Properties

Label 378.3.o.a.307.9
Level $378$
Weight $3$
Character 378.307
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.9
Character \(\chi\) \(=\) 378.307
Dual form 378.3.o.a.181.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-8.58770 - 4.95811i) q^{5} +(6.88643 - 1.25583i) q^{7} -2.82843 q^{8} -14.0237i q^{10} +(6.74260 + 11.6785i) q^{11} +(10.5236 + 6.07580i) q^{13} +(6.40751 + 7.54611i) q^{14} +(-2.00000 - 3.46410i) q^{16} +20.1850i q^{17} +4.66654i q^{19} +(17.1754 - 9.91622i) q^{20} +(-9.53548 + 16.5159i) q^{22} +(0.0880089 - 0.152436i) q^{23} +(36.6657 + 63.5069i) q^{25} +17.1849i q^{26} +(-4.71127 + 13.1835i) q^{28} +(7.01783 + 12.1552i) q^{29} +(0.0205898 + 0.0118875i) q^{31} +(2.82843 - 4.89898i) q^{32} +(-24.7214 + 14.2729i) q^{34} +(-65.3651 - 23.3590i) q^{35} -2.42366 q^{37} +(-5.71533 + 3.29975i) q^{38} +(24.2897 + 14.0237i) q^{40} +(9.48159 + 5.47420i) q^{41} +(-3.53303 - 6.11939i) q^{43} -26.9704 q^{44} +0.248927 q^{46} +(39.7838 - 22.9692i) q^{47} +(45.8458 - 17.2964i) q^{49} +(-51.8532 + 89.8124i) q^{50} +(-21.0472 + 12.1516i) q^{52} +57.1896 q^{53} -133.722i q^{55} +(-19.4778 + 3.55202i) q^{56} +(-9.92471 + 17.1901i) q^{58} +(-41.9730 - 24.2331i) q^{59} +(-34.2752 + 19.7888i) q^{61} +0.0336230i q^{62} +8.00000 q^{64} +(-60.2489 - 104.354i) q^{65} +(-45.1674 + 78.2322i) q^{67} +(-34.9614 - 20.1850i) q^{68} +(-17.6113 - 96.5729i) q^{70} +80.6841 q^{71} +17.8424i q^{73} +(-1.71379 - 2.96837i) q^{74} +(-8.08269 - 4.66654i) q^{76} +(61.0987 + 71.9558i) q^{77} +(10.1791 + 17.6308i) q^{79} +39.6649i q^{80} +15.4834i q^{82} +(-25.2325 + 14.5680i) q^{83} +(100.079 - 173.342i) q^{85} +(4.99646 - 8.65413i) q^{86} +(-19.0710 - 33.0319i) q^{88} +81.5430i q^{89} +(80.1001 + 28.6247i) q^{91} +(0.176018 + 0.304872i) q^{92} +(56.2627 + 32.4833i) q^{94} +(23.1372 - 40.0749i) q^{95} +(-94.2248 + 54.4007i) q^{97} +(53.6015 + 43.9190i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) −8.58770 4.95811i −1.71754 0.991622i −0.923356 0.383946i \(-0.874565\pi\)
−0.794185 0.607677i \(-0.792102\pi\)
\(6\) 0 0
\(7\) 6.88643 1.25583i 0.983775 0.179404i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 14.0237i 1.40237i
\(11\) 6.74260 + 11.6785i 0.612964 + 1.06168i 0.990738 + 0.135787i \(0.0433562\pi\)
−0.377774 + 0.925898i \(0.623310\pi\)
\(12\) 0 0
\(13\) 10.5236 + 6.07580i 0.809507 + 0.467369i 0.846785 0.531936i \(-0.178535\pi\)
−0.0372779 + 0.999305i \(0.511869\pi\)
\(14\) 6.40751 + 7.54611i 0.457679 + 0.539008i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 20.1850i 1.18735i 0.804705 + 0.593675i \(0.202324\pi\)
−0.804705 + 0.593675i \(0.797676\pi\)
\(18\) 0 0
\(19\) 4.66654i 0.245608i 0.992431 + 0.122804i \(0.0391886\pi\)
−0.992431 + 0.122804i \(0.960811\pi\)
\(20\) 17.1754 9.91622i 0.858770 0.495811i
\(21\) 0 0
\(22\) −9.53548 + 16.5159i −0.433431 + 0.750724i
\(23\) 0.0880089 0.152436i 0.00382647 0.00662765i −0.864106 0.503310i \(-0.832115\pi\)
0.867932 + 0.496683i \(0.165449\pi\)
\(24\) 0 0
\(25\) 36.6657 + 63.5069i 1.46663 + 2.54028i
\(26\) 17.1849i 0.660959i
\(27\) 0 0
\(28\) −4.71127 + 13.1835i −0.168259 + 0.470838i
\(29\) 7.01783 + 12.1552i 0.241994 + 0.419146i 0.961282 0.275566i \(-0.0888652\pi\)
−0.719288 + 0.694712i \(0.755532\pi\)
\(30\) 0 0
\(31\) 0.0205898 + 0.0118875i 0.000664188 + 0.000383469i 0.500332 0.865834i \(-0.333211\pi\)
−0.499668 + 0.866217i \(0.666545\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −24.7214 + 14.2729i −0.727100 + 0.419792i
\(35\) −65.3651 23.3590i −1.86758 0.667399i
\(36\) 0 0
\(37\) −2.42366 −0.0655043 −0.0327522 0.999464i \(-0.510427\pi\)
−0.0327522 + 0.999464i \(0.510427\pi\)
\(38\) −5.71533 + 3.29975i −0.150403 + 0.0868354i
\(39\) 0 0
\(40\) 24.2897 + 14.0237i 0.607242 + 0.350591i
\(41\) 9.48159 + 5.47420i 0.231258 + 0.133517i 0.611152 0.791513i \(-0.290706\pi\)
−0.379894 + 0.925030i \(0.624040\pi\)
\(42\) 0 0
\(43\) −3.53303 6.11939i −0.0821636 0.142311i 0.822015 0.569465i \(-0.192850\pi\)
−0.904179 + 0.427154i \(0.859516\pi\)
\(44\) −26.9704 −0.612964
\(45\) 0 0
\(46\) 0.248927 0.00541145
\(47\) 39.7838 22.9692i 0.846463 0.488706i −0.0129929 0.999916i \(-0.504136\pi\)
0.859456 + 0.511210i \(0.170803\pi\)
\(48\) 0 0
\(49\) 45.8458 17.2964i 0.935628 0.352987i
\(50\) −51.8532 + 89.8124i −1.03706 + 1.79625i
\(51\) 0 0
\(52\) −21.0472 + 12.1516i −0.404753 + 0.233684i
\(53\) 57.1896 1.07905 0.539524 0.841970i \(-0.318604\pi\)
0.539524 + 0.841970i \(0.318604\pi\)
\(54\) 0 0
\(55\) 133.722i 2.43131i
\(56\) −19.4778 + 3.55202i −0.347817 + 0.0634290i
\(57\) 0 0
\(58\) −9.92471 + 17.1901i −0.171116 + 0.296381i
\(59\) −41.9730 24.2331i −0.711406 0.410730i 0.100175 0.994970i \(-0.468060\pi\)
−0.811581 + 0.584239i \(0.801393\pi\)
\(60\) 0 0
\(61\) −34.2752 + 19.7888i −0.561888 + 0.324406i −0.753903 0.656986i \(-0.771831\pi\)
0.192015 + 0.981392i \(0.438498\pi\)
\(62\) 0.0336230i 0.000542307i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −60.2489 104.354i −0.926907 1.60545i
\(66\) 0 0
\(67\) −45.1674 + 78.2322i −0.674140 + 1.16764i 0.302580 + 0.953124i \(0.402152\pi\)
−0.976720 + 0.214520i \(0.931181\pi\)
\(68\) −34.9614 20.1850i −0.514138 0.296838i
\(69\) 0 0
\(70\) −17.6113 96.5729i −0.251591 1.37961i
\(71\) 80.6841 1.13640 0.568198 0.822892i \(-0.307641\pi\)
0.568198 + 0.822892i \(0.307641\pi\)
\(72\) 0 0
\(73\) 17.8424i 0.244417i 0.992504 + 0.122208i \(0.0389976\pi\)
−0.992504 + 0.122208i \(0.961002\pi\)
\(74\) −1.71379 2.96837i −0.0231593 0.0401130i
\(75\) 0 0
\(76\) −8.08269 4.66654i −0.106351 0.0614019i
\(77\) 61.0987 + 71.9558i 0.793490 + 0.934491i
\(78\) 0 0
\(79\) 10.1791 + 17.6308i 0.128850 + 0.223174i 0.923231 0.384245i \(-0.125538\pi\)
−0.794381 + 0.607419i \(0.792205\pi\)
\(80\) 39.6649i 0.495811i
\(81\) 0 0
\(82\) 15.4834i 0.188822i
\(83\) −25.2325 + 14.5680i −0.304006 + 0.175518i −0.644241 0.764822i \(-0.722827\pi\)
