Properties

Label 400.8.c.r.49.2
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,8,Mod(49,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-2936] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2521})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1261x^{2} + 396900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 100)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(25.6048i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.r.49.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-30.2096i q^{3} +161.257i q^{7} +1274.38 q^{9} +1119.43 q^{11} -5152.69i q^{13} -7125.53i q^{17} -33951.5 q^{19} +4871.51 q^{21} +24499.2i q^{23} -104567. i q^{27} +16061.1 q^{29} -114867. q^{31} -33817.5i q^{33} +492031. i q^{37} -155661. q^{39} +640276. q^{41} +69314.0i q^{43} -1.21927e6i q^{47} +797539. q^{49} -215259. q^{51} -1.38883e6i q^{53} +1.02566e6i q^{57} -2.49636e6 q^{59} +1.83520e6 q^{61} +205504. i q^{63} -1.94206e6i q^{67} +740110. q^{69} -163523. q^{71} -1.95783e6i q^{73} +180516. i q^{77} +1.31338e6 q^{79} -371844. q^{81} -4.04009e6i q^{83} -485198. i q^{87} -7.83758e6 q^{89} +830909. q^{91} +3.47009e6i q^{93} -9.70980e6i q^{97} +1.42658e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2936 q^{9} - 4560 q^{11} + 41936 q^{19} + 71704 q^{21} + 461904 q^{29} - 429344 q^{31} - 1787504 q^{39} + 898164 q^{41} + 2852748 q^{49} - 5521488 q^{51} - 1887648 q^{59} + 2532728 q^{61} + 3370152 q^{69}+ \cdots + 21498240 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 30.2096i − 0.645981i −0.946402 0.322991i \(-0.895312\pi\)
0.946402 0.322991i \(-0.104688\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 161.257i 0.177695i 0.996045 + 0.0888477i \(0.0283185\pi\)
−0.996045 + 0.0888477i \(0.971682\pi\)
\(8\) 0 0
\(9\) 1274.38 0.582708
\(10\) 0 0
\(11\) 1119.43 0.253584 0.126792 0.991929i \(-0.459532\pi\)
0.126792 + 0.991929i \(0.459532\pi\)
\(12\) 0 0
\(13\) − 5152.69i − 0.650478i −0.945632 0.325239i \(-0.894555\pi\)
0.945632 0.325239i \(-0.105445\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 7125.53i − 0.351760i −0.984412 0.175880i \(-0.943723\pi\)
0.984412 0.175880i \(-0.0562770\pi\)
\(18\) 0 0
\(19\) −33951.5 −1.13559 −0.567794 0.823171i \(-0.692203\pi\)
−0.567794 + 0.823171i \(0.692203\pi\)
\(20\) 0 0
\(21\) 4871.51 0.114788
\(22\) 0 0
\(23\) 24499.2i 0.419860i 0.977716 + 0.209930i \(0.0673236\pi\)
−0.977716 + 0.209930i \(0.932676\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 104567.i − 1.02240i
\(28\) 0 0
\(29\) 16061.1 0.122287 0.0611437 0.998129i \(-0.480525\pi\)
0.0611437 + 0.998129i \(0.480525\pi\)
\(30\) 0 0
\(31\) −114867. −0.692518 −0.346259 0.938139i \(-0.612548\pi\)
−0.346259 + 0.938139i \(0.612548\pi\)
\(32\) 0 0
\(33\) − 33817.5i − 0.163811i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 492031.i 1.59693i 0.602041 + 0.798465i \(0.294354\pi\)
−0.602041 + 0.798465i \(0.705646\pi\)
\(38\) 0 0
\(39\) −155661. −0.420196
\(40\) 0 0
\(41\) 640276. 1.45085 0.725427 0.688299i \(-0.241642\pi\)
0.725427 + 0.688299i \(0.241642\pi\)
\(42\) 0 0
\(43\) 69314.0i 0.132948i 0.997788 + 0.0664740i \(0.0211749\pi\)
−0.997788 + 0.0664740i \(0.978825\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1.21927e6i − 1.71299i −0.516152 0.856497i \(-0.672636\pi\)
0.516152 0.856497i \(-0.327364\pi\)
\(48\) 0 0
\(49\) 797539. 0.968424
\(50\) 0 0
\(51\) −215259. −0.227230
\(52\) 0 0
\(53\) − 1.38883e6i − 1.28140i −0.767791 0.640700i \(-0.778644\pi\)
0.767791 0.640700i \(-0.221356\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.02566e6i 0.733569i
\(58\) 0 0
\(59\) −2.49636e6 −1.58243 −0.791217 0.611536i \(-0.790552\pi\)
−0.791217 + 0.611536i \(0.790552\pi\)
\(60\) 0 0
\(61\) 1.83520e6 1.03521 0.517605 0.855620i \(-0.326824\pi\)
0.517605 + 0.855620i \(0.326824\pi\)
\(62\) 0 0
\(63\) 205504.i 0.103545i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.94206e6i − 0.788861i −0.918926 0.394431i \(-0.870942\pi\)
0.918926 0.394431i \(-0.129058\pi\)
\(68\) 0 0
\(69\) 740110. 0.271222
\(70\) 0 0
\(71\) −163523. −0.0542218 −0.0271109 0.999632i \(-0.508631\pi\)
−0.0271109 + 0.999632i \(0.508631\pi\)
\(72\) 0 0
\(73\) − 1.95783e6i − 0.589040i −0.955645 0.294520i \(-0.904840\pi\)
