Properties

Label 98.10.a.c
Level $98$
Weight $10$
Character orbit 98.a
Self dual yes
Analytic conductor $50.474$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,16,156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 16 q^{2} + 156 q^{3} + 256 q^{4} - 870 q^{5} + 2496 q^{6} + 4096 q^{8} + 4653 q^{9} - 13920 q^{10} - 56148 q^{11} + 39936 q^{12} - 178094 q^{13} - 135720 q^{15} + 65536 q^{16} + 247662 q^{17} + 74448 q^{18}+ \cdots - 261256644 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
16.0000 156.000 256.000 −870.000 2496.00 0 4096.00 4653.00 −13920.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.10.a.c 1
7.b odd 2 1 2.10.a.a 1
7.c even 3 2 98.10.c.b 2
7.d odd 6 2 98.10.c.c 2
21.c even 2 1 18.10.a.a 1
28.d even 2 1 16.10.a.d 1
35.c odd 2 1 50.10.a.c 1
35.f even 4 2 50.10.b.a 2
56.e even 2 1 64.10.a.b 1
56.h odd 2 1 64.10.a.h 1
63.l odd 6 2 162.10.c.b 2
63.o even 6 2 162.10.c.i 2
77.b even 2 1 242.10.a.a 1
84.h odd 2 1 144.10.a.d 1
91.b odd 2 1 338.10.a.a 1
112.j even 4 2 256.10.b.e 2
112.l odd 4 2 256.10.b.g 2
140.c even 2 1 400.10.a.b 1
140.j odd 4 2 400.10.c.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.10.a.a 1 7.b odd 2 1
16.10.a.d 1 28.d even 2 1
18.10.a.a 1 21.c even 2 1
50.10.a.c 1 35.c odd 2 1
50.10.b.a 2 35.f even 4 2
64.10.a.b 1 56.e even 2 1
64.10.a.h 1 56.h odd 2 1
98.10.a.c 1 1.a even 1 1 trivial
98.10.c.b 2 7.c even 3 2
98.10.c.c 2 7.d odd 6 2
144.10.a.d 1 84.h odd 2 1
162.10.c.b 2 63.l odd 6 2
162.10.c.i 2 63.o even 6 2
242.10.a.a 1 77.b even 2 1
256.10.b.e 2 112.j even 4 2
256.10.b.g 2 112.l odd 4 2
338.10.a.a 1 91.b odd 2 1
400.10.a.b 1 140.c even 2 1
400.10.c.d 2 140.j odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 156 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 16 \) Copy content Toggle raw display
$3$ \( T - 156 \) Copy content Toggle raw display
$5$ \( T + 870 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 56148 \) Copy content Toggle raw display
$13$ \( T + 178094 \) Copy content Toggle raw display
$17$ \( T - 247662 \) Copy content Toggle raw display
$19$ \( T + 315380 \) Copy content Toggle raw display
$23$ \( T - 204504 \) Copy content Toggle raw display
$29$ \( T + 3840450 \) Copy content Toggle raw display
$31$ \( T - 1309408 \) Copy content Toggle raw display
$37$ \( T - 4307078 \) Copy content Toggle raw display
$41$ \( T + 1512042 \) Copy content Toggle raw display
$43$ \( T - 33670604 \) Copy content Toggle raw display
$47$ \( T - 10581072 \) Copy content Toggle raw display
$53$ \( T - 16616214 \) Copy content Toggle raw display
$59$ \( T + 112235100 \) Copy content Toggle raw display
$61$ \( T - 33197218 \) Copy content Toggle raw display
$67$ \( T + 121372252 \) Copy content Toggle raw display
$71$ \( T + 387172728 \) Copy content Toggle raw display
$73$ \( T + 255240074 \) Copy content Toggle raw display
$79$ \( T - 492101840 \) Copy content Toggle raw display
$83$ \( T - 457420236 \) Copy content Toggle raw display
$89$ \( T - 31809510 \) Copy content Toggle raw display
$97$ \( T - 673532062 \) Copy content Toggle raw display
show more
show less