Properties

Label 3871.1.m.e
Level $3871$
Weight $1$
Character orbit 3871.m
Analytic conductor $1.932$
Analytic rank $0$
Dimension $8$
Projective image $D_{10}$
CM discriminant -79
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3871,1,Mod(1500,3871)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3871.1500"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3871.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.93188066390\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.324000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.0.654634011367.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_{2}) q^{2} + \beta_{6} q^{4} + ( - \beta_{5} - \beta_1) q^{5} - q^{8} + \beta_{4} q^{9} + ( - \beta_{3} - \beta_1) q^{10} + \beta_{6} q^{11} + (\beta_{7} + \beta_{3}) q^{13} - \beta_{6} q^{18}+ \cdots + \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} - 8 q^{8} - 4 q^{9} - 2 q^{11} + 2 q^{18} - 12 q^{22} - 2 q^{23} - 6 q^{25} - 4 q^{32} + 4 q^{36} - 6 q^{44} - 4 q^{46} - 16 q^{50} - 4 q^{64} - 2 q^{67} + 4 q^{72} - 4 q^{79} - 4 q^{81}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5x^{6} + 20x^{4} + 25x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 15 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 35\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 4\nu^{4} + 20\nu^{2} + 5 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} + 4\nu^{5} + 20\nu^{3} + 5\nu ) / 20 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 8\nu^{4} + 20\nu^{2} + 25 ) / 20 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} + 6\nu^{5} + 20\nu^{3} + 25\nu ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{6} + 2\beta_{4} - \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + 3\beta_{5} - \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{6} - 5\beta_{4} - 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5\beta_{7} - 10\beta_{5} - 10\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 20\beta_{2} + 15 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 20\beta_{3} + 35\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3871\mathbb{Z}\right)^\times\).

\(n\) \(1030\) \(2845\)
\(\chi(n)\) \(-1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1500.1
−0.587785 1.01807i
0.587785 + 1.01807i
−0.951057 1.64728i
0.951057 + 1.64728i
−0.587785 + 1.01807i
0.587785 1.01807i
−0.951057 + 1.64728i
0.951057 1.64728i
−0.309017 + 0.535233i 0 0.309017 + 0.535233i −0.587785 + 1.01807i 0 0 −1.00000 −0.500000 + 0.866025i −0.363271 0.629204i
1500.2 −0.309017 + 0.535233i 0 0.309017 + 0.535233i 0.587785 1.01807i 0 0 −1.00000 −0.500000 + 0.866025i 0.363271 + 0.629204i
1500.3 0.809017 1.40126i 0 −0.809017 1.40126i −0.951057 + 1.64728i 0 0 −1.00000 −0.500000 + 0.866025i 1.53884 + 2.66535i
1500.4 0.809017 1.40126i 0 −0.809017 1.40126i 0.951057 1.64728i 0 0 −1.00000 −0.500000 + 0.866025i −1.53884 2.66535i
3791.1 −0.309017 0.535233i 0 0.309017 0.535233i −0.587785 1.01807i 0 0 −1.00000 −0.500000 0.866025i −0.363271 + 0.629204i
3791.2 −0.309017 0.535233i 0 0.309017 0.535233i 0.587785 + 1.01807i 0 0 −1.00000 −0.500000 0.866025i 0.363271 0.629204i
3791.3 0.809017 + 1.40126i 0 −0.809017 + 1.40126i −0.951057 1.64728i 0 0 −1.00000 −0.500000 0.866025i 1.53884 2.66535i
3791.4 0.809017 + 1.40126i 0 −0.809017 + 1.40126i 0.951057 + 1.64728i 0 0 −1.00000 −0.500000 0.866025i −1.53884 + 2.66535i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1500.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
79.b odd 2 1 CM by \(\Q(\sqrt{-79}) \)
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
553.d even 2 1 inner
553.l even 6 1 inner
553.m odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3871.1.m.e 8
7.b odd 2 1 inner 3871.1.m.e 8
7.c even 3 1 3871.1.c.d 4
7.c even 3 1 inner 3871.1.m.e 8
7.d odd 6 1 3871.1.c.d 4
7.d odd 6 1 inner 3871.1.m.e 8
79.b odd 2 1 CM 3871.1.m.e 8
553.d even 2 1 inner 3871.1.m.e 8
553.l even 6 1 3871.1.c.d 4
553.l even 6 1 inner 3871.1.m.e 8
553.m odd 6 1 3871.1.c.d 4
553.m odd 6 1 inner 3871.1.m.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3871.1.c.d 4 7.c even 3 1
3871.1.c.d 4 7.d odd 6 1
3871.1.c.d 4 553.l even 6 1
3871.1.c.d 4 553.m odd 6 1
3871.1.m.e 8 1.a even 1 1 trivial
3871.1.m.e 8 7.b odd 2 1 inner
3871.1.m.e 8 7.c even 3 1 inner
3871.1.m.e 8 7.d odd 6 1 inner
3871.1.m.e 8 79.b odd 2 1 CM
3871.1.m.e 8 553.d even 2 1 inner
3871.1.m.e 8 553.l even 6 1 inner
3871.1.m.e 8 553.m odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3871, [\chi])\):

\( T_{2}^{4} - T_{2}^{3} + 2T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{8} + 5T_{5}^{6} + 20T_{5}^{4} + 25T_{5}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$23$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + T^{3} + 2 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( T^{8} + 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$97$ \( (T^{4} - 5 T^{2} + 5)^{2} \) Copy content Toggle raw display
show more
show less