496i \(0.324912\pi\)
−0.522734 + 0.852496i \(0.675088\pi\)
\(728\) 0 0
\(729\) 1.49272e10 1.42703
\(730\) 0 0
\(731\) −2.76342e10 −2.61659
\(732\) 0 0
\(733\) 3.51351e9i 0.329516i 0.986334 + 0.164758i \(0.0526844\pi\)
−0.986334 + 0.164758i \(0.947316\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.07953e9i 0.375382i
\(738\) 0 0
\(739\) −1.28441e10 −1.17070 −0.585351 0.810780i \(-0.699043\pi\)
−0.585351 + 0.810780i \(0.699043\pi\)
\(740\) 0 0
\(741\) −4.05356e10 −3.65993
\(742\) 0 0
\(743\) 6.83686e9i 0.611499i 0.952112 + 0.305749i \(0.0989070\pi\)
−0.952112 + 0.305749i \(0.901093\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 9.99513e9i − 0.877336i
\(748\) 0 0
\(749\) 3.78794e8 0.0329395
\(750\) 0 0
\(751\) 8.09190e8 0.0697125 0.0348563 0.999392i \(-0.488903\pi\)
0.0348563 + 0.999392i \(0.488903\pi\)
\(752\) 0 0
\(753\) − 1.41200e9i − 0.120518i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.94075e10i − 1.62605i −0.582231 0.813023i \(-0.697820\pi\)
0.582231 0.813023i \(-0.302180\pi\)
\(758\) 0 0
\(759\) −3.21234e9 −0.266671
\(760\) 0 0
\(761\) −1.05361e10 −0.866633 −0.433316 0.901242i \(-0.642657\pi\)
−0.433316 + 0.901242i \(0.642657\pi\)
\(762\) 0 0
\(763\) 8.43311e9i 0.687309i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.63213e10i 1.30609i
\(768\) 0 0
\(769\) −1.43764e10 −1.14001 −0.570005 0.821641i \(-0.693059\pi\)
−0.570005 + 0.821641i \(0.693059\pi\)
\(770\) 0 0
\(771\) −3.10184e10 −2.43741
\(772\) 0 0
\(773\) 4.52876e9i 0.352655i 0.984332 + 0.176328i \(0.0564219\pi\)
−0.984332 + 0.176328i \(0.943578\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.51554e9i 0.574760i
\(778\) 0 0
\(779\) −1.05003e10 −0.795829
\(780\) 0 0
\(781\) 1.17391e10 0.881771
\(782\) 0 0
\(783\) − 8.37928e9i − 0.623793i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.16498e10i − 0.851939i −0.904737 0.425970i \(-0.859933\pi\)
0.904737 0.425970i \(-0.140067\pi\)
\(788\) 0 0
\(789\) −8.76922e9 −0.635611
\(790\) 0 0
\(791\) 6.65705e9 0.478260
\(792\) 0 0
\(793\) − 5.97999e9i − 0.425838i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.52156e10i 1.76427i 0.470998 + 0.882134i \(0.343894\pi\)
−0.470998 + 0.882134i \(0.656106\pi\)
\(798\) 0 0
\(799\) 2.74286e10 1.90234
\(800\) 0 0
\(801\) −1.26104e10 −0.866989
\(802\) 0 0
\(803\) − 4.47855e9i − 0.305234i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 2.18073e10i − 1.46064i
\(808\) 0 0
\(809\) −7.02887e9 −0.466730 −0.233365 0.972389i \(-0.574974\pi\)
−0.233365 + 0.972389i \(0.574974\pi\)
\(810\) 0 0
\(811\) −2.36366e10 −1.55601 −0.778003 0.628261i \(-0.783767\pi\)
−0.778003 + 0.628261i \(0.783767\pi\)
\(812\) 0 0
\(813\) − 1.79440e10i − 1.17112i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.18599e10i 2.68548i
\(818\) 0 0
\(819\) −1.27214e10 −0.809171
\(820\) 0 0
\(821\) 1.76032e10 1.11017 0.555085 0.831794i \(-0.312686\pi\)
0.555085 + 0.831794i \(0.312686\pi\)
\(822\) 0 0
\(823\) − 1.69875e10i − 1.06225i −0.847292 0.531127i \(-0.821769\pi\)