0.340235 + 0.940340i \(0.389493\pi\)
\(84\) 0 0
\(85\) 100.079 173.342i 1.17740 2.03932i
\(86\) 4.99646 8.65413i 0.0580984 0.100629i
\(87\) 0 0
\(88\) −19.0710 33.0319i −0.216715 0.375362i
\(89\) 81.5430i 0.916213i 0.888897 + 0.458107i \(0.151472\pi\)
−0.888897 + 0.458107i \(0.848528\pi\)
\(90\) 0 0
\(91\) 80.1001 + 28.6247i 0.880221 + 0.314557i
\(92\) 0.176018 + 0.304872i 0.00191324 + 0.00331382i
\(93\) 0 0
\(94\) 56.2627 + 32.4833i 0.598540 + 0.345567i
\(95\) 23.1372 40.0749i 0.243550 0.421841i
\(96\) 0 0
\(97\) −94.2248 + 54.4007i −0.971390 + 0.560832i −0.899660 0.436592i \(-0.856185\pi\)
−0.0717301 + 0.997424i \(0.522852\pi\)
\(98\) 53.6015 + 43.9190i 0.546954 + 0.448153i
\(99\) 0 0
\(100\) −146.663 −1.46663
\(101\) −120.353 + 69.4857i −1.19161 + 0.687977i −0.958672 0.284514i \(-0.908168\pi\)
−0.232939 + 0.972491i \(0.574834\pi\)
\(102\) 0 0
\(103\) 66.0960 + 38.1606i 0.641709 + 0.370491i 0.785273 0.619150i \(-0.212523\pi\)
−0.143563 + 0.989641i \(0.545856\pi\)
\(104\) −29.7652 17.1849i −0.286204 0.165240i
\(105\) 0 0
\(106\) 40.4391 + 70.0426i 0.381501 + 0.660779i
\(107\) 84.5769 0.790439 0.395219 0.918587i \(-0.370669\pi\)
0.395219 + 0.918587i \(0.370669\pi\)
\(108\) 0 0
\(109\) −24.1111 −0.221203 −0.110601 0.993865i \(-0.535278\pi\)
−0.110601 + 0.993865i \(0.535278\pi\)
\(110\) 163.776 94.5560i 1.48887 0.859600i
\(111\) 0 0
\(112\) −18.1232 21.3436i −0.161814 0.190568i
\(113\) 72.7392 125.988i 0.643710 1.11494i −0.340888 0.940104i \(-0.610728\pi\)
0.984598 0.174835i \(-0.0559390\pi\)
\(114\) 0 0
\(115\) −1.51159 + 0.872716i −0.0131442 + 0.00758883i
\(116\) −28.0713 −0.241994
\(117\) 0 0
\(118\) 68.5415i 0.580861i
\(119\) 25.3489 + 139.002i 0.213016 + 1.16809i
\(120\) 0 0
\(121\) −30.4254 + 52.6983i −0.251450 + 0.435523i
\(122\) −48.4724 27.9856i −0.397315 0.229390i
\(123\) 0 0
\(124\) −0.0411797 + 0.0237751i −0.000332094 + 0.000191735i
\(125\) 479.266i 3.83413i
\(126\) 0 0
\(127\) −155.852 −1.22718 −0.613590 0.789625i \(-0.710275\pi\)
−0.613590 + 0.789625i \(0.710275\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 85.2049 147.579i 0.655422 1.13522i
\(131\) −86.1056 49.7131i −0.657295 0.379489i 0.133951 0.990988i \(-0.457234\pi\)
−0.791245 + 0.611499i \(0.790567\pi\)
\(132\) 0 0
\(133\) 5.86039 + 32.1358i 0.0440631 + 0.241623i
\(134\) −127.753 −0.953377
\(135\) 0 0
\(136\) 57.0917i 0.419792i
\(137\) −12.3339 21.3630i −0.0900287 0.155934i 0.817494 0.575937i \(-0.195363\pi\)
−0.907523 + 0.420002i \(0.862029\pi\)
\(138\) 0 0
\(139\) −98.5930 56.9227i −0.709302 0.409516i 0.101500 0.994835i \(-0.467636\pi\)
−0.810803 + 0.585320i \(0.800969\pi\)
\(140\) 105.824 89.8567i 0.755886 0.641834i
\(141\) 0 0
\(142\) 57.0523 + 98.8175i 0.401777 + 0.695898i
\(143\) 163.867i 1.14592i
\(144\) 0 0
\(145\) 139.181i 0.959867i
\(146\) −21.8524 + 12.6165i −0.149674 + 0.0864144i
\(147\) 0 0
\(148\) 2.42366 4.19790i 0.0163761 0.0283642i
\(149\) 85.7383 148.503i 0.575425 0.996665i −0.420571 0.907260i \(-0.638170\pi\)
0.995995 0.0894051i \(-0.0284966\pi\)
\(150\) 0 0
\(151\) −118.787 205.745i −0.786669 1.36255i −0.927997 0.372588i \(-0.878471\pi\)
0.141328 0.989963i \(-0.454863\pi\)
\(152\) 13.1990i 0.0868354i
\(153\) 0 0
\(154\) −44.9242 + 125.711i −0.291715 + 0.816304i
\(155\) −0.117880 0.204173i −0.000760513 0.00131725i
\(156\) 0 0
\(157\) −67.7529 39.1171i −0.431547 0.249154i 0.268458 0.963291i \(-0.413486\pi\)
−0.700005 + 0.714137i \(0.746819\pi\)
\(158\) −14.3955 + 24.9337i −0.0911106 + 0.157808i
\(159\) 0 0
\(160\) −48.5794 + 28.0473i −0.303621 + 0.175296i
\(161\) 0.414633 1.16026i 0.00257536 0.00720660i
\(162\) 0 0
\(163\) 236.898 1.45336 0.726682 0.686974i \(-0.241061\pi\)
0.726682 + 0.686974i \(0.241061\pi\)
\(164\) −18.9632 + 10.9484i −0.115629 + 0.0667585i
\(165\) 0 0
\(166\) −35.6842 20.6023i −0.214965 0.124110i
\(167\) 200.478 + 115.746i 1.20047 + 0.693089i 0.960659 0.277732i \(-0.0895826\pi\)
0.239807 + 0.970821i \(0.422916\pi\)
\(168\) 0 0
\(169\) −10.6694 18.4800i −0.0631327 0.109349i
\(170\) 283.067 1.66510
\(171\) 0 0
\(172\) 14.1321 0.0821636
\(173\) 110.666 63.8930i 0.639688 0.369324i −0.144807 0.989460i \(-0.546256\pi\)
0.784494 + 0.620136i \(0.212923\pi\)
\(174\) 0 0
\(175\) 332.250 + 391.290i 1.89857 + 2.23594i
\(176\) 26.9704 46.7141i 0.153241 0.265421i
\(177\) 0 0
\(178\) −99.8694 + 57.6596i −0.561064 + 0.323930i
\(179\) −132.848 −0.742165 −0.371083 0.928600i \(-0.621013\pi\)
−0.371083 + 0.928600i \(0.621013\pi\)
\(180\) 0 0
\(181\) 93.4546i 0.516323i −0.966102 0.258162i \(-0.916883\pi\)
0.966102 0.258162i \(-0.0831167\pi\)
\(182\) 21.5814 + 118.343i 0.118579 + 0.650236i
\(183\) 0 0
\(184\) −0.248927 + 0.431154i −0.00135286 + 0.00234323i
\(185\) 20.8137 + 12.0168i 0.112506 + 0.0649556i
\(186\) 0 0
\(187\) −235.731 + 136.099i −1.26059 + 0.727803i
\(188\) 91.8767i 0.488706i
\(189\) 0 0
\(190\) 65.4420 0.344432
\(191\) 146.456 + 253.668i 0.766783 + 1.32811i 0.939299 + 0.343100i \(0.111477\pi\)
−0.172516 + 0.985007i \(0.555190\pi\)
\(192\) 0 0
\(193\) 129.618 224.504i 0.671594 1.16323i −0.305859 0.952077i \(-0.598943\pi\)
0.977452 0.211157i \(-0.0677232\pi\)
\(194\) −133.254 76.9342i −0.686876 0.396568i
\(195\) 0 0
\(196\) −15.8876 + 96.7036i −0.0810591 + 0.493386i
\(197\) −336.752 −1.70940 −0.854700 0.519123i \(-0.826259\pi\)
−0.854700 + 0.519123i \(0.826259\pi\)
\(198\) 0 0
\(199\) 92.4947i 0.464797i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.972621 + 0.232399i \(0.925343\pi\)
\(200\) −103.706 179.625i −0.518532 0.898124i
\(201\) 0 0
\(202\) −170.204 98.2676i −0.842596 0.486473i
\(203\) 63.5927 + 74.8930i 0.313265 + 0.368931i
\(204\) 0 0
\(205\) −54.2834 94.0215i −0.264797 0.458642i
\(206\) 107.934i 0.523953i
\(207\) 0 0
\(208\) 48.6064i 0.233684i
\(209\) −54.4984 + 31.4647i −0.260758 + 0.150549i
\(210\) 0 0
