Properties

Label 162.10.c.i
Level $162$
Weight $10$
Character orbit 162.c
Analytic conductor $83.436$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [162,10,Mod(55,162)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(162, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("162.55"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 162.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,16,0,-256,870] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(83.4358054585\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 16 \zeta_{6} + 16) q^{2} - 256 \zeta_{6} q^{4} + 870 \zeta_{6} q^{5} + ( - 952 \zeta_{6} + 952) q^{7} - 4096 q^{8} + 13920 q^{10} + (56148 \zeta_{6} - 56148) q^{11} - 178094 \zeta_{6} q^{13} - 15232 \zeta_{6} q^{14} + \cdots + 631156848 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{2} - 256 q^{4} + 870 q^{5} + 952 q^{7} - 8192 q^{8} + 27840 q^{10} - 56148 q^{11} - 178094 q^{13} - 15232 q^{14} - 65536 q^{16} + 495324 q^{17} + 630760 q^{19} + 222720 q^{20} + 898368 q^{22}+ \cdots + 1262313696 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/162\mathbb{Z}\right)^\times\).

\(n\) \(83\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 + 0.866025i
0.500000 0.866025i
8.00000 13.8564i 0 −128.000 221.703i 435.000 + 753.442i 0 476.000 824.456i −4096.00 0 13920.0
109.1 8.00000 + 13.8564i 0 −128.000 + 221.703i 435.000 753.442i 0 476.000 + 824.456i −4096.00 0 13920.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 162.10.c.i 2
3.b odd 2 1 162.10.c.b 2
9.c even 3 1 18.10.a.a 1
9.c even 3 1 inner 162.10.c.i 2
9.d odd 6 1 2.10.a.a 1
9.d odd 6 1 162.10.c.b 2
36.f odd 6 1 144.10.a.d 1
36.h even 6 1 16.10.a.d 1
45.h odd 6 1 50.10.a.c 1
45.l even 12 2 50.10.b.a 2
63.i even 6 1 98.10.c.b 2
63.j odd 6 1 98.10.c.c 2
63.n odd 6 1 98.10.c.c 2
63.o even 6 1 98.10.a.c 1
63.s even 6 1 98.10.c.b 2
72.j odd 6 1 64.10.a.h 1
72.l even 6 1 64.10.a.b 1
99.g even 6 1 242.10.a.a 1
117.n odd 6 1 338.10.a.a 1
144.u even 12 2 256.10.b.e 2
144.w odd 12 2 256.10.b.g 2
180.n even 6 1 400.10.a.b 1
180.v odd 12 2 400.10.c.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.10.a.a 1 9.d odd 6 1
16.10.a.d 1 36.h even 6 1
18.10.a.a 1 9.c even 3 1
50.10.a.c 1 45.h odd 6 1
50.10.b.a 2 45.l even 12 2
64.10.a.b 1 72.l even 6 1
64.10.a.h 1 72.j odd 6 1
98.10.a.c 1 63.o even 6 1
98.10.c.b 2 63.i even 6 1
98.10.c.b 2 63.s even 6 1
98.10.c.c 2 63.j odd 6 1
98.10.c.c 2 63.n odd 6 1
144.10.a.d 1 36.f odd 6 1
162.10.c.b 2 3.b odd 2 1
162.10.c.b 2 9.d odd 6 1
162.10.c.i 2 1.a even 1 1 trivial
162.10.c.i 2 9.c even 3 1 inner
242.10.a.a 1 99.g even 6 1
256.10.b.e 2 144.u even 12 2
256.10.b.g 2 144.w odd 12 2
338.10.a.a 1 117.n odd 6 1
400.10.a.b 1 180.n even 6 1
400.10.c.d 2 180.v odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 870T_{5} + 756900 \) acting on \(S_{10}^{\mathrm{new}}(162, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 870T + 756900 \) Copy content Toggle raw display
$7$ \( T^{2} - 952T + 906304 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 3152597904 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 31717472836 \) Copy content Toggle raw display
$17$ \( (T - 247662)^{2} \) Copy content Toggle raw display
$19$ \( (T - 315380)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 41821886016 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 14749056202500 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 1714549310464 \) Copy content Toggle raw display
$37$ \( (T - 4307078)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 2286271009764 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 111959084669184 \) Copy content Toggle raw display
$53$ \( (T + 16616214)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( (T - 387172728)^{2} \) Copy content Toggle raw display
$73$ \( (T - 255240074)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 24\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T - 31809510)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 45\!\cdots\!44 \) Copy content Toggle raw display
show more
show less