L(s) = 1 | + (−0.309 + 0.535i)2-s + (0.309 + 0.535i)4-s + (0.587 − 1.01i)5-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (0.363 + 0.629i)10-s + (0.309 + 0.535i)11-s − 1.90·13-s + (−0.309 − 0.535i)18-s + (−0.587 + 1.01i)19-s + 0.726·20-s − 0.381·22-s + (−0.809 + 1.40i)23-s + (−0.190 − 0.330i)25-s + (0.587 − 1.01i)26-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.535i)2-s + (0.309 + 0.535i)4-s + (0.587 − 1.01i)5-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (0.363 + 0.629i)10-s + (0.309 + 0.535i)11-s − 1.90·13-s + (−0.309 − 0.535i)18-s + (−0.587 + 1.01i)19-s + 0.726·20-s − 0.381·22-s + (−0.809 + 1.40i)23-s + (−0.190 − 0.330i)25-s + (0.587 − 1.01i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5883718699\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5883718699\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.587 + 1.01i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + 1.90T + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.587 - 1.01i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.809 - 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.951 + 1.64i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.809 + 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.587 - 1.01i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.951 - 1.64i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - 1.17T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.010286650240881469245808307408, −8.000538019702537795413740879107, −7.75666969703567421998424654989, −7.01569657270299301656052417006, −5.93055160150716100196878510974, −5.45404624587822777948548553846, −4.64047449668942901948610226139, −3.70180779874214079730385429738, −2.38355283344323639850196272887, −1.88508075035991915843235837557,
0.31705660321478611486902155074, 1.91412241554188185707797258094, 2.69710203150533570807574634396, 3.15188964138775866271236113610, 4.51400341303257418321791668789, 5.46998080295150206218241755554, 6.26091608002606603774798273027, 6.71197606558329343146262586315, 7.33175796000469743114309491619, 8.714470601243538749982708294666