\(211\) −99.0672 + 171.589i −0.469513 + 0.813220i −0.999392 0.0348530i \(-0.988904\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(212\) −57.1896 + 99.0552i −0.269762 + 0.467242i
\(213\) 0 0
\(214\) 59.8049 + 103.585i 0.279462 + 0.484043i
\(215\) 70.0687i 0.325901i
\(216\) 0 0
\(217\) 0.156719 + 0.0560054i 0.000722208 + 0.000258089i
\(218\) −17.0491 29.5299i −0.0782069 0.135458i
\(219\) 0 0
\(220\) 231.614 + 133.722i 1.05279 + 0.607829i
\(221\) −122.640 + 212.418i −0.554930 + 0.961168i
\(222\) 0 0
\(223\) 150.650 86.9779i 0.675561 0.390036i −0.122619 0.992454i \(-0.539129\pi\)
0.798181 + 0.602418i \(0.205796\pi\)
\(224\) 13.3255 37.2885i 0.0594887 0.166466i
\(225\) 0 0
\(226\) 205.738 0.910343
\(227\) −178.543 + 103.082i −0.786535 + 0.454106i −0.838741 0.544530i \(-0.816708\pi\)
0.0522063 + 0.998636i \(0.483375\pi\)
\(228\) 0 0
\(229\) 17.2640 + 9.96735i 0.0753884 + 0.0435255i 0.537220 0.843442i \(-0.319474\pi\)
−0.461832 + 0.886967i \(0.652808\pi\)
\(230\) −2.13771 1.23421i −0.00929438 0.00536611i
\(231\) 0 0
\(232\) −19.8494 34.3802i −0.0855579 0.148191i
\(233\) −257.078 −1.10334 −0.551670 0.834062i \(-0.686009\pi\)
−0.551670 + 0.834062i \(0.686009\pi\)
\(234\) 0 0
\(235\) −455.535 −1.93845
\(236\) 83.9459 48.4662i 0.355703 0.205365i
\(237\) 0 0
\(238\) −152.318 + 129.335i −0.639991 + 0.543426i
\(239\) 6.18007 10.7042i 0.0258580 0.0447874i −0.852807 0.522227i \(-0.825102\pi\)
0.878665 + 0.477439i \(0.158435\pi\)
\(240\) 0 0
\(241\) 257.287 148.544i 1.06758 0.616367i 0.140060 0.990143i \(-0.455270\pi\)
0.927519 + 0.373776i \(0.121937\pi\)
\(242\) −86.0560 −0.355603
\(243\) 0 0
\(244\) 79.1551i 0.324406i
\(245\) −479.467 78.7724i −1.95701 0.321520i
\(246\) 0 0
\(247\) −28.3530 + 49.1088i −0.114789 + 0.198821i
\(248\) −0.0582368 0.0336230i −0.000234826 0.000135577i
\(249\) 0 0
\(250\) 586.978 338.892i 2.34791 1.35557i
\(251\) 349.874i 1.39392i −0.717111 0.696959i \(-0.754536\pi\)
0.717111 0.696959i \(-0.245464\pi\)
\(252\) 0 0
\(253\) 2.37364 0.00938196
\(254\) −110.204 190.879i −0.433874 0.751492i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 292.983 + 169.154i 1.14001 + 0.658186i 0.946433 0.322899i \(-0.104657\pi\)
0.193578 + 0.981085i \(0.437991\pi\)
\(258\) 0 0
\(259\) −16.6904 + 3.04371i −0.0644416 + 0.0117518i
\(260\) 240.996 0.926907
\(261\) 0 0
\(262\) 140.610i 0.536679i
\(263\) −32.7296 56.6894i −0.124447 0.215549i 0.797069 0.603888i \(-0.206382\pi\)
−0.921517 + 0.388339i \(0.873049\pi\)
\(264\) 0 0
\(265\) −491.127 283.552i −1.85331 1.07001i
\(266\) −35.2143 + 29.9009i −0.132384 + 0.112410i
\(267\) 0 0
\(268\) −90.3347 156.464i −0.337070 0.583822i
\(269\) 248.366i 0.923293i 0.887064 + 0.461646i \(0.152741\pi\)
−0.887064 + 0.461646i \(0.847259\pi\)
\(270\) 0 0
\(271\) 59.5945i 0.219906i 0.993937 + 0.109953i \(0.0350700\pi\)
−0.993937 + 0.109953i \(0.964930\pi\)
\(272\) 69.9227 40.3699i 0.257069 0.148419i
\(273\) 0 0
\(274\) 17.4428 30.2118i 0.0636599 0.110262i
\(275\) −494.445 + 856.404i −1.79798 + 3.11420i
\(276\) 0 0
\(277\) 222.096 + 384.682i 0.801791 + 1.38874i 0.918436 + 0.395569i \(0.129453\pi\)
−0.116645 + 0.993174i \(0.537214\pi\)
\(278\) 161.002i 0.579143i
\(279\) 0 0
\(280\) 184.881 + 66.0692i 0.660288 + 0.235961i
\(281\) 231.769 + 401.435i 0.824799 + 1.42859i 0.902073 + 0.431584i \(0.142045\pi\)
−0.0772735 + 0.997010i \(0.524621\pi\)
\(282\) 0 0
\(283\) 88.7084 + 51.2158i 0.313457 + 0.180975i 0.648472 0.761238i \(-0.275408\pi\)
−0.335015 + 0.942213i \(0.608741\pi\)
\(284\) −80.6841 + 139.749i −0.284099 + 0.492074i
\(285\) 0 0
\(286\) −200.695 + 115.871i −0.701730 + 0.405144i
\(287\) 72.1689 + 25.7904i 0.251460 + 0.0898620i
\(288\) 0 0
\(289\) −118.432 −0.409800
\(290\) 170.461 98.4157i 0.587796 0.339364i
\(291\) 0 0
\(292\) −30.9040 17.8424i −0.105836 0.0611042i
\(293\) −288.554 166.597i −0.984825 0.568589i −0.0811016 0.996706i \(-0.525844\pi\)
−0.903723 + 0.428117i \(0.859177\pi\)
\(294\) 0 0
\(295\) 240.301 + 416.213i 0.814579 + 1.41089i
\(296\) 6.85515 0.0231593
\(297\) 0 0
\(298\) 242.504 0.813773
\(299\) 1.85234 1.06945i 0.00619511 0.00357675i
\(300\) 0 0
\(301\) −32.0149 37.7039i −0.106362 0.125262i
\(302\) 167.990 290.968i 0.556259 0.963469i
\(303\) 0 0
\(304\) 16.1654 9.33309i 0.0531756 0.0307010i
\(305\) 392.460 1.28675
\(306\) 0 0
\(307\) 323.443i 1.05356i 0.850002 + 0.526780i \(0.176601\pi\)
−0.850002 + 0.526780i \(0.823399\pi\)
\(308\) −185.730 + 33.8703i −0.603019 + 0.109968i
\(309\) 0 0
\(310\) 0.166707 0.288745i 0.000537764 0.000931434i
\(311\) 399.241 + 230.502i 1.28373 + 0.741164i 0.977529 0.210801i \(-0.0676072\pi\)
0.306205 + 0.951965i \(0.400941\pi\)
\(312\) 0 0
\(313\) −237.475 + 137.106i −0.758705 + 0.438039i −0.828831 0.559500i \(-0.810993\pi\)
0.0701256 + 0.997538i \(0.477660\pi\)
\(314\) 110.640i 0.352357i
\(315\) 0 0
\(316\) −40.7165 −0.128850
\(317\) −212.280 367.679i −0.669652 1.15987i −0.978001 0.208598i \(-0.933110\pi\)
0.308349 0.951273i \(-0.400223\pi\)
\(318\) 0 0
\(319\) −94.6369 + 163.916i −0.296667 + 0.513843i
\(320\) −68.7016 39.6649i −0.214693 0.123953i
\(321\) 0 0
\(322\) 1.71422 0.312610i 0.00532365 0.000970838i
\(323\) −94.1940 −0.291622
\(324\) 0 0
\(325\) 891.094i 2.74183i
\(326\) 167.512 + 290.140i 0.513842 + 0.890000i
\(327\) 0 0
\(328\) −26.8180 15.4834i −0.0817621 0.0472054i
\(329\) 245.123 208.137i 0.745053 0.632636i
\(330\) 0 0
\(331\) −123.513 213.931i −0.373152 0.646318i 0.616897 0.787044i \(-0.288390\pi\)
−0.990049 + 0.140726i \(0.955056\pi\)
\(332\) 58.2720i 0.175518i
\(333\) 0 0
\(334\) 327.379i 0.980176i
\(335\) 775.768 447.890i 2.31572 1.33698i
\(336\) 0 0
\(337\) −57.2883 + 99.2262i −0.169995 + 0.294440i −0.938418 0.345503i \(-0.887708\pi\)
0.768423 + 0.639942i \(0.221042\pi\)
\(338\) 15.0888 26.1346i 0.0446415 0.0773214i
\(339\) 0 0
\(340\) 200.158 + 346.685i 0.588701 + 1.01966i
\(341\) 0.320612i 0.000940211i
\(342\) 0 0
\(343\) 293.992 176.685i 0.857121 0.515116i
