Properties

Label 126.3.o.a.97.5
Level $126$
Weight $3$
Character 126.97
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(13,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 97.5
Character \(\chi\) \(=\) 126.97
Dual form 126.3.o.a.13.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 1.22474i) q^{2} +(1.75392 - 2.43388i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(-8.58770 + 4.95811i) q^{5} +(1.74067 + 3.86912i) q^{6} +(-4.53080 - 5.33591i) q^{7} +2.82843 q^{8} +(-2.84752 - 8.53766i) q^{9} -14.0237i q^{10} +(-6.74260 + 11.6785i) q^{11} +(-5.96952 - 0.604004i) q^{12} +(-10.5236 + 6.07580i) q^{13} +(9.73888 - 1.77601i) q^{14} +(-2.99472 + 29.5976i) q^{15} +(-2.00000 + 3.46410i) q^{16} -20.1850i q^{17} +(12.4700 + 2.54955i) q^{18} +4.66654i q^{19} +(17.1754 + 9.91622i) q^{20} +(-20.9336 + 1.66864i) q^{21} +(-9.53548 - 16.5159i) q^{22} +(-0.0880089 - 0.152436i) q^{23} +(4.96084 - 6.88404i) q^{24} +(36.6657 - 63.5069i) q^{25} -17.1849i q^{26} +(-25.7739 - 8.04388i) q^{27} +(-4.71127 + 13.1835i) q^{28} +(-7.01783 + 12.1552i) q^{29} +(-34.1319 - 24.5964i) q^{30} +(-0.0205898 + 0.0118875i) q^{31} +(-2.82843 - 4.89898i) q^{32} +(16.5981 + 36.8939i) q^{33} +(24.7214 + 14.2729i) q^{34} +(65.3651 + 23.3590i) q^{35} +(-11.9401 + 13.4697i) q^{36} -2.42366 q^{37} +(-5.71533 - 3.29975i) q^{38} +(-3.66981 + 36.2696i) q^{39} +(-24.2897 + 14.0237i) q^{40} +(9.48159 - 5.47420i) q^{41} +(12.7586 - 26.8182i) q^{42} +(-3.53303 + 6.11939i) q^{43} +26.9704 q^{44} +(66.7843 + 59.2006i) q^{45} +0.248927 q^{46} +(39.7838 + 22.9692i) q^{47} +(4.92336 + 10.9435i) q^{48} +(-7.94379 + 48.3518i) q^{49} +(51.8532 + 89.8124i) q^{50} +(-49.1277 - 35.4028i) q^{51} +(21.0472 + 12.1516i) q^{52} -57.1896 q^{53} +(28.0766 - 25.8786i) q^{54} -133.722i q^{55} +(-12.8150 - 15.0922i) q^{56} +(11.3578 + 8.18475i) q^{57} +(-9.92471 - 17.1901i) q^{58} +(-41.9730 + 24.2331i) q^{59} +(54.2592 - 24.4105i) q^{60} +(34.2752 + 19.7888i) q^{61} -0.0336230i q^{62} +(-32.6546 + 53.8765i) q^{63} +8.00000 q^{64} +(60.2489 - 104.354i) q^{65} +(-56.9223 - 5.75947i) q^{66} +(-45.1674 - 78.2322i) q^{67} +(-34.9614 + 20.1850i) q^{68} +(-0.525371 - 0.0531577i) q^{69} +(-74.8289 + 63.5383i) q^{70} -80.6841 q^{71} +(-8.05400 - 24.1481i) q^{72} +17.8424i q^{73} +(1.71379 - 2.96837i) q^{74} +(-90.2592 - 200.626i) q^{75} +(8.08269 - 4.66654i) q^{76} +(92.8649 - 16.9351i) q^{77} +(-41.8260 - 30.1410i) q^{78} +(10.1791 - 17.6308i) q^{79} -39.6649i q^{80} +(-64.7833 + 48.6223i) q^{81} +15.4834i q^{82} +(-25.2325 - 14.5680i) q^{83} +(23.8238 + 34.5894i) q^{84} +(100.079 + 173.342i) q^{85} +(-4.99646 - 8.65413i) q^{86} +(17.2756 + 38.3999i) q^{87} +(-19.0710 + 33.0319i) q^{88} -81.5430i q^{89} +(-119.729 + 39.9326i) q^{90} +(80.1001 + 