0.847292 0.531127i \(-0.178231\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.92153e10i 1.18135i 0.806911 + 0.590673i \(0.201138\pi\)
−0.806911 + 0.590673i \(0.798862\pi\)
\(828\) 0 0
\(829\) 4.89038e9 0.298128 0.149064 0.988828i \(-0.452374\pi\)
0.149064 + 0.988828i \(0.452374\pi\)
\(830\) 0 0
\(831\) 4.55911e9 0.275598
\(832\) 0 0
\(833\) 2.27987e10i 1.36664i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.89170e9i 0.229403i
\(838\) 0 0
\(839\) −4.84102e9 −0.282989 −0.141495 0.989939i \(-0.545191\pi\)
−0.141495 + 0.989939i \(0.545191\pi\)
\(840\) 0 0
\(841\) 2.89282e10 1.67701
\(842\) 0 0
\(843\) 1.92432e10i 1.10632i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.49963e9i 0.197893i
\(848\) 0 0
\(849\) 1.36518e10 0.765618
\(850\) 0 0
\(851\) 3.26506e9 0.181609
\(852\) 0 0
\(853\) − 1.44504e10i − 0.797182i −0.917129 0.398591i \(-0.869499\pi\)
0.917129 0.398591i \(-0.130501\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.34760e10i − 0.731355i −0.930742 0.365678i \(-0.880837\pi\)
0.930742 0.365678i \(-0.119163\pi\)
\(858\) 0 0
\(859\) −2.71763e10 −1.46290 −0.731449 0.681896i \(-0.761156\pi\)
−0.731449 + 0.681896i \(0.761156\pi\)
\(860\) 0 0
\(861\) −5.92329e9 −0.316266
\(862\) 0 0
\(863\) − 1.14514e10i − 0.606486i −0.952913 0.303243i \(-0.901931\pi\)
0.952913 0.303243i \(-0.0980694\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 6.34782e10i − 3.30794i
\(868\) 0 0
\(869\) 1.47986e10 0.764985
\(870\) 0 0
\(871\) 1.26159e10 0.646925
\(872\) 0 0
\(873\) 8.59118e9i 0.437022i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.94305e10i − 0.972714i −0.873760 0.486357i \(-0.838325\pi\)
0.873760 0.486357i \(-0.161675\pi\)
\(878\) 0 0
\(879\) 1.61460e10 0.801868
\(880\) 0 0
\(881\) 1.67671e10 0.826118 0.413059 0.910704i \(-0.364460\pi\)
0.413059 + 0.910704i \(0.364460\pi\)
\(882\) 0 0
\(883\) 2.67210e10i 1.30614i 0.757297 + 0.653071i \(0.226520\pi\)
−0.757297 + 0.653071i \(0.773480\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.70750e9i 0.130267i 0.997877 + 0.0651336i \(0.0207474\pi\)
−0.997877 + 0.0651336i \(0.979253\pi\)
\(888\) 0 0
\(889\) −4.71802e9 −0.225218
\(890\) 0 0
\(891\) 1.10818e10 0.524854
\(892\) 0 0
\(893\) − 4.15485e10i − 1.95243i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.93413e9i 0.459575i
\(898\) 0 0
\(899\) −2.14471e10 −0.984486
\(900\) 0 0
\(901\) −3.37921e10 −1.53914
\(902\) 0 0
\(903\) 2.36135e10i 1.06722i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.50146e10i 0.668171i 0.942543 + 0.334085i \(0.108427\pi\)
−0.942543 + 0.334085i \(0.891573\pi\)
\(908\) 0 0
\(909\) 4.68425e10 2.06855
\(910\) 0 0
\(911\) −2.93619e10 −1.28668 −0.643339 0.765581i \(-0.722452\pi\)
−0.643339 + 0.765581i \(0.722452\pi\)
\(912\) 0 0
\(913\) − 1.23899e10i − 0.538789i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.74512e10i − 0.747365i
\(918\) 0 0
\(919\) 2.07262e10 0.880879 0.440439 0.897782i \(-0.354823\pi\)
0.440439 + 0.897782i \(0.354823\pi\)