\(344\) 9.99293 + 17.3083i 0.0290492 + 0.0503147i
\(345\) 0 0
\(346\) 156.505 + 90.3584i 0.452327 + 0.261151i
\(347\) 172.728 299.174i 0.497776 0.862173i −0.502221 0.864739i \(-0.667484\pi\)
0.999997 + 0.00256650i \(0.000816944\pi\)
\(348\) 0 0
\(349\) 584.225 337.302i 1.67400 0.966483i 0.708632 0.705578i \(-0.249313\pi\)
0.965365 0.260905i \(-0.0840208\pi\)
\(350\) −244.294 + 683.605i −0.697983 + 1.95316i
\(351\) 0 0
\(352\) 76.2838 0.216715
\(353\) −82.7699 + 47.7872i −0.234476 + 0.135375i −0.612635 0.790366i \(-0.709890\pi\)
0.378159 + 0.925740i \(0.376557\pi\)
\(354\) 0 0
\(355\) −692.891 400.041i −1.95181 1.12688i
\(356\) −141.237 81.5430i −0.396732 0.229053i
\(357\) 0 0
\(358\) −93.9374 162.704i −0.262395 0.454482i
\(359\) 27.2256 0.0758374 0.0379187 0.999281i \(-0.487927\pi\)
0.0379187 + 0.999281i \(0.487927\pi\)
\(360\) 0 0
\(361\) 339.223 0.939677
\(362\) 114.458 66.0823i 0.316182 0.182548i
\(363\) 0 0
\(364\) −129.679 + 110.113i −0.356262 + 0.302508i
\(365\) 88.4647 153.225i 0.242369 0.419796i
\(366\) 0 0
\(367\) 130.761 75.4949i 0.356297 0.205708i −0.311158 0.950358i \(-0.600717\pi\)
0.667455 + 0.744650i \(0.267384\pi\)
\(368\) −0.704071 −0.00191324
\(369\) 0 0
\(370\) 33.9886i 0.0918610i
\(371\) 393.832 71.8204i 1.06154 0.193586i
\(372\) 0 0
\(373\) 81.4304 141.042i 0.218312 0.378128i −0.735980 0.677003i \(-0.763278\pi\)
0.954292 + 0.298876i \(0.0966116\pi\)
\(374\) −333.373 192.473i −0.891373 0.514634i
\(375\) 0 0
\(376\) −112.525 + 64.9666i −0.299270 + 0.172784i
\(377\) 170.556i 0.452402i
\(378\) 0 0
\(379\) −391.275 −1.03239 −0.516194 0.856472i \(-0.672651\pi\)
−0.516194 + 0.856472i \(0.672651\pi\)
\(380\) 46.2745 + 80.1498i 0.121775 + 0.210920i
\(381\) 0 0
\(382\) −207.119 + 358.741i −0.542197 + 0.939113i
\(383\) −263.816 152.314i −0.688815 0.397687i 0.114353 0.993440i \(-0.463521\pi\)
−0.803168 + 0.595753i \(0.796854\pi\)
\(384\) 0 0
\(385\) −167.933 920.869i −0.436188 2.39187i
\(386\) 366.614 0.949777
\(387\) 0 0
\(388\) 217.603i 0.560832i
\(389\) 135.460 + 234.623i 0.348225 + 0.603144i 0.985934 0.167134i \(-0.0534511\pi\)
−0.637709 + 0.770277i \(0.720118\pi\)
\(390\) 0 0
\(391\) 3.07691 + 1.77645i 0.00786934 + 0.00454336i
\(392\) −129.671 + 48.9215i −0.330795 + 0.124800i
\(393\) 0 0
\(394\) −238.119 412.435i −0.604364 1.04679i
\(395\) 201.877i 0.511081i
\(396\) 0 0
\(397\) 455.963i 1.14852i −0.818672 0.574261i \(-0.805290\pi\)
0.818672 0.574261i \(-0.194710\pi\)
\(398\) −113.282 + 65.4036i −0.284629 + 0.164331i
\(399\) 0 0
\(400\) 146.663 254.028i 0.366657 0.635069i
\(401\) 214.070 370.780i 0.533841 0.924640i −0.465378 0.885112i \(-0.654081\pi\)
0.999218 0.0395273i \(-0.0125852\pi\)
\(402\) 0 0
\(403\) 0.144453 + 0.250199i 0.000358443 + 0.000620842i
\(404\) 277.943i 0.687977i
\(405\) 0 0
\(406\) −46.7580 + 130.842i −0.115167 + 0.322271i
\(407\) −16.3418 28.3048i −0.0401518 0.0695449i
\(408\) 0 0
\(409\) 310.087 + 179.029i 0.758159 + 0.437723i 0.828634 0.559790i \(-0.189118\pi\)
−0.0704753 + 0.997514i \(0.522452\pi\)
\(410\) 76.7683 132.967i 0.187240 0.324309i
\(411\) 0 0
\(412\) −132.192 + 76.3211i −0.320855 + 0.185245i
\(413\) −319.476 114.169i −0.773551 0.276437i
\(414\) 0 0
\(415\) 288.919 0.696191
\(416\) 59.5304 34.3699i 0.143102 0.0826199i
\(417\) 0 0
\(418\) −77.0724 44.4977i −0.184384 0.106454i
\(419\) −396.340 228.827i −0.945919 0.546127i −0.0541082 0.998535i \(-0.517232\pi\)
−0.891811 + 0.452409i \(0.850565\pi\)
\(420\) 0 0
\(421\) 3.35845 + 5.81701i 0.00797732 + 0.0138171i 0.869987 0.493076i \(-0.164127\pi\)
−0.862009 + 0.506893i \(0.830794\pi\)
\(422\) −280.204 −0.663991
\(423\) 0 0
\(424\) −161.757 −0.381501
\(425\) −1281.88 + 740.096i −3.01620 + 1.74140i
\(426\) 0 0
\(427\) −211.182 + 179.318i −0.494572 + 0.419948i
\(428\) −84.5769 + 146.492i −0.197610 + 0.342270i
\(429\) 0 0
\(430\) −85.8163 + 49.5460i −0.199573 + 0.115223i
\(431\) 399.366 0.926602 0.463301 0.886201i \(-0.346665\pi\)
0.463301 + 0.886201i \(0.346665\pi\)
\(432\) 0 0
\(433\) 566.950i 1.30935i −0.755909 0.654677i \(-0.772805\pi\)
0.755909 0.654677i \(-0.227195\pi\)
\(434\) 0.0422248 + 0.231543i 9.72923e−5 + 0.000533509i
\(435\) 0 0
\(436\) 24.1111 41.7616i 0.0553006 0.0957835i
\(437\) 0.711349 + 0.410697i 0.00162780 + 0.000939811i
\(438\) 0 0
\(439\) 170.327 98.3382i 0.387988 0.224005i −0.293300 0.956020i \(-0.594753\pi\)
0.681288 + 0.732015i \(0.261420\pi\)
\(440\) 378.224i 0.859600i
\(441\) 0 0
\(442\) −346.877 −0.784790
\(443\) −89.4345 154.905i −0.201884 0.349673i 0.747252 0.664541i \(-0.231373\pi\)
−0.949135 + 0.314868i \(0.898040\pi\)
\(444\) 0 0
\(445\) 404.299 700.267i 0.908538 1.57363i
\(446\) 213.052 + 123.005i 0.477694 + 0.275797i
\(447\) 0 0
\(448\) 55.0914 10.0466i 0.122972 0.0224255i
\(449\) −381.811 −0.850358 −0.425179 0.905109i \(-0.639789\pi\)
−0.425179 + 0.905109i \(0.639789\pi\)
\(450\) 0 0
\(451\) 147.641i 0.327364i
\(452\) 145.478 + 251.976i 0.321855 + 0.557469i
\(453\) 0 0
\(454\) −252.499 145.780i −0.556164 0.321102i
\(455\) −545.951 642.965i −1.19989 1.41311i
\(456\) 0 0
\(457\) −284.366 492.537i −0.622245 1.07776i −0.989067 0.147469i \(-0.952887\pi\)
0.366821 0.930291i \(-0.380446\pi\)
\(458\) 28.1919i 0.0615544i
\(459\) 0 0
\(460\) 3.49086i 0.00758883i
\(461\) 315.707 182.273i 0.684830 0.395387i −0.116842 0.993150i \(-0.537277\pi\)
0.801672 + 0.597764i \(0.203944\pi\)
\(462\) 0 0
\(463\) −59.3958 + 102.877i −0.128285 + 0.222196i −0.923012 0.384771i \(-0.874280\pi\)
0.794727 + 0.606967i \(0.207614\pi\)
\(464\) 28.0713 48.6210i 0.0604985 0.104787i
\(465\) 0 0
\(466\) −181.782 314.855i −0.390090 0.675655i
\(467\) 401.009i 0.858692i 0.903140 + 0.429346i \(0.141256\pi\)
−0.903140 + 0.429346i \(0.858744\pi\)
\(468\) 0 0
\(469\) −212.795 + 595.463i −0.453722 + 1.26964i
\(470\) −322.112 557.914i −0.685344 1.18705i
\(471\) 0 0
\(472\) 118.717 + 68.5415i 0.251520 + 0.145215i
\(473\) 47.6437 82.5213i 0.100727 0.174464i