28.6247i) q^{91} +(-0.176018 + 0.304872i) q^{92} +(-0.00718012 + 0.0709629i) q^{93} +(-56.2627 + 32.4833i) q^{94} +(-23.1372 - 40.0749i) q^{95} +(-16.8844 - 1.70838i) q^{96} +(94.2248 + 54.4007i) q^{97} +(-53.6015 - 43.9190i) q^{98} +(118.907 + 24.3112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 24 q^{9} - 12 q^{11} - 12 q^{14} + 48 q^{15} - 64 q^{16} - 54 q^{21} + 12 q^{23} + 80 q^{25} + 8 q^{28} - 48 q^{29} - 168 q^{30} + 348 q^{35} - 72 q^{36} - 88 q^{37} + 252 q^{39}+ \cdots - 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 1.22474i −0.353553 + 0.612372i
\(3\) 1.75392 2.43388i 0.584641 0.811292i
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) −8.58770 + 4.95811i −1.71754 + 0.991622i −0.794185 + 0.607677i \(0.792102\pi\)
−0.923356 + 0.383946i \(0.874565\pi\)
\(6\) 1.74067 + 3.86912i 0.290111 + 0.644853i
\(7\) −4.53080 5.33591i −0.647256 0.762272i
\(8\) 2.82843 0.353553
\(9\) −2.84752 8.53766i −0.316391 0.948629i
\(10\) 14.0237i 1.40237i
\(11\) −6.74260 + 11.6785i −0.612964 + 1.06168i 0.377774 + 0.925898i \(0.376690\pi\)
−0.990738 + 0.135787i \(0.956644\pi\)
\(12\) −5.96952 0.604004i −0.497460 0.0503337i
\(13\) −10.5236 + 6.07580i −0.809507 + 0.467369i −0.846785 0.531936i \(-0.821465\pi\)
0.0372779 + 0.999305i \(0.488131\pi\)
\(14\) 9.73888 1.77601i 0.695634 0.126858i
\(15\) −2.99472 + 29.5976i −0.199648 + 1.97317i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 20.1850i 1.18735i −0.804705 0.593675i \(-0.797676\pi\)
0.804705 0.593675i \(-0.202324\pi\)
\(18\) 12.4700 + 2.54955i 0.692775 + 0.141642i
\(19\) 4.66654i 0.245608i 0.992431 + 0.122804i \(0.0391886\pi\)
−0.992431 + 0.122804i \(0.960811\pi\)
\(20\) 17.1754 + 9.91622i 0.858770 + 0.495811i
\(21\) −20.9336 + 1.66864i −0.996838 + 0.0794589i
\(22\) −9.53548 16.5159i −0.433431 0.750724i
\(23\) −0.0880089 0.152436i −0.00382647 0.00662765i 0.864106 0.503310i \(-0.167885\pi\)
−0.867932 + 0.496683i \(0.834551\pi\)
\(24\) 4.96084 6.88404i 0.206702 0.286835i
\(25\) 36.6657 63.5069i 1.46663 2.54028i
\(26\) 17.1849i 0.660959i
\(27\) −25.7739 8.04388i −0.954590 0.297921i
\(28\) −4.71127 + 13.1835i −0.168259 + 0.470838i
\(29\) −7.01783 + 12.1552i −0.241994 + 0.419146i −0.961282 0.275566i \(-0.911135\pi\)
0.719288 + 0.694712i \(0.244468\pi\)
\(30\) −34.1319 24.5964i −1.13773 0.819880i
\(31\) −0.0205898 + 0.0118875i −0.000664188 + 0.000383469i −0.500332 0.865834i \(-0.666789\pi\)
0.499668 + 0.866217i \(0.333455\pi\)
\(32\) −2.82843 4.89898i −0.0883883 0.153093i
\(33\) 16.5981 + 36.8939i 0.502973 + 1.11800i
\(34\) 24.7214 + 14.2729i 0.727100 + 0.419792i
\(35\) 65.3651 + 23.3590i 1.86758 + 0.667399i
\(36\) −11.9401 + 13.4697i −0.331671 + 0.374158i
\(37\) −2.42366 −0.0655043 −0.0327522 0.999464i \(-0.510427\pi\)