\(920\) 0 0
\(921\) 4.30145e10 1.81429
\(922\) 0 0
\(923\) − 3.63030e10i − 1.51962i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.83921e10i 1.99524i
\(928\) 0 0
\(929\) 3.07919e10 1.26003 0.630015 0.776583i \(-0.283049\pi\)
0.630015 + 0.776583i \(0.283049\pi\)
\(930\) 0 0
\(931\) 3.45353e10 1.40262
\(932\) 0 0
\(933\) 1.99371e10i 0.803666i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.12790e10i 0.447901i 0.974601 + 0.223951i \(0.0718954\pi\)
−0.974601 + 0.223951i \(0.928105\pi\)
\(938\) 0 0
\(939\) 1.54137e10 0.607543
\(940\) 0 0
\(941\) 1.74971e10 0.684546 0.342273 0.939600i \(-0.388803\pi\)
0.342273 + 0.939600i \(0.388803\pi\)
\(942\) 0 0
\(943\) 2.57332e9i 0.0999317i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.00359e10i − 1.53188i −0.642912 0.765940i \(-0.722274\pi\)
0.642912 0.765940i \(-0.277726\pi\)
\(948\) 0 0
\(949\) −1.38498e10 −0.526033
\(950\) 0 0
\(951\) 7.31469e10 2.75781
\(952\) 0 0
\(953\) 3.20525e10i 1.19960i 0.800149 + 0.599801i \(0.204754\pi\)
−0.800149 + 0.599801i \(0.795246\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 5.12886e10i − 1.89160i
\(958\) 0 0
\(959\) 2.27849e9 0.0834221
\(960\) 0 0
\(961\) −1.75517e10 −0.637950
\(962\) 0 0
\(963\) − 2.35418e9i − 0.0849468i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 2.74626e10i − 0.976671i −0.872656 0.488336i \(-0.837604\pi\)
0.872656 0.488336i \(-0.162396\pi\)
\(968\) 0 0
\(969\) −1.39797e11 −4.93587
\(970\) 0 0
\(971\) −1.74172e10 −0.610537 −0.305268 0.952266i \(-0.598746\pi\)
−0.305268 + 0.952266i \(0.598746\pi\)
\(972\) 0 0
\(973\) 2.54462e10i 0.885581i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.15528e10i − 0.739390i −0.929153 0.369695i \(-0.879462\pi\)
0.929153 0.369695i \(-0.120538\pi\)
\(978\) 0 0
\(979\) −1.56317e10 −0.532434
\(980\) 0 0
\(981\) 5.24112e10 1.77248
\(982\) 0 0
\(983\) − 3.94252e10i − 1.32384i −0.749573 0.661922i \(-0.769741\pi\)
0.749573 0.661922i \(-0.230259\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 2.34378e10i − 0.775902i
\(988\) 0 0
\(989\) 1.02587e10 0.337214
\(990\) 0 0
\(991\) 9.69036e9 0.316287 0.158144 0.987416i \(-0.449449\pi\)
0.158144 + 0.987416i \(0.449449\pi\)
\(992\) 0 0
\(993\) − 1.24182e10i − 0.402471i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.17694e9i 0.0376115i 0.999823 + 0.0188057i \(0.00598640\pi\)
−0.999823 + 0.0188057i \(0.994014\pi\)
\(998\) 0 0
\(999\) 9.45933e9 0.300180
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.r.49.4 4
4.3 odd 2 100.8.c.c.49.1 4
5.2 odd 4 400.8.a.be.1.2 2
5.3 odd 4 400.8.a.u.1.1 2
5.4 even 2 inner 400.8.c.r.49.1 4
20.3 even 4 100.8.a.d.1.2 yes 2
20.7 even 4 100.8.a.b.1.1 2
20.19 odd 2 100.8.c.c.49.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.8.a.b.1.1 2 20.7 even 4
100.8.a.d.1.2 yes 2 20.3 even 4
100.8.c.c.49.1 4 4.3 odd 2
100.8.c.c.49.4 4 20.19 odd 2
400.8.a.u.1.1 2 5.3 odd 4
400.8.a.be.1.2 2 5.2 odd 4
400.8.c.r.49.1 4 5.4 even 2 inner
400.8.c.r.49.4 4 1.1 even 1 trivial