0.955645 0.294520i \(-0.0951598\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 180516.i 0.0450608i
\(78\) 0 0
\(79\) 1.31338e6 0.299706 0.149853 0.988708i \(-0.452120\pi\)
0.149853 + 0.988708i \(0.452120\pi\)
\(80\) 0 0
\(81\) −371844. −0.0777433
\(82\) 0 0
\(83\) − 4.04009e6i − 0.775564i −0.921751 0.387782i \(-0.873241\pi\)
0.921751 0.387782i \(-0.126759\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 485198.i − 0.0789953i
\(88\) 0 0
\(89\) −7.83758e6 −1.17847 −0.589233 0.807963i \(-0.700570\pi\)
−0.589233 + 0.807963i \(0.700570\pi\)
\(90\) 0 0
\(91\) 830909. 0.115587
\(92\) 0 0
\(93\) 3.47009e6i 0.447354i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 9.70980e6i − 1.08021i −0.841597 0.540106i \(-0.818384\pi\)
0.841597 0.540106i \(-0.181616\pi\)
\(98\) 0 0
\(99\) 1.42658e6 0.147766
\(100\) 0 0
\(101\) −6.28989e6 −0.607461 −0.303731 0.952758i \(-0.598232\pi\)
−0.303731 + 0.952758i \(0.598232\pi\)
\(102\) 0 0
\(103\) − 5.56437e6i − 0.501748i −0.968020 0.250874i \(-0.919282\pi\)
0.968020 0.250874i \(-0.0807180\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.16208e7i 1.70619i 0.521752 + 0.853097i \(0.325279\pi\)
−0.521752 + 0.853097i \(0.674721\pi\)
\(108\) 0 0
\(109\) −9.27249e6 −0.685809 −0.342905 0.939370i \(-0.611411\pi\)
−0.342905 + 0.939370i \(0.611411\pi\)
\(110\) 0 0
\(111\) 1.48640e7 1.03159
\(112\) 0 0
\(113\) − 9.72018e6i − 0.633724i −0.948472 0.316862i \(-0.897371\pi\)
0.948472 0.316862i \(-0.102629\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 6.56650e6i − 0.379039i
\(118\) 0 0
\(119\) 1.14904e6 0.0625061
\(120\) 0 0
\(121\) −1.82340e7 −0.935695
\(122\) 0 0
\(123\) − 1.93425e7i − 0.937225i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.14904e7i 1.36416i 0.731277 + 0.682081i \(0.238925\pi\)
−0.731277 + 0.682081i \(0.761075\pi\)
\(128\) 0 0
\(129\) 2.09395e6 0.0858819
\(130\) 0 0
\(131\) −1.89614e7 −0.736920 −0.368460 0.929644i \(-0.620115\pi\)
−0.368460 + 0.929644i \(0.620115\pi\)
\(132\) 0 0
\(133\) − 5.47492e6i − 0.201789i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.98063e6i 0.198712i 0.995052 + 0.0993562i \(0.0316783\pi\)
−0.995052 + 0.0993562i \(0.968322\pi\)
\(138\) 0 0
\(139\) 4.86902e6 0.153776 0.0768882 0.997040i \(-0.475502\pi\)
0.0768882 + 0.997040i \(0.475502\pi\)
\(140\) 0 0
\(141\) −3.68335e7 −1.10656
\(142\) 0 0
\(143\) − 5.76808e6i − 0.164951i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2.40933e7i − 0.625584i
\(148\) 0 0
\(149\) −4.11601e7 −1.01935 −0.509677 0.860366i \(-0.670235\pi\)
−0.509677 + 0.860366i \(0.670235\pi\)
\(150\) 0 0
\(151\) −6.91055e7 −1.63340 −0.816701 0.577061i \(-0.804200\pi\)
−0.816701 + 0.577061i \(0.804200\pi\)
\(152\) 0 0
\(153\) − 9.08065e6i − 0.204973i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.91482e7i 1.21981i 0.792474 + 0.609906i \(0.208793\pi\)
−0.792474 + 0.609906i \(0.791207\pi\)
\(158\) 0 0
\(159\) −4.19560e7 −0.827760
\(160\) 0 0
\(161\) −3.95068e6 −0.0746073
\(162\) 0 0
\(163\) − 1.84384e7i − 0.333477i −0.986001 0.166738i \(-0.946676\pi\)
0.986001 0.166738i \(-0.0533235\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.16180e7i − 0.525323i −0.964888 0.262662i \(-0.915400\pi\)
0.964888 0.262662i \(-0.0846003\pi\)
\(168\) 0 0
\(169\) 3.61983e7 0.576879
\(170\) 0 0
\(171\) −4.32671e7 −0.661716
\(172\) 0 0
\(173\) − 8.16760e7i − 1.19932i −0.800257 0.599658i \(-0.795303\pi\)
0.800257 0.599658i \(-0.204697\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.54140e7i 1.02222i
\(178\) 0 0
\(179\) −8.42697e7 −1.09821 −0.549106 0.835753i \(-0.685032\pi\)
−0.549106 + 0.835753i \(0.685032\pi\)
\(180\) 0 0
\(181\) 3.10251e7 0.388900 0.194450 0.980912i \(-0.437708\pi\)
0.194450 + 0.980912i \(0.437708\pi\)
\(182\) 0 0
\(183\) − 5.54406e7i − 0.668727i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 7.97653e6i − 0.0892008i
\(188\) 0 0
\(189\) 1.68622e7 0.181676
\(190\) 0 0
\(191\) −6.20657e7 −0.644517 −0.322259 0.946652i \(-0.604442\pi\)
−0.322259 + 0.946652i \(0.604442\pi\)
\(192\) 0 0
\(193\) − 1.73827e8i − 1.74047i −0.492635 0.870236i \(-0.663966\pi\)
0.492635 0.870236i \(-0.336034\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.01949e8i 0.950064i 0.879969 + 0.475032i \(0.157563\pi\)
−0.879969 + 0.475032i \(0.842437\pi\)
\(198\) 0 0