\(474\) 0 0
\(475\) −296.358 + 171.102i −0.623911 + 0.360215i
\(476\) −266.108 95.0967i −0.559050 0.199783i
\(477\) 0 0
\(478\) 17.4799 0.0365688
\(479\) 103.679 59.8591i 0.216449 0.124967i −0.387856 0.921720i \(-0.626784\pi\)
0.604305 + 0.796753i \(0.293451\pi\)
\(480\) 0 0
\(481\) −25.5056 14.7257i −0.0530262 0.0306147i
\(482\) 363.858 + 210.074i 0.754893 + 0.435837i
\(483\) 0 0
\(484\) −60.8508 105.397i −0.125725 0.217762i
\(485\) 1078.90 2.22453
\(486\) 0 0
\(487\) −570.074 −1.17058 −0.585291 0.810823i \(-0.699020\pi\)
−0.585291 + 0.810823i \(0.699020\pi\)
\(488\) 96.9448 55.9711i 0.198657 0.114695i
\(489\) 0 0
\(490\) −242.558 642.926i −0.495017 1.31209i
\(491\) 141.060 244.323i 0.287291 0.497602i −0.685871 0.727723i \(-0.740579\pi\)
0.973162 + 0.230121i \(0.0739121\pi\)
\(492\) 0 0
\(493\) −245.353 + 141.655i −0.497673 + 0.287332i
\(494\) −80.1943 −0.162337
\(495\) 0 0
\(496\) 0.0951003i 0.000191735i
\(497\) 555.625 101.326i 1.11796 0.203874i
\(498\) 0 0
\(499\) 30.1314 52.1891i 0.0603835 0.104587i −0.834253 0.551381i \(-0.814101\pi\)
0.894637 + 0.446794i \(0.147434\pi\)
\(500\) 830.113 + 479.266i 1.66023 + 0.958532i
\(501\) 0 0
\(502\) 428.506 247.398i 0.853597 0.492825i
\(503\) 3.37300i 0.00670576i 0.999994 + 0.00335288i \(0.00106726\pi\)
−0.999994 + 0.00335288i \(0.998933\pi\)
\(504\) 0 0
\(505\) 1378.07 2.72885
\(506\) 1.67841 + 2.90710i 0.00331702 + 0.00574525i
\(507\) 0 0
\(508\) 155.852 269.943i 0.306795 0.531385i
\(509\) 11.9659 + 6.90849i 0.0235086 + 0.0135727i 0.511708 0.859159i \(-0.329013\pi\)
−0.488200 + 0.872732i \(0.662346\pi\)
\(510\) 0 0
\(511\) 22.4071 + 122.871i 0.0438494 + 0.240451i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 478.439i 0.930816i
\(515\) −378.409 655.423i −0.734774 1.27267i
\(516\) 0 0
\(517\) 536.492 + 309.744i 1.03770 + 0.599118i
\(518\) −15.5296 18.2892i −0.0299800 0.0353074i
\(519\) 0 0
\(520\) 170.410 + 295.158i 0.327711 + 0.567612i
\(521\) 163.277i 0.313391i −0.987647 0.156695i \(-0.949916\pi\)
0.987647 0.156695i \(-0.0500841\pi\)
\(522\) 0 0
\(523\) 953.671i 1.82346i 0.410787 + 0.911731i \(0.365254\pi\)
−0.410787 + 0.911731i \(0.634746\pi\)
\(524\) 172.211 99.4262i 0.328647 0.189745i
\(525\) 0 0
\(526\) 46.2867 80.1709i 0.0879975 0.152416i
\(527\) −0.239949 + 0.415605i −0.000455312 + 0.000788624i
\(528\) 0 0
\(529\) 264.485 + 458.101i 0.499971 + 0.865975i
\(530\) 802.007i 1.51322i
\(531\) 0 0
\(532\) −61.5213 21.9853i −0.115641 0.0413258i
\(533\) 66.5202 + 115.216i 0.124803 + 0.216166i
\(534\) 0 0
\(535\) −726.321 419.342i −1.35761 0.783817i
\(536\) 127.753 221.274i 0.238344 0.412825i
\(537\) 0 0
\(538\) −304.185 + 175.621i −0.565399 + 0.326433i
\(539\) 511.116 + 418.789i 0.948267 + 0.776974i
\(540\) 0 0
\(541\) 296.567 0.548183 0.274092 0.961704i \(-0.411623\pi\)
0.274092 + 0.961704i \(0.411623\pi\)
\(542\) −72.9881 + 42.1397i −0.134664 + 0.0777485i
\(543\) 0 0
\(544\) 98.8857 + 57.0917i 0.181775 + 0.104948i
\(545\) 207.059 + 119.545i 0.379924 + 0.219349i
\(546\) 0 0
\(547\) −205.972 356.754i −0.376548 0.652201i 0.614009 0.789299i \(-0.289556\pi\)
−0.990557 + 0.137098i \(0.956223\pi\)
\(548\) 49.3357 0.0900287
\(549\) 0 0
\(550\) −1398.50 −2.54273
\(551\) −56.7230 + 32.7490i −0.102945 + 0.0594356i
\(552\) 0 0
\(553\) 92.2392 + 108.630i 0.166798 + 0.196437i
\(554\) −314.091 + 544.022i −0.566952 + 0.981989i
\(555\) 0 0
\(556\) 197.186 113.845i 0.354651 0.204758i
\(557\) −558.037 −1.00186 −0.500931 0.865487i \(-0.667009\pi\)
−0.500931 + 0.865487i \(0.667009\pi\)
\(558\) 0 0
\(559\) 85.8639i 0.153603i
\(560\) 49.8124 + 273.149i 0.0889507 + 0.487767i
\(561\) 0 0
\(562\) −327.770 + 567.715i −0.583221 + 1.01017i
\(563\) −251.341 145.112i −0.446432 0.257748i 0.259890 0.965638i \(-0.416314\pi\)
−0.706322 + 0.707891i \(0.749647\pi\)
\(564\) 0 0
\(565\) −1249.33 + 721.298i −2.21120 + 1.27663i
\(566\) 144.860i 0.255937i
\(567\) 0 0
\(568\) −228.209 −0.401777
\(569\) −321.956 557.644i −0.565828 0.980043i −0.996972 0.0777596i \(-0.975223\pi\)
0.431144 0.902283i \(-0.358110\pi\)
\(570\) 0 0
\(571\) 542.172 939.070i 0.949514 1.64461i 0.203063 0.979166i \(-0.434910\pi\)
0.746451 0.665441i \(-0.231756\pi\)
\(572\) −283.825 163.867i −0.496198 0.286480i
\(573\) 0 0
\(574\) 19.4445 + 106.625i 0.0338754 + 0.185758i
\(575\) 12.9076 0.0224481
\(576\) 0 0
\(577\) 650.622i 1.12759i −0.825913 0.563797i \(-0.809340\pi\)
0.825913 0.563797i \(-0.190660\pi\)
\(578\) −83.7443 145.049i −0.144886 0.250950i
\(579\) 0 0
\(580\) 241.068 + 139.181i 0.415635 + 0.239967i
\(581\) −155.467 + 132.009i −0.267585 + 0.227210i
\(582\) 0 0
\(583\) 385.607 + 667.890i 0.661418 + 1.14561i
\(584\) 50.4660i 0.0864144i
\(585\) 0 0
\(586\) 471.206i 0.804106i
\(587\) −199.425 + 115.138i −0.339736 + 0.196147i −0.660155 0.751129i \(-0.729510\pi\)
0.320419 + 0.947276i \(0.396176\pi\)
\(588\) 0 0
\(589\) −0.0554737 + 0.0960833i −9.41829e−5 + 0.000163130i
\(590\) −339.837 + 588.614i −0.575994 + 0.997651i
\(591\) 0 0
\(592\) 4.84732 + 8.39581i 0.00818804 + 0.0141821i
\(593\) 715.009i 1.20575i −0.797836 0.602875i \(-0.794022\pi\)
0.797836 0.602875i \(-0.205978\pi\)
\(594\) 0 0
\(595\) 471.500 1319.39i 0.792437 2.21747i
\(596\) 171.477 + 297.006i 0.287712 + 0.498332i
\(597\) 0 0
\(598\) 2.61960 + 1.51243i 0.00438060 + 0.00252914i
\(599\) −433.990 + 751.692i −0.724523 + 1.25491i 0.234646 + 0.972081i \(0.424607\pi\)
−0.959170 + 0.282831i \(0.908727\pi\)
\(600\) 0 0
\(601\) 242.032 139.737i 0.402716 0.232508i −0.284939 0.958546i \(-0.591973\pi\)
0.687655 + 0.726037i \(0.258640\pi\)
\(602\) 23.5397 65.8707i 0.0391024 0.109420i
\(603\) 0 0
\(604\) 475.148 0.786669
\(605\) 522.568 301.705i 0.863749 0.498686i
\(606\) 0 0
\(607\) 381.944 + 220.515i 0.629232 + 0.363287i 0.780454 0.625213i \(-0.214988\pi\)
−0.151223 + 0.988500i \(0.548321\pi\)
\(608\) 22.8613 + 13.1990i 0.0376008 + 0.0217089i
\(609\) 0 0
