Properties

Label 2-3871-1.1-c1-0-63
Degree $2$
Conductor $3871$
Sign $1$
Analytic cond. $30.9100$
Root an. cond. $5.55968$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.96·2-s − 3.07·3-s + 1.87·4-s − 1.53·5-s − 6.05·6-s − 0.246·8-s + 6.45·9-s − 3.02·10-s + 5.05·11-s − 5.76·12-s + 4.52·13-s + 4.73·15-s − 4.23·16-s − 5.34·17-s + 12.6·18-s + 1.52·19-s − 2.88·20-s + 9.94·22-s − 8.43·23-s + 0.758·24-s − 2.63·25-s + 8.90·26-s − 10.6·27-s + 8.90·29-s + 9.31·30-s − 6.95·31-s − 7.84·32-s + ⋯
L(s)  = 1  + 1.39·2-s − 1.77·3-s + 0.937·4-s − 0.688·5-s − 2.47·6-s − 0.0871·8-s + 2.15·9-s − 0.957·10-s + 1.52·11-s − 1.66·12-s + 1.25·13-s + 1.22·15-s − 1.05·16-s − 1.29·17-s + 2.99·18-s + 0.348·19-s − 0.645·20-s + 2.11·22-s − 1.75·23-s + 0.154·24-s − 0.526·25-s + 1.74·26-s − 2.04·27-s + 1.65·29-s + 1.70·30-s − 1.24·31-s − 1.38·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3871\)    =    \(7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(30.9100\)
Root analytic conductor: \(5.55968\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3871,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.718333291\)
\(L(\frac12)\) \(\approx\) \(1.718333291\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
79 \( 1 + T \)
good2 \( 1 - 1.96T + 2T^{2} \)
3 \( 1 + 3.07T + 3T^{2} \)
5 \( 1 + 1.53T + 5T^{2} \)
11 \( 1 - 5.05T + 11T^{2} \)
13 \( 1 - 4.52T + 13T^{2} \)
17 \( 1 + 5.34T + 17T^{2} \)
19 \( 1 - 1.52T + 19T^{2} \)
23 \( 1 + 8.43T + 23T^{2} \)
29 \( 1 - 8.90T + 29T^{2} \)
31 \( 1 + 6.95T + 31T^{2} \)
37 \( 1 + 0.805T + 37T^{2} \)
41 \( 1 - 6.05T + 41T^{2} \)
43 \( 1 + 4.04T + 43T^{2} \)
47 \( 1 - 10.7T + 47T^{2} \)
53 \( 1 - 0.547T + 53T^{2} \)
59 \( 1 + 3.37T + 59T^{2} \)
61 \( 1 - 7.20T + 61T^{2} \)
67 \( 1 - 9.94T + 67T^{2} \)
71 \( 1 - 9.14T + 71T^{2} \)
73 \( 1 - 3.13T + 73T^{2} \)
83 \( 1 - 0.779T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 - 9.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.431968371442876360272988830520, −7.23289548791936780601042467538, −6.50928233200405013909896478156, −6.17903917290735867008101277684, −5.55695904871599553055354831057, −4.58833662773704616638909289573, −4.04844123020567487469168163543, −3.68003779348170395772794545458, −1.96109144980644815634535005918, −0.67565296453067578799209420148, 0.67565296453067578799209420148, 1.96109144980644815634535005918, 3.68003779348170395772794545458, 4.04844123020567487469168163543, 4.58833662773704616638909289573, 5.55695904871599553055354831057, 6.17903917290735867008101277684, 6.50928233200405013909896478156, 7.23289548791936780601042467538, 8.431968371442876360272988830520

Graph of the $Z$-function along the critical line