\(199\) −1.17985e8 −1.06130 −0.530652 0.847590i \(-0.678053\pi\)
−0.530652 + 0.847590i \(0.678053\pi\)
\(200\) 0 0
\(201\) −5.86687e7 −0.509590
\(202\) 0 0
\(203\) 2.58997e6i 0.0217299i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.12214e7i 0.244656i
\(208\) 0 0
\(209\) −3.80063e7 −0.287968
\(210\) 0 0
\(211\) −6.99393e7 −0.512546 −0.256273 0.966605i \(-0.582495\pi\)
−0.256273 + 0.966605i \(0.582495\pi\)
\(212\) 0 0
\(213\) 4.93995e6i 0.0350263i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1.85232e7i − 0.123057i
\(218\) 0 0
\(219\) −5.91452e7 −0.380509
\(220\) 0 0
\(221\) −3.67157e7 −0.228812
\(222\) 0 0
\(223\) − 2.95613e8i − 1.78508i −0.450970 0.892539i \(-0.648922\pi\)
0.450970 0.892539i \(-0.351078\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.63799e7i 0.206429i 0.994659 + 0.103215i \(0.0329129\pi\)
−0.994659 + 0.103215i \(0.967087\pi\)
\(228\) 0 0
\(229\) −2.88623e8 −1.58821 −0.794104 0.607782i \(-0.792059\pi\)
−0.794104 + 0.607782i \(0.792059\pi\)
\(230\) 0 0
\(231\) 5.45332e6 0.0291084
\(232\) 0 0
\(233\) − 2.19155e8i − 1.13503i −0.823364 0.567514i \(-0.807905\pi\)
0.823364 0.567514i \(-0.192095\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3.96766e7i − 0.193604i
\(238\) 0 0
\(239\) 1.54502e8 0.732053 0.366027 0.930604i \(-0.380718\pi\)
0.366027 + 0.930604i \(0.380718\pi\)
\(240\) 0 0
\(241\) −1.22833e8 −0.565267 −0.282634 0.959228i \(-0.591208\pi\)
−0.282634 + 0.959228i \(0.591208\pi\)
\(242\) 0 0
\(243\) − 2.17454e8i − 0.972179i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.74941e8i 0.738675i
\(248\) 0 0
\(249\) −1.22049e8 −0.501000
\(250\) 0 0
\(251\) 2.00115e8 0.798771 0.399386 0.916783i \(-0.369223\pi\)
0.399386 + 0.916783i \(0.369223\pi\)
\(252\) 0 0
\(253\) 2.74252e7i 0.106470i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3.46950e8i − 1.27497i −0.770461 0.637487i \(-0.779974\pi\)
0.770461 0.637487i \(-0.220026\pi\)
\(258\) 0 0
\(259\) −7.93435e7 −0.283767
\(260\) 0 0
\(261\) 2.04679e7 0.0712578
\(262\) 0 0
\(263\) − 1.07808e8i − 0.365432i −0.983166 0.182716i \(-0.941511\pi\)
0.983166 0.182716i \(-0.0584888\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.36770e8i 0.761267i
\(268\) 0 0
\(269\) −3.70830e8 −1.16156 −0.580780 0.814060i \(-0.697252\pi\)
−0.580780 + 0.814060i \(0.697252\pi\)
\(270\) 0 0
\(271\) 1.18015e8 0.360201 0.180100 0.983648i \(-0.442358\pi\)
0.180100 + 0.983648i \(0.442358\pi\)
\(272\) 0 0
\(273\) − 2.51014e7i − 0.0746670i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2.46581e8i − 0.697075i −0.937295 0.348538i \(-0.886678\pi\)
0.937295 0.348538i \(-0.113322\pi\)
\(278\) 0 0
\(279\) −1.46385e8 −0.403536
\(280\) 0 0
\(281\) −5.56340e8 −1.49578 −0.747890 0.663822i \(-0.768933\pi\)
−0.747890 + 0.663822i \(0.768933\pi\)
\(282\) 0 0
\(283\) − 2.87532e8i − 0.754108i −0.926191 0.377054i \(-0.876937\pi\)
0.926191 0.377054i \(-0.123063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.03249e8i 0.257810i
\(288\) 0 0
\(289\) 3.59565e8 0.876265
\(290\) 0 0
\(291\) −2.93329e8 −0.697797
\(292\) 0 0
\(293\) − 4.45120e8i − 1.03381i −0.856043 0.516905i \(-0.827084\pi\)
0.856043 0.516905i \(-0.172916\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.17055e8i − 0.259265i
\(298\) 0 0
\(299\) 1.26237e8 0.273110
\(300\) 0 0
\(301\) −1.11774e7 −0.0236242
\(302\) 0 0
\(303\) 1.90015e8i 0.392409i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.80295e7i 0.0750129i 0.999296 + 0.0375065i \(0.0119415\pi\)
−0.999296 + 0.0375065i \(0.988059\pi\)
\(308\) 0 0
\(309\) −1.68097e8 −0.324120
\(310\) 0 0
\(311\) 1.98911e8 0.374971 0.187486 0.982267i \(-0.439966\pi\)
0.187486 + 0.982267i \(0.439966\pi\)
\(312\) 0 0
\(313\) 3.06310e8i 0.564619i 0.959323 + 0.282310i \(0.0911006\pi\)
−0.959323 + 0.282310i \(0.908899\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.11969e9i 1.97420i 0.160117 + 0.987098i \(0.448813\pi\)
−0.160117 + 0.987098i \(0.551187\pi\)
\(318\) 0 0
\(319\) 1.79792e7 0.0310102
\(320\) 0 0
\(321\) 6.53155e8 1.10217
\(322\) 0 0
\(323\) 2.41922e8i 0.399454i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.80118e8i 0.443020i
\(328\) 0 0
\(329\) 1.96616e8 0.304391
\(330\) 0 0
\(331\) −6.94965e8 −1.05333 −0.526665 0.850073i \(-0.676558\pi\)
−0.526665 + 0.850073i \(0.676558\pi\)
\(332\) 0 0
