Properties

Label 400.10.a.b
Level $400$
Weight $10$
Character orbit 400.a
Self dual yes
Analytic conductor $206.014$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,10,Mod(1,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-156,0,0,0,-952,0,4653] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(206.014334466\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 156 q^{3} - 952 q^{7} + 4653 q^{9} + 56148 q^{11} - 178094 q^{13} + 247662 q^{17} - 315380 q^{19} + 148512 q^{21} + 204504 q^{23} + 2344680 q^{27} - 3840450 q^{29} + 1309408 q^{31} - 8759088 q^{33}+ \cdots + 261256644 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −156.000 0 0 0 −952.000 0 4653.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.10.a.b 1
4.b odd 2 1 50.10.a.c 1
5.b even 2 1 16.10.a.d 1
5.c odd 4 2 400.10.c.d 2
15.d odd 2 1 144.10.a.d 1
20.d odd 2 1 2.10.a.a 1
20.e even 4 2 50.10.b.a 2
40.e odd 2 1 64.10.a.h 1
40.f even 2 1 64.10.a.b 1
60.h even 2 1 18.10.a.a 1
80.k odd 4 2 256.10.b.g 2
80.q even 4 2 256.10.b.e 2
140.c even 2 1 98.10.a.c 1
140.p odd 6 2 98.10.c.c 2
140.s even 6 2 98.10.c.b 2
180.n even 6 2 162.10.c.i 2
180.p odd 6 2 162.10.c.b 2
220.g even 2 1 242.10.a.a 1
260.g odd 2 1 338.10.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.10.a.a 1 20.d odd 2 1
16.10.a.d 1 5.b even 2 1
18.10.a.a 1 60.h even 2 1
50.10.a.c 1 4.b odd 2 1
50.10.b.a 2 20.e even 4 2
64.10.a.b 1 40.f even 2 1
64.10.a.h 1 40.e odd 2 1
98.10.a.c 1 140.c even 2 1
98.10.c.b 2 140.s even 6 2
98.10.c.c 2 140.p odd 6 2
144.10.a.d 1 15.d odd 2 1
162.10.c.b 2 180.p odd 6 2
162.10.c.i 2 180.n even 6 2
242.10.a.a 1 220.g even 2 1
256.10.b.e 2 80.q even 4 2
256.10.b.g 2 80.k odd 4 2
338.10.a.a 1 260.g odd 2 1
400.10.a.b 1 1.a even 1 1 trivial
400.10.c.d 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 156 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(400))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 156 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 952 \) Copy content Toggle raw display
$11$ \( T - 56148 \) Copy content Toggle raw display
$13$ \( T + 178094 \) Copy content Toggle raw display
$17$ \( T - 247662 \) Copy content Toggle raw display
$19$ \( T + 315380 \) Copy content Toggle raw display
$23$ \( T - 204504 \) Copy content Toggle raw display
$29$ \( T + 3840450 \) Copy content Toggle raw display
$31$ \( T - 1309408 \) Copy content Toggle raw display
$37$ \( T + 4307078 \) Copy content Toggle raw display
$41$ \( T - 1512042 \) Copy content Toggle raw display
$43$ \( T - 33670604 \) Copy content Toggle raw display
$47$ \( T + 10581072 \) Copy content Toggle raw display
$53$ \( T + 16616214 \) Copy content Toggle raw display
$59$ \( T + 112235100 \) Copy content Toggle raw display
$61$ \( T + 33197218 \) Copy content Toggle raw display
$67$ \( T + 121372252 \) Copy content Toggle raw display
$71$ \( T - 387172728 \) Copy content Toggle raw display
$73$ \( T + 255240074 \) Copy content Toggle raw display
$79$ \( T + 492101840 \) Copy content Toggle raw display
$83$ \( T + 457420236 \) Copy content Toggle raw display
$89$ \( T + 31809510 \) Copy content Toggle raw display
$97$ \( T - 673532062 \) Copy content Toggle raw display
show more
show less