Properties

Label 3871.1
Level 3871
Weight 1
Dimension 253
Nonzero newspaces 15
Newform subspaces 26
Sturm bound 1223040
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3871 = 7^{2} \cdot 79 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 15 \)
Newform subspaces: \( 26 \)
Sturm bound: \(1223040\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(3871))\).

Total New Old
Modular forms 5023 3988 1035
Cusp forms 343 253 90
Eisenstein series 4680 3735 945

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 245 0 8 0

Trace form

\( 253 q + 5 q^{2} + 2 q^{4} + q^{5} - 38 q^{8} - 3 q^{9} + 2 q^{10} + 5 q^{11} + q^{13} + 3 q^{16} + 7 q^{18} + q^{19} - 2 q^{20} - 3 q^{22} + q^{23} + 2 q^{25} - 3 q^{26} - 4 q^{29} + q^{31} + 4 q^{32}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(3871))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3871.1.b \(\chi_{3871}(1028, \cdot)\) None 0 1
3871.1.c \(\chi_{3871}(2843, \cdot)\) 3871.1.c.a 1 1
3871.1.c.b 2
3871.1.c.c 2
3871.1.c.d 4
3871.1.c.e 8
3871.1.i \(\chi_{3871}(3057, \cdot)\) 3871.1.i.a 2 2
3871.1.i.b 4
3871.1.j \(\chi_{3871}(214, \cdot)\) 3871.1.j.a 2 2
3871.1.m \(\chi_{3871}(1500, \cdot)\) 3871.1.m.a 2 2
3871.1.m.b 4
3871.1.m.c 4
3871.1.m.d 4
3871.1.m.e 8
3871.1.m.f 16
3871.1.n \(\chi_{3871}(2157, \cdot)\) 3871.1.n.a 2 2
3871.1.o \(\chi_{3871}(80, \cdot)\) None 0 2
3871.1.p \(\chi_{3871}(734, \cdot)\) None 0 2
3871.1.s \(\chi_{3871}(1794, \cdot)\) 3871.1.s.a 2 2
3871.1.t \(\chi_{3871}(766, \cdot)\) 3871.1.t.a 2 2
3871.1.t.b 4
3871.1.x \(\chi_{3871}(78, \cdot)\) None 0 6
3871.1.y \(\chi_{3871}(475, \cdot)\) None 0 6
3871.1.be \(\chi_{3871}(148, \cdot)\) 3871.1.be.a 12 12
3871.1.bf \(\chi_{3871}(97, \cdot)\) None 0 12
3871.1.bk \(\chi_{3871}(213, \cdot)\) None 0 12
3871.1.bl \(\chi_{3871}(135, \cdot)\) None 0 12
3871.1.bo \(\chi_{3871}(55, \cdot)\) None 0 12
3871.1.bp \(\chi_{3871}(159, \cdot)\) None 0 12
3871.1.bq \(\chi_{3871}(372, \cdot)\) None 0 12
3871.1.br \(\chi_{3871}(394, \cdot)\) None 0 12
3871.1.bu \(\chi_{3871}(261, \cdot)\) None 0 12
3871.1.bv \(\chi_{3871}(292, \cdot)\) None 0 12
3871.1.bw \(\chi_{3871}(19, \cdot)\) 3871.1.bw.a 24 24
3871.1.bx \(\chi_{3871}(116, \cdot)\) 3871.1.bx.a 24 24
3871.1.ca \(\chi_{3871}(342, \cdot)\) None 0 24
3871.1.cb \(\chi_{3871}(117, \cdot)\) 3871.1.cb.a 24 24
3871.1.cc \(\chi_{3871}(197, \cdot)\) 3871.1.cc.a 24 24
3871.1.cd \(\chi_{3871}(373, \cdot)\) 3871.1.cd.a 24 24
3871.1.cg \(\chi_{3871}(30, \cdot)\) 3871.1.cg.a 24 24
3871.1.ch \(\chi_{3871}(31, \cdot)\) 3871.1.ch.a 24 24
3871.1.cj \(\chi_{3871}(62, \cdot)\) None 0 72
3871.1.ck \(\chi_{3871}(15, \cdot)\) None 0 72
3871.1.cq \(\chi_{3871}(73, \cdot)\) None 0 144
3871.1.cr \(\chi_{3871}(37, \cdot)\) None 0 144
3871.1.cu \(\chi_{3871}(58, \cdot)\) None 0 144
3871.1.cv \(\chi_{3871}(29, \cdot)\) None 0 144
3871.1.cw \(\chi_{3871}(10, \cdot)\) None 0 144
3871.1.cx \(\chi_{3871}(13, \cdot)\) None 0 144
3871.1.da \(\chi_{3871}(86, \cdot)\) None 0 144
3871.1.db \(\chi_{3871}(5, \cdot)\) None 0 144

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(3871))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(3871)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(79))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(553))\)\(^{\oplus 2}\)