\(333\) 6.27035e8i 0.930544i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.25084e8i 0.889680i 0.895610 + 0.444840i \(0.146739\pi\)
−0.895610 + 0.444840i \(0.853261\pi\)
\(338\) 0 0
\(339\) −2.93642e8 −0.409374
\(340\) 0 0
\(341\) −1.28586e8 −0.175612
\(342\) 0 0
\(343\) 2.61411e8i 0.349780i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.53942e9i − 1.97790i −0.148259 0.988949i \(-0.547367\pi\)
0.148259 0.988949i \(-0.452633\pi\)
\(348\) 0 0
\(349\) 5.95572e8 0.749972 0.374986 0.927030i \(-0.377648\pi\)
0.374986 + 0.927030i \(0.377648\pi\)
\(350\) 0 0
\(351\) −5.38801e8 −0.665048
\(352\) 0 0
\(353\) − 1.00357e9i − 1.21433i −0.794575 0.607166i \(-0.792306\pi\)
0.794575 0.607166i \(-0.207694\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 3.47121e7i − 0.0403778i
\(358\) 0 0
\(359\) 5.38711e8 0.614505 0.307252 0.951628i \(-0.400590\pi\)
0.307252 + 0.951628i \(0.400590\pi\)
\(360\) 0 0
\(361\) 2.58830e8 0.289561
\(362\) 0 0
\(363\) 5.50843e8i 0.604442i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7.66487e8i − 0.809419i −0.914445 0.404710i \(-0.867373\pi\)
0.914445 0.404710i \(-0.132627\pi\)
\(368\) 0 0
\(369\) 8.15957e8 0.845424
\(370\) 0 0
\(371\) 2.23960e8 0.227699
\(372\) 0 0
\(373\) 1.29545e9i 1.29253i 0.763113 + 0.646265i \(0.223670\pi\)
−0.763113 + 0.646265i \(0.776330\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8.27577e7i − 0.0795452i
\(378\) 0 0
\(379\) −9.56773e8 −0.902758 −0.451379 0.892332i \(-0.649068\pi\)
−0.451379 + 0.892332i \(0.649068\pi\)
\(380\) 0 0
\(381\) 9.51313e8 0.881223
\(382\) 0 0
\(383\) 1.64891e9i 1.49969i 0.661612 + 0.749846i \(0.269873\pi\)
−0.661612 + 0.749846i \(0.730127\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.83326e7i 0.0774698i
\(388\) 0 0
\(389\) 1.83369e8 0.157944 0.0789720 0.996877i \(-0.474836\pi\)
0.0789720 + 0.996877i \(0.474836\pi\)
\(390\) 0 0
\(391\) 1.74570e8 0.147690
\(392\) 0 0
\(393\) 5.72815e8i 0.476037i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 5.66325e8i − 0.454254i −0.973865 0.227127i \(-0.927067\pi\)
0.973865 0.227127i \(-0.0729333\pi\)
\(398\) 0 0
\(399\) −1.65395e8 −0.130352
\(400\) 0 0
\(401\) −7.51183e8 −0.581756 −0.290878 0.956760i \(-0.593947\pi\)
−0.290878 + 0.956760i \(0.593947\pi\)
\(402\) 0 0
\(403\) 5.91876e8i 0.450467i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.50794e8i 0.404957i
\(408\) 0 0
\(409\) 1.06838e9 0.772135 0.386067 0.922471i \(-0.373833\pi\)
0.386067 + 0.922471i \(0.373833\pi\)
\(410\) 0 0
\(411\) 1.80672e8 0.128365
\(412\) 0 0
\(413\) − 4.02557e8i − 0.281191i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 1.47091e8i − 0.0993367i
\(418\) 0 0
\(419\) 2.27591e9 1.51149 0.755745 0.654866i \(-0.227275\pi\)
0.755745 + 0.654866i \(0.227275\pi\)
\(420\) 0 0
\(421\) 4.84009e8 0.316130 0.158065 0.987429i \(-0.449474\pi\)
0.158065 + 0.987429i \(0.449474\pi\)
\(422\) 0 0
\(423\) − 1.55381e9i − 0.998175i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.95939e8i 0.183952i
\(428\) 0 0
\(429\) −1.74251e8 −0.106555
\(430\) 0 0
\(431\) 2.82597e9 1.70019 0.850095 0.526629i \(-0.176544\pi\)
0.850095 + 0.526629i \(0.176544\pi\)
\(432\) 0 0
\(433\) 2.17262e9i 1.28610i 0.765823 + 0.643051i \(0.222332\pi\)
−0.765823 + 0.643051i \(0.777668\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 8.31784e8i − 0.476788i
\(438\) 0 0
\(439\) 2.38136e9 1.34338 0.671692 0.740831i \(-0.265568\pi\)
0.671692 + 0.740831i \(0.265568\pi\)
\(440\) 0 0
\(441\) 1.01637e9 0.564309
\(442\) 0 0
\(443\) 2.81990e9i 1.54106i 0.637402 + 0.770532i \(0.280009\pi\)
−0.637402 + 0.770532i \(0.719991\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.24343e9i 0.658483i
\(448\) 0 0
\(449\) −2.04796e9 −1.06773 −0.533863 0.845571i \(-0.679260\pi\)
−0.533863 + 0.845571i \(0.679260\pi\)
\(450\) 0 0
\(451\) 7.16744e8 0.367914
\(452\) 0 0
\(453\) 2.08765e9i 1.05515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 3.49506e9i − 1.71296i −0.516177 0.856482i \(-0.672645\pi\)
0.516177 0.856482i \(-0.327355\pi\)
\(458\) 0 0
\(459\) −7.45094e8 −0.359639
\(460\) 0 0
\(461\) −3.35928e8 −0.159696 −0.0798479 0.996807i \(-0.525443\pi\)
−0.0798479 + 0.996807i \(0.525443\pi\)
\(462\) 0 0
\(463\) − 2.65935e9i − 1.24521i −0.782537 0.622604i \(-0.786075\pi\)