−0.0327522 + 0.999464i \(0.510427\pi\)
\(38\) −5.71533 3.29975i −0.150403 0.0868354i
\(39\) −3.66981 + 36.2696i −0.0940976 + 0.929989i
\(40\) −24.2897 + 14.0237i −0.607242 + 0.350591i
\(41\) 9.48159 5.47420i 0.231258 0.133517i −0.379894 0.925030i \(-0.624040\pi\)
0.611152 + 0.791513i \(0.290706\pi\)
\(42\) 12.7586 26.8182i 0.303777 0.638529i
\(43\) −3.53303 + 6.11939i −0.0821636 + 0.142311i −0.904179 0.427154i \(-0.859516\pi\)
0.822015 + 0.569465i \(0.192850\pi\)
\(44\) 26.9704 0.612964
\(45\) 66.7843 + 59.2006i 1.48410 + 1.31557i
\(46\) 0.248927 0.00541145
\(47\) 39.7838 + 22.9692i 0.846463 + 0.488706i 0.859456 0.511210i \(-0.170803\pi\)
−0.0129929 + 0.999916i \(0.504136\pi\)
\(48\) 4.92336 + 10.9435i 0.102570 + 0.227990i
\(49\) −7.94379 + 48.3518i −0.162118 + 0.986771i
\(50\) 51.8532 + 89.8124i 1.03706 + 1.79625i
\(51\) −49.1277 35.4028i −0.963288 0.694173i
\(52\) 21.0472 + 12.1516i 0.404753 + 0.233684i
\(53\) −57.1896 −1.07905 −0.539524 0.841970i \(-0.681396\pi\)
−0.539524 + 0.841970i \(0.681396\pi\)
\(54\) 28.0766 25.8786i 0.519938 0.479234i
\(55\) 133.722i 2.43131i
\(56\) −12.8150 15.0922i −0.228840 0.269504i
\(57\) 11.3578 + 8.18475i 0.199260 + 0.143592i
\(58\) −9.92471 17.1901i −0.171116 0.296381i
\(59\) −41.9730 + 24.2331i −0.711406 + 0.410730i −0.811581 0.584239i \(-0.801393\pi\)
0.100175 + 0.994970i \(0.468060\pi\)
\(60\) 54.2592 24.4105i 0.904320 0.406842i
\(61\) 34.2752 + 19.7888i 0.561888 + 0.324406i 0.753903 0.656986i \(-0.228169\pi\)
−0.192015 + 0.981392i \(0.561502\pi\)
\(62\) 0.0336230i 0.000542307i
\(63\) −32.6546 + 53.8765i −0.518328 + 0.855182i
\(64\) 8.00000 0.125000
\(65\) 60.2489 104.354i 0.926907 1.60545i
\(66\) −56.9223 5.75947i −0.862458 0.0872647i
\(67\) −45.1674 78.2322i −0.674140 1.16764i −0.976720 0.214520i \(-0.931181\pi\)
0.302580 0.953124i \(-0.402152\pi\)
\(68\) −34.9614 + 20.1850i −0.514138 + 0.296838i
\(69\) −0.525371 0.0531577i −0.00761407 0.000770402i
\(70\) −74.8289 + 63.5383i −1.06898 + 0.907690i
\(71\) −80.6841 −1.13640 −0.568198 0.822892i \(-0.692359\pi\)
−0.568198 + 0.822892i \(0.692359\pi\)
\(72\) −8.05400 24.1481i −0.111861 0.335391i
\(73\) 17.8424i 0.244417i 0.992504 + 0.122208i \(0.0389976\pi\)
−0.992504 + 0.122208i \(0.961002\pi\)
\(74\) 1.71379 2.96837i 0.0231593 0.0401130i
\(75\) −90.2592 200.626i −1.20346 2.67501i
\(76\) 8.08269 4.66654i 0.106351 0.0614019i
\(77\) 92.8649 16.9351i 1.20604 0.219937i
\(78\) −41.8260 30.1410i −0.536231 0.386424i
\(79\) 10.1791 17.6308i 0.128850 0.223174i −0.794381 0.607419i \(-0.792205\pi\)
0.923231 + 0.384245i \(0.125538\pi\)
\(80\) 39.6649i 0.495811i
\(81\) −64.7833 + 48.6223i −0.799794 + 0.600275i
\(82\) 15.4834i 0.188822i
\(83\) −25.2325 14.5680i −0.304006 0.175518i 0.340235 0.940340i \(-0.389493\pi\)
