Newspace parameters
Level: | \( N \) | \(=\) | \( 3871 = 7^{2} \cdot 79 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3871.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(30.9100906224\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −2.41231 | −2.98272 | 3.81923 | −3.55917 | 7.19525 | 0 | −4.38854 | 5.89665 | 8.58580 | ||||||||||||||||||
1.2 | −2.41231 | 2.98272 | 3.81923 | 3.55917 | −7.19525 | 0 | −4.38854 | 5.89665 | −8.58580 | ||||||||||||||||||
1.3 | −2.35106 | −0.333714 | 3.52747 | −1.89309 | 0.784581 | 0 | −3.59117 | −2.88863 | 4.45076 | ||||||||||||||||||
1.4 | −2.35106 | 0.333714 | 3.52747 | 1.89309 | −0.784581 | 0 | −3.59117 | −2.88863 | −4.45076 | ||||||||||||||||||
1.5 | −1.75669 | −0.436287 | 1.08596 | 3.17234 | 0.766421 | 0 | 1.60568 | −2.80965 | −5.57282 | ||||||||||||||||||
1.6 | −1.75669 | 0.436287 | 1.08596 | −3.17234 | −0.766421 | 0 | 1.60568 | −2.80965 | 5.57282 | ||||||||||||||||||
1.7 | −1.16173 | −3.26388 | −0.650393 | 3.42778 | 3.79173 | 0 | 3.07903 | 7.65292 | −3.98215 | ||||||||||||||||||
1.8 | −1.16173 | 3.26388 | −0.650393 | −3.42778 | −3.79173 | 0 | 3.07903 | 7.65292 | 3.98215 | ||||||||||||||||||
1.9 | −0.380222 | −1.62042 | −1.85543 | 3.79610 | 0.616119 | 0 | 1.46592 | −0.374245 | −1.44336 | ||||||||||||||||||
1.10 | −0.380222 | 1.62042 | −1.85543 | −3.79610 | −0.616119 | 0 | 1.46592 | −0.374245 | 1.44336 | ||||||||||||||||||
1.11 | −0.0847728 | −2.25088 | −1.99281 | −0.792214 | 0.190813 | 0 | 0.338482 | 2.06645 | 0.0671582 | ||||||||||||||||||
1.12 | −0.0847728 | 2.25088 | −1.99281 | 0.792214 | −0.190813 | 0 | 0.338482 | 2.06645 | −0.0671582 | ||||||||||||||||||
1.13 | 0.113614 | −3.40956 | −1.98709 | −2.24850 | −0.387373 | 0 | −0.452989 | 8.62510 | −0.255460 | ||||||||||||||||||
1.14 | 0.113614 | 3.40956 | −1.98709 | 2.24850 | 0.387373 | 0 | −0.452989 | 8.62510 | 0.255460 | ||||||||||||||||||
1.15 | 0.899639 | −1.39029 | −1.19065 | 1.12263 | −1.25076 | 0 | −2.87043 | −1.06708 | 1.00996 | ||||||||||||||||||
1.16 | 0.899639 | 1.39029 | −1.19065 | −1.12263 | 1.25076 | 0 | −2.87043 | −1.06708 | −1.00996 | ||||||||||||||||||
1.17 | 1.96843 | −3.07428 | 1.87472 | −1.53880 | −6.05151 | 0 | −0.246606 | 6.45121 | −3.02903 | ||||||||||||||||||
1.18 | 1.96843 | 3.07428 | 1.87472 | 1.53880 | 6.05151 | 0 | −0.246606 | 6.45121 | 3.02903 | ||||||||||||||||||
1.19 | 2.05025 | −2.04954 | 2.20353 | −3.37907 | −4.20207 | 0 | 0.417285 | 1.20062 | −6.92795 | ||||||||||||||||||
1.20 | 2.05025 | 2.04954 | 2.20353 | 3.37907 | 4.20207 | 0 | 0.417285 | 1.20062 | 6.92795 | ||||||||||||||||||
See all 24 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(7\) | \( -1 \) |
\(79\) | \( +1 \) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3871.2.a.i | ✓ | 24 |
7.b | odd | 2 | 1 | inner | 3871.2.a.i | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3871.2.a.i | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
3871.2.a.i | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3871))\):
\( T_{2}^{12} - 2 T_{2}^{11} - 17 T_{2}^{10} + 31 T_{2}^{9} + 105 T_{2}^{8} - 166 T_{2}^{7} - 285 T_{2}^{6} + \cdots + 1 \)
|
\( T_{3}^{24} - 61 T_{3}^{22} + 1613 T_{3}^{20} - 24286 T_{3}^{18} + 230099 T_{3}^{16} - 1431843 T_{3}^{14} + \cdots + 180224 \)
|