Properties

Label 400.8.c.r
Level $400$
Weight $8$
Character orbit 400.c
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-2936] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2521})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1261x^{2} + 396900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \beta_{2} - \beta_1) q^{3} + ( - 28 \beta_{2} + 6 \beta_1) q^{7} + ( - 8 \beta_{3} - 734) q^{9} + ( - 9 \beta_{3} - 1140) q^{11} + (536 \beta_{2} - 156 \beta_1) q^{13} + (2913 \beta_{2} - 432 \beta_1) q^{17}+ \cdots + (15726 \beta_{3} + 5374560) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2936 q^{9} - 4560 q^{11} + 41936 q^{19} + 71704 q^{21} + 461904 q^{29} - 429344 q^{31} - 1787504 q^{39} + 898164 q^{41} + 2852748 q^{49} - 5521488 q^{51} - 1887648 q^{59} + 2532728 q^{61} + 3370152 q^{69}+ \cdots + 21498240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 1261x^{2} + 396900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 1891\nu ) / 630 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 631\nu ) / 126 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 10\nu^{2} + 6305 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 6305 ) / 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -1891\beta_{2} - 3155\beta_1 ) / 10 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
24.6048i
25.6048i
25.6048i
24.6048i
0 70.2096i 0 0 0 441.257i 0 −2742.38 0
49.2 0 30.2096i 0 0 0 161.257i 0 1274.38 0
49.3 0 30.2096i 0 0 0 161.257i 0 1274.38 0
49.4 0 70.2096i 0 0 0 441.257i 0 −2742.38 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.8.c.r 4
4.b odd 2 1 100.8.c.c 4
5.b even 2 1 inner 400.8.c.r 4
5.c odd 4 1 400.8.a.u 2
5.c odd 4 1 400.8.a.be 2
20.d odd 2 1 100.8.c.c 4
20.e even 4 1 100.8.a.b 2
20.e even 4 1 100.8.a.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
100.8.a.b 2 20.e even 4 1
100.8.a.d yes 2 20.e even 4 1
100.8.c.c 4 4.b odd 2 1
100.8.c.c 4 20.d odd 2 1
400.8.a.u 2 5.c odd 4 1
400.8.a.be 2 5.c odd 4 1
400.8.c.r 4 1.a even 1 1 trivial
400.8.c.r 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 5842T_{3}^{2} + 4498641 \) acting on \(S_{8}^{\mathrm{new}}(400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5842 T^{2} + 4498641 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 5063176336 \) Copy content Toggle raw display
$11$ \( (T^{2} + 2280 T - 3805425)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 66\!\cdots\!41 \) Copy content Toggle raw display
$19$ \( (T^{2} - 20968 T - 1864595969)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( (T^{2} - 230952 T + 3451378176)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 214672 T + 11464294396)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 14\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( (T^{2} - 449082 T - 122417065719)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 85\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 16\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( (T^{2} + \cdots - 3875694814656)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 1043925150476)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 54\!\cdots\!81 \) Copy content Toggle raw display
$71$ \( (T^{2} + 3616776 T + 564685588944)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 66\!\cdots\!01 \) Copy content Toggle raw display
$79$ \( (T^{2} + \cdots - 5717491570196)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 21\!\cdots\!81 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots - 36039722681439)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 92\!\cdots\!96 \) Copy content Toggle raw display
show more
show less