Properties

Label 162.10
Level 162
Weight 10
Dimension 1728
Nonzero newspaces 4
Sturm bound 14580
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(14580\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(162))\).

Total New Old
Modular forms 6669 1728 4941
Cusp forms 6453 1728 4725
Eisenstein series 216 0 216

Trace form

\( 1728 q + 4776 q^{5} - 2052 q^{7} + 12288 q^{8} - 61344 q^{10} - 167997 q^{11} + 307422 q^{13} - 191136 q^{14} + 1002252 q^{17} - 235152 q^{18} + 2286630 q^{19} - 6113280 q^{20} - 5797224 q^{21} + 3698352 q^{22}+ \cdots + 14322578778 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(162))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
162.10.a \(\chi_{162}(1, \cdot)\) 162.10.a.a 2 1
162.10.a.b 2
162.10.a.c 3
162.10.a.d 3
162.10.a.e 4
162.10.a.f 4
162.10.a.g 4
162.10.a.h 4
162.10.a.i 5
162.10.a.j 5
162.10.c \(\chi_{162}(55, \cdot)\) 162.10.c.a 2 2
162.10.c.b 2
162.10.c.c 2
162.10.c.d 2
162.10.c.e 2
162.10.c.f 2
162.10.c.g 2
162.10.c.h 2
162.10.c.i 2
162.10.c.j 2
162.10.c.k 4
162.10.c.l 4
162.10.c.m 4
162.10.c.n 4
162.10.c.o 4
162.10.c.p 4
162.10.c.q 6
162.10.c.r 6
162.10.c.s 8
162.10.c.t 8
162.10.e \(\chi_{162}(19, \cdot)\) n/a 162 6
162.10.g \(\chi_{162}(7, \cdot)\) n/a 1458 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(162))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(162)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)