Properties

Label 2-3871-1.1-c1-0-136
Degree $2$
Conductor $3871$
Sign $1$
Analytic cond. $30.9100$
Root an. cond. $5.55968$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s + 1.28·3-s + 3.53·4-s − 3.75·5-s + 3.01·6-s + 3.59·8-s − 1.35·9-s − 8.84·10-s + 4.39·11-s + 4.52·12-s + 0.364·13-s − 4.81·15-s + 1.40·16-s + 0.0294·17-s − 3.19·18-s + 8.08·19-s − 13.2·20-s + 10.3·22-s + 6.85·23-s + 4.61·24-s + 9.13·25-s + 0.856·26-s − 5.58·27-s + 7.02·29-s − 11.3·30-s + 0.530·31-s − 3.89·32-s + ⋯
L(s)  = 1  + 1.66·2-s + 0.739·3-s + 1.76·4-s − 1.68·5-s + 1.22·6-s + 1.27·8-s − 0.452·9-s − 2.79·10-s + 1.32·11-s + 1.30·12-s + 0.101·13-s − 1.24·15-s + 0.350·16-s + 0.00715·17-s − 0.753·18-s + 1.85·19-s − 2.96·20-s + 2.20·22-s + 1.42·23-s + 0.941·24-s + 1.82·25-s + 0.167·26-s − 1.07·27-s + 1.30·29-s − 2.06·30-s + 0.0953·31-s − 0.689·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3871\)    =    \(7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(30.9100\)
Root analytic conductor: \(5.55968\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3871,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.352343952\)
\(L(\frac12)\) \(\approx\) \(5.352343952\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
79 \( 1 + T \)
good2 \( 1 - 2.35T + 2T^{2} \)
3 \( 1 - 1.28T + 3T^{2} \)
5 \( 1 + 3.75T + 5T^{2} \)
11 \( 1 - 4.39T + 11T^{2} \)
13 \( 1 - 0.364T + 13T^{2} \)
17 \( 1 - 0.0294T + 17T^{2} \)
19 \( 1 - 8.08T + 19T^{2} \)
23 \( 1 - 6.85T + 23T^{2} \)
29 \( 1 - 7.02T + 29T^{2} \)
31 \( 1 - 0.530T + 31T^{2} \)
37 \( 1 - 4.77T + 37T^{2} \)
41 \( 1 + 5.82T + 41T^{2} \)
43 \( 1 - 0.400T + 43T^{2} \)
47 \( 1 + 8.75T + 47T^{2} \)
53 \( 1 - 7.76T + 53T^{2} \)
59 \( 1 - 6.91T + 59T^{2} \)
61 \( 1 - 6.04T + 61T^{2} \)
67 \( 1 - 1.44T + 67T^{2} \)
71 \( 1 + 13.2T + 71T^{2} \)
73 \( 1 - 3.17T + 73T^{2} \)
83 \( 1 - 10.5T + 83T^{2} \)
89 \( 1 + 3.21T + 89T^{2} \)
97 \( 1 + 6.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.433321057564754909946451199010, −7.47202153434718177081342452068, −7.02438004676596637078424408768, −6.21938972918743345440702135378, −5.16226327017159762175569638458, −4.57791613457549297228875692923, −3.63692714823477898325917407978, −3.40342999496567407127428215317, −2.66381919628251221877750723197, −1.05683141779855424067916034867, 1.05683141779855424067916034867, 2.66381919628251221877750723197, 3.40342999496567407127428215317, 3.63692714823477898325917407978, 4.57791613457549297228875692923, 5.16226327017159762175569638458, 6.21938972918743345440702135378, 7.02438004676596637078424408768, 7.47202153434718177081342452068, 8.433321057564754909946451199010

Graph of the $Z$-function along the critical line