Properties

Label 2-3871-1.1-c1-0-25
Degree $2$
Conductor $3871$
Sign $1$
Analytic cond. $30.9100$
Root an. cond. $5.55968$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0847·2-s − 2.25·3-s − 1.99·4-s − 0.792·5-s + 0.190·6-s + 0.338·8-s + 2.06·9-s + 0.0671·10-s + 4.82·11-s + 4.48·12-s − 3.03·13-s + 1.78·15-s + 3.95·16-s − 5.93·17-s − 0.175·18-s + 4.99·19-s + 1.57·20-s − 0.408·22-s + 2.59·23-s − 0.761·24-s − 4.37·25-s + 0.257·26-s + 2.10·27-s − 5.54·29-s − 0.151·30-s − 1.01·31-s − 1.01·32-s + ⋯
L(s)  = 1  − 0.0599·2-s − 1.29·3-s − 0.996·4-s − 0.354·5-s + 0.0778·6-s + 0.119·8-s + 0.688·9-s + 0.0212·10-s + 1.45·11-s + 1.29·12-s − 0.842·13-s + 0.460·15-s + 0.989·16-s − 1.43·17-s − 0.0412·18-s + 1.14·19-s + 0.353·20-s − 0.0871·22-s + 0.540·23-s − 0.155·24-s − 0.874·25-s + 0.0505·26-s + 0.404·27-s − 1.03·29-s − 0.0275·30-s − 0.182·31-s − 0.178·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3871\)    =    \(7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(30.9100\)
Root analytic conductor: \(5.55968\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3871,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4830380884\)
\(L(\frac12)\) \(\approx\) \(0.4830380884\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
79 \( 1 + T \)
good2 \( 1 + 0.0847T + 2T^{2} \)
3 \( 1 + 2.25T + 3T^{2} \)
5 \( 1 + 0.792T + 5T^{2} \)
11 \( 1 - 4.82T + 11T^{2} \)
13 \( 1 + 3.03T + 13T^{2} \)
17 \( 1 + 5.93T + 17T^{2} \)
19 \( 1 - 4.99T + 19T^{2} \)
23 \( 1 - 2.59T + 23T^{2} \)
29 \( 1 + 5.54T + 29T^{2} \)
31 \( 1 + 1.01T + 31T^{2} \)
37 \( 1 - 2.40T + 37T^{2} \)
41 \( 1 + 7.84T + 41T^{2} \)
43 \( 1 - 4.98T + 43T^{2} \)
47 \( 1 - 2.19T + 47T^{2} \)
53 \( 1 - 8.23T + 53T^{2} \)
59 \( 1 - 5.31T + 59T^{2} \)
61 \( 1 + 14.5T + 61T^{2} \)
67 \( 1 + 13.0T + 67T^{2} \)
71 \( 1 + 16.5T + 71T^{2} \)
73 \( 1 + 15.8T + 73T^{2} \)
83 \( 1 + 2.63T + 83T^{2} \)
89 \( 1 - 9.86T + 89T^{2} \)
97 \( 1 - 9.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.772635739089542283364104757056, −7.50824865679589206091502024215, −7.06758904793963185807334314990, −6.06004435218731928715047155604, −5.55033389983533008002685997140, −4.58501335420715441104992765958, −4.26582708439579711578159650037, −3.20148113279640215422073720739, −1.59353533337509220969371877371, −0.45227277255109690125095110230, 0.45227277255109690125095110230, 1.59353533337509220969371877371, 3.20148113279640215422073720739, 4.26582708439579711578159650037, 4.58501335420715441104992765958, 5.55033389983533008002685997140, 6.06004435218731928715047155604, 7.06758904793963185807334314990, 7.50824865679589206091502024215, 8.772635739089542283364104757056

Graph of the $Z$-function along the critical line