\(610\) 277.511 + 480.663i 0.454936 + 0.787973i
\(611\) 558.224 0.913623
\(612\) 0 0
\(613\) −249.504 −0.407022 −0.203511 0.979073i \(-0.565235\pi\)
−0.203511 + 0.979073i \(0.565235\pi\)
\(614\) −396.135 + 228.709i −0.645171 + 0.372490i
\(615\) 0 0
\(616\) −172.813 203.522i −0.280541 0.330392i
\(617\) −276.294 + 478.555i −0.447802 + 0.775616i −0.998243 0.0592581i \(-0.981127\pi\)
0.550440 + 0.834874i \(0.314460\pi\)
\(618\) 0 0
\(619\) 855.461 493.901i 1.38201 0.797901i 0.389609 0.920980i \(-0.372610\pi\)
0.992397 + 0.123079i \(0.0392769\pi\)
\(620\) 0.471518 0.000760513
\(621\) 0 0
\(622\) 651.958i 1.04816i
\(623\) 102.404 + 561.540i 0.164373 + 0.901348i
\(624\) 0 0
\(625\) −1459.61 + 2528.12i −2.33538 + 4.04499i
\(626\) −335.840 193.897i −0.536485 0.309740i
\(627\) 0 0
\(628\) 135.506 78.2343i 0.215774 0.124577i
\(629\) 48.9215i 0.0777766i
\(630\) 0 0
\(631\) −236.443 −0.374712 −0.187356 0.982292i \(-0.559992\pi\)
−0.187356 + 0.982292i \(0.559992\pi\)
\(632\) −28.7909 49.8674i −0.0455553 0.0789041i
\(633\) 0 0
\(634\) 300.209 519.977i 0.473516 0.820153i
\(635\) 1338.41 + 772.731i 2.10773 + 1.21690i
\(636\) 0 0
\(637\) 587.551 + 96.5297i 0.922372 + 0.151538i
\(638\) −267.674 −0.419551
\(639\) 0 0
\(640\) 112.189i 0.175296i
\(641\) −122.793 212.685i −0.191565 0.331801i 0.754204 0.656640i \(-0.228023\pi\)
−0.945769 + 0.324839i \(0.894690\pi\)
\(642\) 0 0
\(643\) 1004.04 + 579.685i 1.56150 + 0.901532i 0.997106 + 0.0760269i \(0.0242235\pi\)
0.564394 + 0.825505i \(0.309110\pi\)
\(644\) 1.59500 + 1.87843i 0.00247671 + 0.00291681i
\(645\) 0 0
\(646\) −66.6052 115.364i −0.103104 0.178581i
\(647\) 78.1821i 0.120838i 0.998173 + 0.0604189i \(0.0192437\pi\)
−0.998173 + 0.0604189i \(0.980756\pi\)
\(648\) 0 0
\(649\) 653.577i 1.00705i
\(650\) −1091.36 + 630.099i −1.67902 + 0.969383i
\(651\) 0 0
\(652\) −236.898 + 410.320i −0.363341 + 0.629325i
\(653\) 615.100 1065.38i 0.941960 1.63152i 0.180233 0.983624i \(-0.442315\pi\)
0.761727 0.647898i \(-0.224352\pi\)
\(654\) 0 0
\(655\) 492.966 + 853.843i 0.752620 + 1.30358i
\(656\) 43.7936i 0.0667585i
\(657\) 0 0
\(658\) 428.243 + 153.037i 0.650825 + 0.232580i
\(659\) −59.0656 102.305i −0.0896291 0.155242i 0.817725 0.575609i \(-0.195235\pi\)
−0.907354 + 0.420367i \(0.861901\pi\)
\(660\) 0 0
\(661\) −558.811 322.629i −0.845402 0.488093i 0.0136948 0.999906i \(-0.495641\pi\)
−0.859097 + 0.511813i \(0.828974\pi\)
\(662\) 174.674 302.545i 0.263858 0.457016i
\(663\) 0 0
\(664\) 71.3683 41.2045i 0.107482 0.0620550i
\(665\) 109.006 305.029i 0.163918 0.458691i
\(666\) 0 0
\(667\) 2.47053 0.00370394
\(668\) −400.955 + 231.492i −0.600233 + 0.346545i
\(669\) 0 0
\(670\) 1097.10 + 633.412i 1.63746 + 0.945390i
\(671\) −462.208 266.856i −0.688834 0.397699i
\(672\) 0 0
\(673\) −429.109 743.239i −0.637607 1.10437i −0.985956 0.167002i \(-0.946591\pi\)
0.348350 0.937365i \(-0.386742\pi\)
\(674\) −162.036 −0.240409
\(675\) 0 0
\(676\) 42.6777 0.0631327
\(677\) 88.6309 51.1710i 0.130917 0.0755850i −0.433111 0.901341i \(-0.642584\pi\)
0.564028 + 0.825756i \(0.309251\pi\)
\(678\) 0 0
\(679\) −580.554 + 492.957i −0.855014 + 0.726004i
\(680\) −283.067 + 490.286i −0.416275 + 0.721009i
\(681\) 0 0
\(682\) −0.392668 + 0.226707i −0.000575759 + 0.000332415i
\(683\) −1031.39 −1.51009 −0.755044 0.655674i \(-0.772384\pi\)
−0.755044 + 0.655674i \(0.772384\pi\)
\(684\) 0 0
\(685\) 244.612i 0.357098i
\(686\) 424.278 + 235.131i 0.618481 + 0.342756i
\(687\) 0 0
\(688\) −14.1321 + 24.4776i −0.0205409 + 0.0355779i
\(689\) 601.839 + 347.472i 0.873497 + 0.504314i
\(690\) 0 0
\(691\) 791.470 456.956i 1.14540 0.661296i 0.197637 0.980275i \(-0.436673\pi\)
0.947762 + 0.318979i \(0.103340\pi\)
\(692\) 255.572i 0.369324i
\(693\) 0 0
\(694\) 488.549 0.703961
\(695\) 564.458 + 977.670i 0.812170 + 1.40672i
\(696\) 0 0
\(697\) −110.496 + 191.385i −0.158531 + 0.274584i
\(698\) 826.219 + 477.018i 1.18369 + 0.683406i
\(699\) 0 0
\(700\) −1009.98 + 184.184i −1.44283 + 0.263120i
\(701\) 194.138 0.276945 0.138472 0.990366i \(-0.455781\pi\)
0.138472 + 0.990366i \(0.455781\pi\)
\(702\) 0 0
\(703\) 11.3101i 0.0160884i
\(704\) 53.9408 + 93.4282i 0.0766205 + 0.132711i
\(705\) 0 0
\(706\) −117.054 67.5813i −0.165799 0.0957243i
\(707\) −741.538 + 629.651i −1.04885 + 0.890595i
\(708\) 0 0
\(709\) 217.583 + 376.864i 0.306886 + 0.531543i 0.977680 0.210102i \(-0.0673795\pi\)
−0.670793 + 0.741645i \(0.734046\pi\)
\(710\) 1131.49i 1.59364i
\(711\) 0 0
\(712\) 230.638i 0.323930i
\(713\) 0.00362417 0.00209242i 5.08299e−6 2.93467e-6i
\(714\) 0 0
\(715\) 812.469 1407.24i 1.13632 1.96817i
\(716\) 132.848 230.099i 0.185541 0.321367i
\(717\) 0 0
\(718\) 19.2514 + 33.3445i 0.0268126 + 0.0464408i
\(719\) 922.050i 1.28241i 0.767371 + 0.641203i \(0.221564\pi\)
−0.767371 + 0.641203i \(0.778436\pi\)
\(720\) 0 0
\(721\) 503.089 + 179.785i 0.697765 + 0.249354i
\(722\) 239.867 + 415.462i 0.332226 + 0.575432i
\(723\) 0 0
\(724\) 161.868 + 93.4546i 0.223575 + 0.129081i
\(725\) −514.628 + 891.362i −0.709832 + 1.22946i
\(726\) 0 0
\(727\) −451.861 + 260.882i −0.621542 + 0.358847i −0.777469 0.628921i \(-0.783497\pi\)
0.155927 + 0.987769i \(0.450163\pi\)
\(728\) −226.557 80.9628i −0.311205 0.111213i
\(729\) 0 0
\(730\) 250.216 0.342762
\(731\) 123.520 71.3141i 0.168974 0.0975569i
\(732\) 0 0
\(733\) −132.926 76.7450i −0.181346 0.104700i 0.406579 0.913616i \(-0.366722\pi\)
−0.587925 + 0.808916i \(0.700055\pi\)
\(734\) 184.924 + 106.766i 0.251940 + 0.145458i
\(735\) 0 0
\(736\) −0.497853 0.862307i −0.000676431 0.00117161i
\(737\) −1218.18 −1.65289
\(738\) 0 0
\(739\) −316.707 −0.428561 −0.214280 0.976772i \(-0.568741\pi\)
−0.214280 + 0.976772i \(0.568741\pi\)
\(740\) −41.6273 + 24.0336i −0.0562532 + 0.0324778i
\(741\) 0 0
\(742\) 366.443 + 431.559i 0.493858 + 0.581616i
\(743\) 658.244 1140.11i 0.885927 1.53447i 0.0412793 0.999148i \(-0.486857\pi\)
