Properties

Label 3871.1.m
Level $3871$
Weight $1$
Character orbit 3871.m
Rep. character $\chi_{3871}(1500,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $38$
Newform subspaces $6$
Sturm bound $373$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3871.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 553 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(373\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3871, [\chi])\).

Total New Old
Modular forms 54 46 8
Cusp forms 38 38 0
Eisenstein series 16 8 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 38 0 0 0

Trace form

\( 38 q + 2 q^{2} - 17 q^{4} - 8 q^{8} - 19 q^{9} + 2 q^{11} - 15 q^{16} + 2 q^{18} - 8 q^{22} + 2 q^{23} - 17 q^{25} + 6 q^{32} + 34 q^{36} + 6 q^{44} + 4 q^{46} - 12 q^{50} + 26 q^{64} + 4 q^{65} + 2 q^{67}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(3871, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3871.1.m.a 3871.m 553.m $2$ $1.932$ \(\Q(\sqrt{-3}) \) $D_{2}$ \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-79}) \) \(\Q(\sqrt{553}) \) 3871.1.c.a \(-2\) \(0\) \(0\) \(0\) \(q-\zeta_{6}q^{2}+3\zeta_{6}^{2}q^{4}-2q^{8}-\zeta_{6}q^{9}+\cdots\)
3871.1.m.b 3871.m 553.m $4$ $1.932$ \(\Q(\sqrt{-3}, \sqrt{5})\) $D_{5}$ \(\Q(\sqrt{-79}) \) None 79.1.b.a \(1\) \(0\) \(-1\) \(0\) \(q+(-\beta _{1}-\beta _{2})q^{2}-\beta _{1}q^{4}+(-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
3871.1.m.c 3871.m 553.m $4$ $1.932$ \(\Q(\sqrt{-3}, \sqrt{5})\) $D_{5}$ \(\Q(\sqrt{-79}) \) None 79.1.b.a \(1\) \(0\) \(1\) \(0\) \(q+(-\beta _{1}-\beta _{2})q^{2}-\beta _{1}q^{4}+(\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
3871.1.m.d 3871.m 553.m $4$ $1.932$ \(\Q(\sqrt{2}, \sqrt{-3})\) $D_{4}$ \(\Q(\sqrt{-79}) \) None 3871.1.c.b \(4\) \(0\) \(0\) \(0\) \(q-2\beta _{2}q^{2}+(-3-3\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
3871.1.m.e 3871.m 553.m $8$ $1.932$ 8.0.324000000.2 $D_{10}$ \(\Q(\sqrt{-79}) \) None 3871.1.c.d \(2\) \(0\) \(0\) \(0\) \(q+(\beta _{2}+\beta _{6})q^{2}+\beta _{6}q^{4}+(-\beta _{1}-\beta _{5}+\cdots)q^{5}+\cdots\)
3871.1.m.f 3871.m 553.m $16$ $1.932$ 16.0.\(\cdots\).5 $D_{20}$ \(\Q(\sqrt{-79}) \) None 3871.1.c.e \(-4\) \(0\) \(0\) \(0\) \(q+(\beta _{4}+\beta _{7}+\beta _{8})q^{2}+(-\beta _{7}-\beta _{8})q^{4}+\cdots\)