0.782537 0.622604i \(-0.213925\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.93004e9i − 0.876913i −0.898752 0.438456i \(-0.855525\pi\)
0.898752 0.438456i \(-0.144475\pi\)
\(468\) 0 0
\(469\) 3.13171e8 0.140177
\(470\) 0 0
\(471\) 1.78684e9 0.787976
\(472\) 0 0
\(473\) 7.75922e7i 0.0337135i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1.76990e9i − 0.746682i
\(478\) 0 0
\(479\) 2.94332e9 1.22367 0.611834 0.790986i \(-0.290432\pi\)
0.611834 + 0.790986i \(0.290432\pi\)
\(480\) 0 0
\(481\) 2.53528e9 1.03877
\(482\) 0 0
\(483\) 1.19348e8i 0.0481949i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.12191e9i 0.832485i 0.909254 + 0.416243i \(0.136653\pi\)
−0.909254 + 0.416243i \(0.863347\pi\)
\(488\) 0 0
\(489\) −5.57015e8 −0.215420
\(490\) 0 0
\(491\) 3.56167e9 1.35790 0.678952 0.734183i \(-0.262435\pi\)
0.678952 + 0.734183i \(0.262435\pi\)
\(492\) 0 0
\(493\) − 1.14444e8i − 0.0430157i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2.63693e7i − 0.00963497i
\(498\) 0 0
\(499\) −8.82640e8 −0.318003 −0.159002 0.987278i \(-0.550828\pi\)
−0.159002 + 0.987278i \(0.550828\pi\)
\(500\) 0 0
\(501\) −9.55166e8 −0.339349
\(502\) 0 0
\(503\) 4.72486e9i 1.65539i 0.561177 + 0.827696i \(0.310349\pi\)
−0.561177 + 0.827696i \(0.689651\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.09353e9i − 0.372653i
\(508\) 0 0
\(509\) 1.54524e9 0.519377 0.259689 0.965692i \(-0.416380\pi\)
0.259689 + 0.965692i \(0.416380\pi\)
\(510\) 0 0
\(511\) 3.15715e8 0.104670
\(512\) 0 0
\(513\) 3.55020e9i 1.16103i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.36488e9i − 0.434389i
\(518\) 0 0
\(519\) −2.46740e9 −0.774735
\(520\) 0 0
\(521\) 1.31300e8 0.0406754 0.0203377 0.999793i \(-0.493526\pi\)
0.0203377 + 0.999793i \(0.493526\pi\)
\(522\) 0 0
\(523\) 1.23021e8i 0.0376031i 0.999823 + 0.0188015i \(0.00598507\pi\)
−0.999823 + 0.0188015i \(0.994015\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.18491e8i 0.243600i
\(528\) 0 0
\(529\) 2.80461e9 0.823717
\(530\) 0 0
\(531\) −3.18132e9 −0.922097
\(532\) 0 0
\(533\) − 3.29915e9i − 0.943748i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2.54575e9i 0.709424i
\(538\) 0 0
\(539\) 8.92789e8 0.245577
\(540\) 0 0
\(541\) 2.03955e9 0.553789 0.276895 0.960900i \(-0.410695\pi\)
0.276895 + 0.960900i \(0.410695\pi\)
\(542\) 0 0
\(543\) − 9.37254e8i − 0.251222i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.83612e9i − 1.52464i −0.647198 0.762322i \(-0.724059\pi\)
0.647198 0.762322i \(-0.275941\pi\)
\(548\) 0 0
\(549\) 2.33875e9 0.603226
\(550\) 0 0
\(551\) −5.45297e8 −0.138868
\(552\) 0 0
\(553\) 2.11792e8i 0.0532563i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.59270e9i 0.635711i 0.948139 + 0.317855i \(0.102963\pi\)
−0.948139 + 0.317855i \(0.897037\pi\)
\(558\) 0 0
\(559\) 3.57154e8 0.0864797
\(560\) 0 0
\(561\) −2.40968e8 −0.0576220
\(562\) 0 0
\(563\) 4.07296e9i 0.961902i 0.876748 + 0.480951i \(0.159708\pi\)
−0.876748 + 0.480951i \(0.840292\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 5.99626e7i − 0.0138146i
\(568\) 0 0
\(569\) −3.79554e9 −0.863736 −0.431868 0.901937i \(-0.642145\pi\)
−0.431868 + 0.901937i \(0.642145\pi\)
\(570\) 0 0
\(571\) −7.21371e9 −1.62156 −0.810778 0.585353i \(-0.800956\pi\)
−0.810778 + 0.585353i \(0.800956\pi\)
\(572\) 0 0
\(573\) 1.87498e9i 0.416346i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 4.48078e9i 0.971043i 0.874225 + 0.485522i \(0.161370\pi\)
−0.874225 + 0.485522i \(0.838630\pi\)
\(578\) 0 0
\(579\) −5.25124e9 −1.12431
\(580\) 0 0
\(581\) 6.51494e8 0.137814
\(582\) 0 0
\(583\) − 1.55470e9i − 0.324943i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 6.51913e9i − 1.33032i −0.746700 0.665161i \(-0.768363\pi\)
0.746700 0.665161i \(-0.231637\pi\)
\(588\) 0 0
\(589\) 3.89992e9 0.786415
\(590\) 0 0
\(591\) 3.07985e9 0.613723
\(592\) 0 0
\(593\) − 5.01545e9i − 0.987686i −0.869551 0.493843i \(-0.835592\pi\)
0.869551 0.493843i \(-0.164408\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.56427e9i 0.685583i
\(598\) 0 0
\(599\) 5.07957e9 0.965680 0.482840 0.875708i \(-0.339605\pi\)
0.482840 + 0.875708i \(0.339605\pi\)
\(600\) 0 0
\(601\) 7.77131e8 0.146027 0.0730135 0.997331i \(-0.476738\pi\)
0.0730135 + 0.997331i \(0.476738\pi\)
\(602\) 0 0