0.844648 0.535323i \(-0.179810\pi\)
\(744\) 0 0
\(745\) −1472.59 + 850.200i −1.97663 + 1.14121i
\(746\) 230.320 0.308740
\(747\) 0 0
\(748\) 544.396i 0.727803i
\(749\) 582.433 106.214i 0.777614 0.141808i
\(750\) 0 0
\(751\) 423.985 734.364i 0.564561 0.977848i −0.432530 0.901620i \(-0.642379\pi\)
0.997090 0.0762280i \(-0.0242877\pi\)
\(752\) −159.135 91.8767i −0.211616 0.122176i
\(753\) 0 0
\(754\) −208.887 + 120.601i −0.277039 + 0.159948i
\(755\) 2355.84i 3.12031i
\(756\) 0 0
\(757\) −1170.49 −1.54622 −0.773112 0.634269i \(-0.781301\pi\)
−0.773112 + 0.634269i \(0.781301\pi\)
\(758\) −276.673 479.212i −0.365004 0.632205i
\(759\) 0 0
\(760\) −65.4420 + 113.349i −0.0861079 + 0.149143i
\(761\) −240.508 138.858i −0.316043 0.182467i 0.333585 0.942720i \(-0.391742\pi\)
−0.649627 + 0.760253i \(0.725075\pi\)
\(762\) 0 0
\(763\) −166.039 + 30.2794i −0.217614 + 0.0396847i
\(764\) −585.822 −0.766783
\(765\) 0 0
\(766\) 430.810i 0.562415i
\(767\) −294.471 510.038i −0.383925 0.664978i
\(768\) 0 0
\(769\) 460.984 + 266.149i 0.599459 + 0.346098i 0.768829 0.639455i \(-0.220840\pi\)
−0.169370 + 0.985553i \(0.554173\pi\)
\(770\) 1009.08 856.827i 1.31050 1.11276i
\(771\) 0 0
\(772\) 259.235 + 449.008i 0.335797 + 0.581617i
\(773\) 323.697i 0.418755i −0.977835 0.209377i \(-0.932856\pi\)
0.977835 0.209377i \(-0.0671437\pi\)
\(774\) 0 0
\(775\) 1.74346i 0.00224963i
\(776\) 266.508 153.868i 0.343438 0.198284i
\(777\) 0 0
\(778\) −191.569 + 331.807i −0.246232 + 0.426487i
\(779\) −25.5456 + 44.2462i −0.0327928 + 0.0567988i
\(780\) 0 0
\(781\) 544.021 + 942.272i 0.696570 + 1.20649i
\(782\) 5.02457i 0.00642529i
\(783\) 0 0
\(784\) −151.608 124.222i −0.193377 0.158446i
\(785\) 387.894 + 671.853i 0.494133 + 0.855863i
\(786\) 0 0
\(787\) 943.069 + 544.481i 1.19831 + 0.691844i 0.960178 0.279389i \(-0.0901319\pi\)
0.238131 + 0.971233i \(0.423465\pi\)
\(788\) 336.752 583.271i 0.427350 0.740192i
\(789\) 0 0
\(790\) 247.248 142.749i 0.312972 0.180695i
\(791\) 342.694 958.956i 0.433241 1.21233i
\(792\) 0 0
\(793\) −480.930 −0.606470
\(794\) 558.438 322.415i 0.703323 0.406064i
\(795\) 0 0
\(796\) −160.205 92.4947i −0.201263 0.116199i
\(797\) 1.86876 + 1.07893i 0.00234475 + 0.00135374i 0.501172 0.865348i \(-0.332902\pi\)
−0.498827 + 0.866701i \(0.666236\pi\)
\(798\) 0 0
\(799\) 463.631 + 803.033i 0.580265 + 1.00505i
\(800\) 414.826 0.518532
\(801\) 0 0
\(802\) 605.482 0.754965
\(803\) −208.373 + 120.304i −0.259494 + 0.149819i
\(804\) 0 0
\(805\) −9.31346 + 7.90819i −0.0115695 + 0.00982384i
\(806\) −0.204287 + 0.353835i −0.000253458 + 0.000439001i
\(807\) 0 0
\(808\) 340.409 196.535i 0.421298 0.243237i
\(809\) 137.194 0.169585 0.0847924 0.996399i \(-0.472977\pi\)
0.0847924 + 0.996399i \(0.472977\pi\)
\(810\) 0 0
\(811\) 724.583i 0.893444i 0.894673 + 0.446722i \(0.147409\pi\)
−0.894673 + 0.446722i \(0.852591\pi\)
\(812\) −193.311 + 35.2528i −0.238068 + 0.0434148i
\(813\) 0 0
\(814\) 23.1108 40.0290i 0.0283916 0.0491757i
\(815\) −2034.41 1174.57i −2.49621 1.44119i
\(816\) 0 0
\(817\) 28.5564 16.4871i 0.0349528 0.0201800i
\(818\) 506.370i 0.619034i
\(819\) 0 0
\(820\) 217.133 0.264797
\(821\) 557.777 + 966.098i 0.679387 + 1.17673i 0.975166 + 0.221477i \(0.0710877\pi\)
−0.295778 + 0.955257i \(0.595579\pi\)
\(822\) 0 0
\(823\) 255.274 442.148i 0.310175 0.537239i −0.668225 0.743959i \(-0.732946\pi\)
0.978400 + 0.206720i \(0.0662790\pi\)
\(824\) −186.948 107.934i −0.226878 0.130988i
\(825\) 0 0
\(826\) −86.0766 472.006i −0.104209 0.571436i
\(827\) −1088.29 −1.31594 −0.657972 0.753042i \(-0.728585\pi\)
−0.657972 + 0.753042i \(0.728585\pi\)
\(828\) 0 0
\(829\) 1155.53i 1.39388i −0.717128 0.696942i \(-0.754544\pi\)
0.717128 0.696942i \(-0.245456\pi\)
\(830\) 204.297 + 353.852i 0.246141 + 0.426328i
\(831\) 0 0
\(832\) 84.1887 + 48.6064i 0.101188 + 0.0584211i
\(833\) 349.126 + 925.395i 0.419119 + 1.11092i
\(834\) 0 0
\(835\) −1147.76 1987.98i −1.37457 2.38082i
\(836\) 125.859i 0.150549i
\(837\) 0 0
\(838\) 647.221i 0.772340i
\(839\) −162.598 + 93.8762i −0.193800 + 0.111891i −0.593760 0.804642i \(-0.702357\pi\)
0.399960 + 0.916533i \(0.369024\pi\)
\(840\) 0 0
\(841\) 322.000 557.721i 0.382878 0.663164i
\(842\) −4.74957 + 8.22649i −0.00564082 + 0.00977018i
\(843\) 0 0
\(844\) −198.134 343.179i −0.234756 0.406610i
\(845\) 211.601i 0.250415i
\(846\) 0 0
\(847\) −143.342 + 401.112i −0.169235 + 0.473568i
\(848\) −114.379 198.110i −0.134881 0.233621i
\(849\) 0 0
\(850\) −1812.86 1046.65i −2.13277 1.23136i
\(851\) −0.213304 + 0.369453i −0.000250651 + 0.000434139i
\(852\) 0 0
\(853\) 659.061 380.509i 0.772639 0.446083i −0.0611763 0.998127i \(-0.519485\pi\)
0.833815 + 0.552044i \(0.186152\pi\)
\(854\) −368.947 131.847i −0.432022 0.154388i
\(855\) 0 0
\(856\) −239.220 −0.279462
\(857\) −779.492 + 450.040i −0.909558 + 0.525134i −0.880289 0.474438i \(-0.842651\pi\)
−0.0292694 + 0.999572i \(0.509318\pi\)
\(858\) 0 0
\(859\) −1001.95 578.477i −1.16642 0.673431i −0.213584 0.976925i \(-0.568514\pi\)
−0.952833 + 0.303494i \(0.901847\pi\)
\(860\) −121.363 70.0687i −0.141119 0.0814752i
\(861\) 0 0
\(862\) 282.394 + 489.121i 0.327603 + 0.567426i
\(863\) −512.272 −0.593594 −0.296797 0.954941i \(-0.595918\pi\)
−0.296797 + 0.954941i \(0.595918\pi\)
\(864\) 0 0
\(865\) −1267.15 −1.46492
\(866\) 694.369 400.894i 0.801812 0.462926i
\(867\) 0 0
\(868\) −0.253723 + 0.215440i −0.000292308 + 0.000248203i
\(869\) −137.268 + 237.755i −0.157961 + 0.273596i
\(870\) 0 0
\(871\) −950.645 + 548.855i −1.09144 + 0.630144i
\(872\) 68.1964 0.0782069
\(873\) 0 0
\(874\) 1.16163i 0.00132909i
\(875\) −601.877 3300.43i −0.687859 3.77192i
\(876\) 0 0
\(877\) 644.224 1115.83i 0.734577 1.27233i −0.220331 0.975425i \(-0.570714\pi\)
0.954909 0.296900i \(-0.0959528\pi\)
\(878\) 240.878 + 139.071i 0.274349 + 0.158395i
\(879\) 0 0
\(880\) −463.228 + 267.445i −0.526395 + 0.303914i
\(881\) 1247.46i 1.41596i −0.706235 0.707978i \(-0.749608\pi\)