−0.644241 + 0.764822i \(0.722827\pi\)
\(84\) 23.8238 + 34.5894i 0.283616 + 0.411779i
\(85\) 100.079 + 173.342i 1.17740 + 2.03932i
\(86\) −4.99646 8.65413i −0.0580984 0.100629i
\(87\) 17.2756 + 38.3999i 0.198571 + 0.441378i
\(88\) −19.0710 + 33.0319i −0.216715 + 0.375362i
\(89\) 81.5430i 0.916213i −0.888897 0.458107i \(-0.848528\pi\)
0.888897 0.458107i \(-0.151472\pi\)
\(90\) −119.729 + 39.9326i −1.33032 + 0.443696i
\(91\) 80.1001 + 28.6247i 0.880221 + 0.314557i
\(92\) −0.176018 + 0.304872i −0.00191324 + 0.00331382i
\(93\) −0.00718012 + 0.0709629i −7.72056e−5 + 0.000763042i
\(94\) −56.2627 + 32.4833i −0.598540 + 0.345567i
\(95\) −23.1372 40.0749i −0.243550 0.421841i
\(96\) −16.8844 1.70838i −0.175879 0.0177956i
\(97\) 94.2248 + 54.4007i 0.971390 + 0.560832i 0.899660 0.436592i \(-0.143815\pi\)
0.0717301 + 0.997424i \(0.477148\pi\)
\(98\) −53.6015 43.9190i −0.546954 0.448153i
\(99\) 118.907 + 24.3112i 1.20108 + 0.245568i
\(100\) −146.663 −1.46663
\(101\) −120.353 69.4857i −1.19161 0.687977i −0.232939 0.972491i \(-0.574834\pi\)
−0.958672 + 0.284514i \(0.908168\pi\)
\(102\) 78.0980 35.1353i 0.765666 0.344464i
\(103\) −66.0960 + 38.1606i −0.641709 + 0.370491i −0.785273 0.619150i \(-0.787477\pi\)
0.143563 + 0.989641i \(0.454144\pi\)
\(104\) −29.7652 + 17.1849i −0.286204 + 0.165240i
\(105\) 171.498 118.121i 1.63332 1.12496i
\(106\) 40.4391 70.0426i 0.381501 0.660779i
\(107\) −84.5769 −0.790439 −0.395219 0.918587i \(-0.629331\pi\)
−0.395219 + 0.918587i \(0.629331\pi\)
\(108\) 11.8415 + 52.6857i 0.109644 + 0.487830i
\(109\) −24.1111 −0.221203 −0.110601 0.993865i \(-0.535278\pi\)
−0.110601 + 0.993865i \(0.535278\pi\)
\(110\) 163.776 + 94.5560i 1.48887 + 0.859600i
\(111\) −4.25091 + 5.89889i −0.0382965 + 0.0531432i
\(112\) 27.5457 5.02332i 0.245944 0.0448511i
\(113\) −72.7392 125.988i −0.643710 1.11494i −0.984598 0.174835i \(-0.944061\pi\)
0.340888 0.940104i \(-0.389272\pi\)
\(114\) −18.0554 + 8.12291i −0.158381 + 0.0712536i
\(115\) 1.51159 + 0.872716i 0.0131442 + 0.00758883i
\(116\) 28.0713 0.241994
\(117\) 81.8392 + 72.5459i 0.699480 + 0.620050i
\(118\) 68.5415i 0.580861i
\(119\) −107.705 + 91.4539i −0.905084 + 0.768520i
\(120\) −8.47035 + 83.7145i −0.0705862 + 0.697621i
\(121\) −30.4254 52.6983i −0.251450 0.435523i
\(122\) −48.4724 + 27.9856i −0.397315 + 0.229390i
\(123\) 3.30644 32.6783i 0.0268816 0.265678i
\(124\) 0.0411797 + 0.0237751i 0.000332094 + 0.000191735i
\(125\) 479.266i 3.83413i
\(126\) −42.8946 78.0900i −0.340434 0.619762i
\(127\) −155.852 −1.22718 −0.613590 0.789625i \(-0.710275\pi\)
−0.613590 + 0.789625i \(0.710275\pi\)
\(128\) −5.65685 + 9.79796i −0.0441942 + 0.0765466i
\(129\) 8.69719 + 19.3319i 0.0674201 + 0.149860i
\(130\) 85.2049 + 147.579i 0.655422 + 1.13522i