\(603\) − 2.47493e9i − 0.459676i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.36690e9i 0.792526i 0.918137 + 0.396263i \(0.129693\pi\)
−0.918137 + 0.396263i \(0.870307\pi\)
\(608\) 0 0
\(609\) 7.82417e7 0.0140371
\(610\) 0 0
\(611\) −6.28250e9 −1.11426
\(612\) 0 0
\(613\) − 9.38340e8i − 0.164531i −0.996610 0.0822657i \(-0.973784\pi\)
0.996610 0.0822657i \(-0.0262156\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.56965e9i 1.12602i 0.826452 + 0.563008i \(0.190356\pi\)
−0.826452 + 0.563008i \(0.809644\pi\)
\(618\) 0 0
\(619\) −3.07773e9 −0.521570 −0.260785 0.965397i \(-0.583981\pi\)
−0.260785 + 0.965397i \(0.583981\pi\)
\(620\) 0 0
\(621\) 2.56181e9 0.429265
\(622\) 0 0
\(623\) − 1.26387e9i − 0.209408i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.14815e9i 0.186022i
\(628\) 0 0
\(629\) 3.50598e9 0.561736
\(630\) 0 0
\(631\) 5.34255e8 0.0846536 0.0423268 0.999104i \(-0.486523\pi\)
0.0423268 + 0.999104i \(0.486523\pi\)
\(632\) 0 0
\(633\) 2.11283e9i 0.331095i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4.10947e9i − 0.629938i
\(638\) 0 0
\(639\) −2.08391e8 −0.0315955
\(640\) 0 0
\(641\) −7.42746e9 −1.11388 −0.556938 0.830554i \(-0.688024\pi\)
−0.556938 + 0.830554i \(0.688024\pi\)
\(642\) 0 0
\(643\) 9.71646e8i 0.144135i 0.997400 + 0.0720675i \(0.0229597\pi\)
−0.997400 + 0.0720675i \(0.977040\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.55212e9i 1.24139i 0.784051 + 0.620696i \(0.213150\pi\)
−0.784051 + 0.620696i \(0.786850\pi\)
\(648\) 0 0
\(649\) −2.79450e9 −0.401281
\(650\) 0 0
\(651\) −5.59578e8 −0.0794927
\(652\) 0 0
\(653\) − 8.05866e9i − 1.13257i −0.824208 0.566287i \(-0.808379\pi\)
0.824208 0.566287i \(-0.191621\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 2.49502e9i − 0.343238i
\(658\) 0 0
\(659\) −6.24628e9 −0.850203 −0.425101 0.905146i \(-0.639762\pi\)
−0.425101 + 0.905146i \(0.639762\pi\)
\(660\) 0 0
\(661\) −9.52973e9 −1.28344 −0.641720 0.766939i \(-0.721779\pi\)
−0.641720 + 0.766939i \(0.721779\pi\)
\(662\) 0 0
\(663\) 1.10916e9i 0.147808i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.93484e8i 0.0513436i
\(668\) 0 0
\(669\) −8.93035e9 −1.15313
\(670\) 0 0
\(671\) 2.05438e9 0.262513
\(672\) 0 0
\(673\) 1.80205e9i 0.227884i 0.993487 + 0.113942i \(0.0363478\pi\)
−0.993487 + 0.113942i \(0.963652\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 5.08442e9i − 0.629768i −0.949130 0.314884i \(-0.898034\pi\)
0.949130 0.314884i \(-0.101966\pi\)
\(678\) 0 0
\(679\) 1.56578e9 0.191949
\(680\) 0 0
\(681\) 1.09902e9 0.133350
\(682\) 0 0
\(683\) − 7.71566e9i − 0.926618i −0.886197 0.463309i \(-0.846662\pi\)
0.886197 0.463309i \(-0.153338\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8.71918e9i 1.02595i
\(688\) 0 0
\(689\) −7.15623e9 −0.833522
\(690\) 0 0
\(691\) −6.13074e9 −0.706871 −0.353435 0.935459i \(-0.614987\pi\)
−0.353435 + 0.935459i \(0.614987\pi\)
\(692\) 0 0
\(693\) 2.30047e8i 0.0262573i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.56231e9i − 0.510352i
\(698\) 0 0
\(699\) −6.62059e9 −0.733207
\(700\) 0 0
\(701\) −1.61818e10 −1.77424 −0.887121 0.461538i \(-0.847298\pi\)
−0.887121 + 0.461538i \(0.847298\pi\)
\(702\) 0 0
\(703\) − 1.67052e10i − 1.81346i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.01429e9i − 0.107943i
\(708\) 0 0
\(709\) −5.28706e9 −0.557124 −0.278562 0.960418i \(-0.589858\pi\)
−0.278562 + 0.960418i \(0.589858\pi\)
\(710\) 0 0
\(711\) 1.67375e9 0.174641
\(712\) 0 0
\(713\) − 2.81416e9i − 0.290761i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 4.66745e9i − 0.472893i
\(718\) 0 0
\(719\) 1.45007e10 1.45492 0.727459 0.686151i \(-0.240701\pi\)
0.727459 + 0.686151i \(0.240701\pi\)
\(720\) 0 0
\(721\) 8.97295e8 0.0891583
\(722\) 0 0
\(723\) 3.71072e9i 0.365152i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1.09696e10i 1.05882i 0.848366 + 0.529410i \(0.177587\pi\)
−0.848366 + 0.529410i \(0.822413\pi\)
\(728\) 0 0
\(729\) −7.38243e9 −0.705753
\(730\) 0 0
\(731\) 4.93899e8 0.0467657
\(732\) 0 0
\(733\) − 7.58134e9i − 0.711020i −0.934672 0.355510i \(-0.884307\pi\)
0.934672 0.355510i \(-0.115693\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.17400e9i − 0.200043i
\(738\) 0 0
\(739\) −1.63393e8 −0.0148929 −0.00744643 0.999972i \(-0.502370\pi\)
−0.00744643 + 0.999972i \(0.502370\pi\)