0.706235 0.707978i \(-0.250392\pi\)
\(882\) 0 0
\(883\) −936.870 −1.06101 −0.530504 0.847682i \(-0.677997\pi\)
−0.530504 + 0.847682i \(0.677997\pi\)
\(884\) −245.279 424.836i −0.277465 0.480584i
\(885\) 0 0
\(886\) 126.479 219.069i 0.142753 0.247256i
\(887\) −1251.49 722.546i −1.41092 0.814595i −0.415445 0.909618i \(-0.636374\pi\)
−0.995475 + 0.0950234i \(0.969707\pi\)
\(888\) 0 0
\(889\) −1073.26 + 195.724i −1.20727 + 0.220162i
\(890\) 1143.53 1.28487
\(891\) 0 0
\(892\) 347.912i 0.390036i
\(893\) 107.187 + 185.653i 0.120030 + 0.207898i
\(894\) 0 0
\(895\) 1140.86 + 658.673i 1.27470 + 0.735948i
\(896\) 51.2601 + 60.3689i 0.0572099 + 0.0673760i
\(897\) 0 0
\(898\) −269.981 467.621i −0.300647 0.520736i
\(899\) 0.333699i 0.000371189i
\(900\) 0 0
\(901\) 1154.37i 1.28121i
\(902\) −180.823 + 104.398i −0.200469 + 0.115741i
\(903\) 0 0
\(904\) −205.738 + 356.348i −0.227586 + 0.394190i
\(905\) −463.358 + 802.560i −0.511998 + 0.886806i
\(906\) 0 0
\(907\) 20.3747 + 35.2899i 0.0224638 + 0.0389084i 0.877039 0.480420i \(-0.159516\pi\)
−0.854575 + 0.519328i \(0.826182\pi\)
\(908\) 412.328i 0.454106i
\(909\) 0 0
\(910\) 401.423 1123.30i 0.441124 1.23439i
\(911\) 96.3670 + 166.913i 0.105782 + 0.183219i 0.914057 0.405585i \(-0.132932\pi\)
−0.808276 + 0.588804i \(0.799599\pi\)
\(912\) 0 0
\(913\) −340.266 196.452i −0.372690 0.215172i
\(914\) 402.154 696.552i 0.439994 0.762092i
\(915\) 0 0
\(916\) −34.5279 + 19.9347i −0.0376942 + 0.0217628i
\(917\) −655.391 234.212i −0.714713 0.255411i
\(918\) 0 0
\(919\) 851.690 0.926757 0.463378 0.886161i \(-0.346637\pi\)
0.463378 + 0.886161i \(0.346637\pi\)
\(920\) 4.27542 2.46841i 0.00464719 0.00268306i
\(921\) 0 0
\(922\) 446.477 + 257.773i 0.484248 + 0.279581i
\(923\) 849.086 + 490.220i 0.919920 + 0.531116i
\(924\) 0 0
\(925\) −88.8653 153.919i −0.0960706 0.166399i
\(926\) −167.997 −0.181422
\(927\) 0 0
\(928\) 79.3977 0.0855579
\(929\) 1301.36 751.342i 1.40082 0.808764i 0.406343 0.913721i \(-0.366804\pi\)
0.994477 + 0.104957i \(0.0334704\pi\)
\(930\) 0 0
\(931\) 80.7143 + 213.941i 0.0866963 + 0.229797i
\(932\) 257.078 445.273i 0.275835 0.477760i
\(933\) 0 0
\(934\) −491.134 + 283.556i −0.525840 + 0.303594i
\(935\) 2699.18 2.88682
\(936\) 0 0
\(937\) 1330.62i 1.42009i 0.704158 + 0.710043i \(0.251325\pi\)
−0.704158 + 0.710043i \(0.748675\pi\)
\(938\) −879.759 + 160.436i −0.937909 + 0.171040i
\(939\) 0 0
\(940\) 455.535 789.009i 0.484611 0.839372i
\(941\) 1089.81 + 629.201i 1.15814 + 0.668651i 0.950857 0.309631i \(-0.100205\pi\)
0.207281 + 0.978282i \(0.433539\pi\)
\(942\) 0 0
\(943\) 1.66893 0.963556i 0.00176981 0.00102180i
\(944\) 193.865i 0.205365i
\(945\) 0 0
\(946\) 134.757 0.142449
\(947\) −671.501 1163.07i −0.709083 1.22817i −0.965198 0.261521i \(-0.915776\pi\)
0.256115 0.966646i \(-0.417557\pi\)
\(948\) 0 0
\(949\) −108.407 + 187.766i −0.114233 + 0.197857i
\(950\) −419.113 241.975i −0.441172 0.254711i
\(951\) 0 0
\(952\) −71.6975 393.158i −0.0753125 0.412981i
\(953\) 1593.34 1.67192 0.835961 0.548789i \(-0.184911\pi\)
0.835961 + 0.548789i \(0.184911\pi\)
\(954\) 0 0
\(955\) 2904.57i 3.04144i
\(956\) 12.3601 + 21.4084i 0.0129290 + 0.0223937i
\(957\) 0 0
\(958\) 146.624 + 84.6536i 0.153053 + 0.0883649i
\(959\) −111.765 131.625i −0.116543 0.137253i
\(960\) 0 0
\(961\) −480.500 832.250i −0.500000 0.866025i
\(962\) 41.6505i 0.0432957i
\(963\) 0 0
\(964\) 594.178i 0.616367i
\(965\) −2226.23 + 1285.32i −2.30698 + 1.33193i
\(966\) 0 0
\(967\) −819.205 + 1418.91i −0.847162 + 1.46733i 0.0365690 + 0.999331i \(0.488357\pi\)
−0.883731 + 0.467996i \(0.844976\pi\)
\(968\) 86.0560 149.053i 0.0889008 0.153981i
\(969\) 0 0
\(970\) 762.897 + 1321.38i 0.786492 + 1.36224i
\(971\) 1718.35i 1.76967i 0.465902 + 0.884836i \(0.345730\pi\)
−0.465902 + 0.884836i \(0.654270\pi\)
\(972\) 0 0
\(973\) −750.439 268.178i −0.771263 0.275620i
\(974\) −403.103 698.195i −0.413863 0.716832i
\(975\) 0 0
\(976\) 137.101 + 79.1551i 0.140472 + 0.0811016i
\(977\) 179.274 310.512i 0.183495 0.317822i −0.759573 0.650422i \(-0.774592\pi\)
0.943068 + 0.332599i \(0.107926\pi\)
\(978\) 0 0
\(979\) −952.302 + 549.812i −0.972730 + 0.561606i
\(980\) 615.905 751.689i 0.628475 0.767030i
\(981\) 0 0
\(982\) 398.977 0.406290
\(983\) 924.703 533.877i 0.940694 0.543110i 0.0505165 0.998723i \(-0.483913\pi\)
0.890178 + 0.455613i \(0.150580\pi\)
\(984\) 0 0
\(985\) 2891.92 + 1669.65i 2.93596 + 1.69508i
\(986\) −346.981 200.330i −0.351908 0.203174i
\(987\) 0 0
\(988\) −56.7059 98.2176i −0.0573947 0.0994105i
\(989\) −1.24375 −0.00125759
\(990\) 0 0
\(991\) 431.606 0.435526 0.217763 0.976002i \(-0.430124\pi\)
0.217763 + 0.976002i \(0.430124\pi\)
\(992\) 0.116474 0.0672461i 0.000117413 6.77884e-5i
\(993\) 0 0
\(994\) 516.985 + 608.851i 0.520105 + 0.612527i
\(995\) 458.599 794.317i 0.460903 0.798308i
\(996\) 0 0
\(997\) 123.674 71.4033i 0.124046 0.0716181i −0.436693 0.899611i \(-0.643850\pi\)
0.560739 + 0.827993i \(0.310517\pi\)
\(998\) 85.2244 0.0853952
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.307.9 32
3.2 odd 2 126.3.o.a.13.4 32
7.6 odd 2 inner 378.3.o.a.307.16 32
9.2 odd 6 126.3.o.a.97.5 yes 32
9.4 even 3 1134.3.c.d.811.8 16
9.5 odd 6 1134.3.c.e.811.9 16
9.7 even 3 inner 378.3.o.a.181.16 32
21.20 even 2 126.3.o.a.13.5 yes 32
63.13 odd 6 1134.3.c.d.811.1 16
63.20 even 6 126.3.o.a.97.4 yes 32
63.34 odd 6 inner 378.3.o.a.181.9 32
63.41 even 6 1134.3.c.e.811.16 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.4 32 3.2 odd 2
126.3.o.a.13.5 yes 32 21.20 even 2
126.3.o.a.97.4 yes 32 63.20 even 6
126.3.o.a.97.5 yes 32 9.2 odd 6
378.3.o.a.181.9 32 63.34 odd 6 inner
378.3.o.a.181.16 32 9.7 even 3 inner
378.3.o.a.307.9 32 1.1 even 1 trivial
378.3.o.a.307.16 32 7.6 odd 2 inner
1134.3.c.d.811.1 16 63.13 odd 6
1134.3.c.d.811.8 16 9.4 even 3
1134.3.c.e.811.9 16 9.5 odd 6
1134.3.c.e.811.16 16 63.41 even 6