\(740\) 0 0
\(741\) 5.28490e9 0.477170
\(742\) 0 0
\(743\) − 2.11808e10i − 1.89444i −0.320585 0.947220i \(-0.603879\pi\)
0.320585 0.947220i \(-0.396121\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 5.14862e9i − 0.451927i
\(748\) 0 0
\(749\) −3.48651e9 −0.303183
\(750\) 0 0
\(751\) 1.53997e10 1.32670 0.663350 0.748309i \(-0.269134\pi\)
0.663350 + 0.748309i \(0.269134\pi\)
\(752\) 0 0
\(753\) − 6.04540e9i − 0.515992i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 8.93493e9i 0.748610i 0.927306 + 0.374305i \(0.122119\pi\)
−0.927306 + 0.374305i \(0.877881\pi\)
\(758\) 0 0
\(759\) 8.28502e8 0.0687777
\(760\) 0 0
\(761\) 5.23885e9 0.430913 0.215456 0.976513i \(-0.430876\pi\)
0.215456 + 0.976513i \(0.430876\pi\)
\(762\) 0 0
\(763\) − 1.49526e9i − 0.121865i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.28630e10i 1.02934i
\(768\) 0 0
\(769\) −9.28281e9 −0.736101 −0.368050 0.929806i \(-0.619975\pi\)
−0.368050 + 0.929806i \(0.619975\pi\)
\(770\) 0 0
\(771\) −1.04812e10 −0.823610
\(772\) 0 0
\(773\) − 5.95607e9i − 0.463801i −0.972740 0.231900i \(-0.925506\pi\)
0.972740 0.231900i \(-0.0744943\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.39693e9i 0.183308i
\(778\) 0 0
\(779\) −2.17383e10 −1.64757
\(780\) 0 0
\(781\) −1.83052e8 −0.0137498
\(782\) 0 0
\(783\) − 1.67946e9i − 0.125027i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.83278e10i − 1.34029i −0.742230 0.670145i \(-0.766232\pi\)
0.742230 0.670145i \(-0.233768\pi\)
\(788\) 0 0
\(789\) −3.25683e9 −0.236062
\(790\) 0 0
\(791\) 1.56745e9 0.112610
\(792\) 0 0
\(793\) − 9.45621e9i − 0.673381i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.70828e8i 0.0189492i 0.999955 + 0.00947458i \(0.00301590\pi\)
−0.999955 + 0.00947458i \(0.996984\pi\)
\(798\) 0 0
\(799\) −8.68791e9 −0.602562
\(800\) 0 0
\(801\) −9.98808e9 −0.686702
\(802\) 0 0
\(803\) − 2.19165e9i − 0.149371i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.12026e10i 0.750346i
\(808\) 0 0
\(809\) 2.82437e10 1.87544 0.937718 0.347398i \(-0.112935\pi\)
0.937718 + 0.347398i \(0.112935\pi\)
\(810\) 0 0
\(811\) −7.76043e9 −0.510873 −0.255436 0.966826i \(-0.582219\pi\)
−0.255436 + 0.966826i \(0.582219\pi\)
\(812\) 0 0
\(813\) − 3.56518e9i − 0.232683i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.35331e9i − 0.150974i
\(818\) 0 0
\(819\) 1.05890e9 0.0673534
\(820\) 0 0
\(821\) 2.22969e10 1.40619 0.703096 0.711095i \(-0.251801\pi\)
0.703096 + 0.711095i \(0.251801\pi\)
\(822\) 0 0
\(823\) 7.95952e9i 0.497723i 0.968539 + 0.248861i \(0.0800564\pi\)
−0.968539 + 0.248861i \(0.919944\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.86879e10i − 1.76372i −0.471511 0.881860i \(-0.656291\pi\)
0.471511 0.881860i \(-0.343709\pi\)
\(828\) 0 0
\(829\) 1.02676e10 0.625935 0.312968 0.949764i \(-0.398677\pi\)
0.312968 + 0.949764i \(0.398677\pi\)
\(830\) 0 0
\(831\) −7.44909e9 −0.450298
\(832\) 0 0
\(833\) − 5.68289e9i − 0.340653i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.20113e10i 0.708030i
\(838\) 0 0
\(839\) 3.91270e9 0.228723 0.114361 0.993439i \(-0.463518\pi\)
0.114361 + 0.993439i \(0.463518\pi\)
\(840\) 0 0
\(841\) −1.69919e10 −0.985046
\(842\) 0 0
\(843\) 1.68068e10i 0.966246i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 2.94037e9i − 0.166269i
\(848\) 0 0
\(849\) −8.68622e9 −0.487140
\(850\) 0 0
\(851\) −1.20544e10 −0.670488
\(852\) 0 0
\(853\) − 2.44066e9i − 0.134643i −0.997731 0.0673217i \(-0.978555\pi\)
0.997731 0.0673217i \(-0.0214454\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.01405e10i 1.09304i 0.837446 + 0.546521i \(0.184048\pi\)
−0.837446 + 0.546521i \(0.815952\pi\)
\(858\) 0 0
\(859\) −1.58900e10 −0.855357 −0.427678 0.903931i \(-0.640668\pi\)
−0.427678 + 0.903931i \(0.640668\pi\)
\(860\) 0 0
\(861\) 3.11911e9 0.166541
\(862\) 0 0
\(863\) − 1.25359e10i − 0.663924i −0.943293 0.331962i \(-0.892289\pi\)
0.943293 0.331962i \(-0.107711\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.08623e10i − 0.566051i
\(868\) 0 0
\(869\) 1.47023e9 0.0760007
\(870\) 0 0
\(871\) −1.00068e10 −0.513136
\(872\) 0 0
\(873\) − 1.23740e10i − 0.629448i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.73627e10i 0.869198i 0.900624 + 0.434599i \(0.143110\pi\)
−0.900624 + 0.434599i \(0.856890\pi\)
\(878\) 0 0
\(879\) −1.34469e10 −0.667822
\(880\) 0 0
\(881\) 3.02287e10 1.48937 0.744687 0.667414i \(-0.232599\pi\)
0.744687 + 0.667414i \(0.232599\pi\)
\(882\) 0 0
\(883\) 1.11570e10i 0.545363i 0.962104 + 0.272682i \(0.0879105\pi\)
−0.962104 + 0.272682i \(0.912089\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.41351e10i 1.16123i 0.814179 + 0.580613i \(0.197187\pi\)
−0.814179 + 0.580613i \(0.802813\pi\)
\(888\) 0 0
\(889\) −5.07807e9 −0.242405
\(890\) 0 0
\(891\) −4.16253e8 −0.0197145
\(892\) 0 0
\(893\) 4.13959e10i 1.94526i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.81356e9i − 0.176424i
\(898\) 0 0
\(899\) −1.84489e9 −0.0846862
\(900\) 0 0
\(901\) −9.89617e9 −0.450745
\(902\) 0 0
\(903\) 3.37664e8i 0.0152608i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 3.87637e10i − 1.72504i −0.506019 0.862522i \(-0.668884\pi\)
0.506019 0.862522i \(-0.331116\pi\)
\(908\) 0 0
\(909\) −8.01573e9 −0.353973
\(910\) 0 0
\(911\) 2.08115e10 0.911990 0.455995 0.889982i \(-0.349284\pi\)
0.455995 + 0.889982i \(0.349284\pi\)
\(912\) 0 0
\(913\) − 4.52260e9i − 0.196671i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3.05766e9i − 0.130947i
\(918\) 0 0
\(919\) 4.53215e10 1.92619 0.963097 0.269155i \(-0.0867444\pi\)
0.963097 + 0.269155i \(0.0867444\pi\)
\(920\) 0 0
\(921\) 1.14885e9 0.0484570
\(922\) 0 0
\(923\) 8.42582e8i 0.0352701i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 7.09113e9i − 0.292372i
\(928\) 0 0
\(929\) 2.95054e10 1.20739 0.603694 0.797216i \(-0.293695\pi\)
0.603694 + 0.797216i \(0.293695\pi\)
\(930\) 0 0
\(931\) −2.70776e10 −1.09973
\(932\) 0 0
\(933\) − 6.00902e9i − 0.242225i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 2.26337e10i − 0.898810i −0.893328 0.449405i \(-0.851636\pi\)
0.893328 0.449405i \(-0.148364\pi\)
\(938\) 0 0
\(939\) 9.25349e9 0.364734
\(940\) 0 0
\(941\) −8.98563e9 −0.351548 −0.175774 0.984431i \(-0.556243\pi\)
−0.175774 + 0.984431i \(0.556243\pi\)
\(942\) 0 0
\(943\) 1.56863e10i 0.609156i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.43732e10i 0.932583i 0.884631 + 0.466291i \(0.154410\pi\)
−0.884631 + 0.466291i \(0.845590\pi\)
\(948\) 0 0
\(949\) −1.00881e10 −0.383158
\(950\) 0 0
\(951\) 3.38253e10 1.27529
\(952\) 0 0
\(953\) 3.99263e10i 1.49429i 0.664663 + 0.747143i \(0.268575\pi\)
−0.664663 + 0.747143i \(0.731425\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 5.43145e8i − 0.0200320i
\(958\) 0 0
\(959\) −9.64421e8 −0.0353103
\(960\) 0 0
\(961\) −1.43181e10 −0.520419
\(962\) 0 0
\(963\) 2.75532e10i 0.994213i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.48658e10i 1.59559i 0.602926 + 0.797797i \(0.294002\pi\)
−0.602926 + 0.797797i \(0.705998\pi\)
\(968\) 0 0
\(969\) 7.30836e9 0.258040
\(970\) 0 0
\(971\) −2.14651e10 −0.752429 −0.376214 0.926533i \(-0.622774\pi\)
−0.376214 + 0.926533i \(0.622774\pi\)
\(972\) 0 0
\(973\) 7.85165e8i 0.0273254i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.17721e10i − 0.746911i −0.927648 0.373455i \(-0.878173\pi\)
0.927648 0.373455i \(-0.121827\pi\)
\(978\) 0 0
\(979\) −8.77363e9 −0.298841
\(980\) 0 0
\(981\) −1.18167e10 −0.399627
\(982\) 0 0
\(983\) − 7.58129e9i − 0.254569i −0.991866 0.127285i \(-0.959374\pi\)
0.991866 0.127285i \(-0.0406262\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5.93967e9i − 0.196631i
\(988\) 0 0
\(989\) −1.69814e9 −0.0558195
\(990\) 0 0
\(991\) 5.67181e10 1.85125 0.925623 0.378446i \(-0.123542\pi\)
0.925623 + 0.378446i \(0.123542\pi\)
\(992\) 0 0
\(993\) 2.09946e10i 0.680432i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 2.64140e10i − 0.844115i −0.906569 0.422057i \(-0.861308\pi\)
0.906569 0.422057i \(-0.138692\pi\)
\(998\) 0 0
\(999\) 5.14501e10 1.63270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.r.49.2 4
4.3 odd 2 100.8.c.c.49.3 4
5.2 odd 4 400.8.a.be.1.1 2
5.3 odd 4 400.8.a.u.1.2 2
5.4 even 2 inner 400.8.c.r.49.3 4
20.3 even 4 100.8.a.d.1.1 yes 2
20.7 even 4 100.8.a.b.1.2 2
20.19 odd 2 100.8.c.c.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.8.a.b.1.2 2 20.7 even 4
100.8.a.d.1.1 yes 2 20.3 even 4
100.8.c.c.49.2 4 20.19 odd 2
100.8.c.c.49.3 4 4.3 odd 2
400.8.a.u.1.2 2 5.3 odd 4
400.8.a.be.1.1 2 5.2 odd 4
400.8.c.r.49.2 4 1.1 even 1 trivial
400.8.c.r.49.3 4 5.4 even 2 inner