\(131\) −86.1056 + 49.7131i −0.657295 + 0.379489i −0.791245 0.611499i \(-0.790567\pi\)
0.133951 + 0.990988i \(0.457234\pi\)
\(132\) 47.3040 65.6427i 0.358364 0.497293i
\(133\) 24.9002 21.1432i 0.187220 0.158971i
\(134\) 127.753 0.953377
\(135\) 261.221 58.7117i 1.93497 0.434901i
\(136\) 57.0917i 0.419792i
\(137\) 12.3339 21.3630i 0.0900287 0.155934i −0.817494 0.575937i \(-0.804637\pi\)
0.907523 + 0.420002i \(0.137971\pi\)
\(138\) 0.436598 0.605857i 0.00316375 0.00439027i
\(139\) 98.5930 56.9227i 0.709302 0.409516i −0.101500 0.994835i \(-0.532364\pi\)
0.810803 + 0.585320i \(0.199031\pi\)
\(140\) −24.9062 136.575i −0.177901 0.975534i
\(141\) 125.682 56.5427i 0.891360 0.401012i
\(142\) 57.0523 98.8175i 0.401777 0.695898i
\(143\) 163.867i 1.14592i
\(144\) 35.2704 + 7.21123i 0.244933 + 0.0500780i
\(145\) 139.181i 0.959867i
\(146\) −21.8524 12.6165i −0.149674 0.0864144i
\(147\) 103.750 + 104.139i 0.705779 + 0.708432i
\(148\) 2.42366 + 4.19790i 0.0163761 + 0.0283642i
\(149\) −85.7383 148.503i −0.575425 0.996665i −0.995995 0.0894051i \(-0.971503\pi\)
0.420571 0.907260i \(-0.361830\pi\)
\(150\) 309.539 + 31.3195i 2.06359 + 0.208797i
\(151\) −118.787 + 205.745i −0.786669 + 1.36255i 0.141328 + 0.989963i \(0.454863\pi\)
−0.927997 + 0.372588i \(0.878471\pi\)
\(152\) 13.1990i 0.0868354i
\(153\) −172.332 + 57.4770i −1.12635 + 0.375667i
\(154\) −44.9242 + 125.711i −0.291715 + 0.816304i
\(155\) 0.117880 0.204173i 0.000760513 0.00131725i
\(156\) 66.4906 29.9133i 0.426222 0.191752i
\(157\) 67.7529 39.1171i 0.431547 0.249154i −0.268458 0.963291i \(-0.586514\pi\)
0.700005 + 0.714137i \(0.253181\pi\)
\(158\) 14.3955 + 24.9337i 0.0911106 + 0.157808i
\(159\) −100.306 + 139.192i −0.630855 + 0.875424i
\(160\) 48.5794 + 28.0473i 0.303621 + 0.175296i
\(161\) −0.414633 + 1.16026i −0.00257536 + 0.00720660i
\(162\) −13.7412 113.724i −0.0848221 0.702001i
\(163\) 236.898 1.45336 0.726682 0.686974i \(-0.241061\pi\)
0.726682 + 0.686974i \(0.241061\pi\)
\(164\) −18.9632 10.9484i −0.115629 0.0667585i
\(165\) −325.464 234.538i −1.97251 1.42145i
\(166\) 35.6842 20.6023i 0.214965 0.124110i
\(167\) 200.478 115.746i 1.20047 0.693089i 0.239807 0.970821i \(-0.422916\pi\)
0.960659 + 0.277732i \(0.0895826\pi\)
\(168\) −59.2092 + 4.71962i −0.352436 + 0.0280930i
\(169\) −10.6694 + 18.4800i −0.0631327 + 0.109349i
\(170\) −283.067 −1.66510
\(171\) 39.8414 13.2881i 0.232990 0.0777080i
\(172\) 14.1321 0.0821636
\(173\) 110.666 + 63.8930i 0.639688 + 0.369324i 0.784494 0.620136i \(-0.212923\pi\)
−0.144807 + 0.989460i \(0.546256\pi\)
\(174\) −59.2458 5.99457i −0.340493 0.0344515i
\(175\) −504.992 + 92.0919i −2.88567 + 0.526239i
\(176\) −26.9704 46.7141i −0.153241 0.265421i
\(177\) −14.6369 + 144.660i −0.0826943 + 0.817288i
\(178\) 99.8694 + 57.6596i 0.561064 + 0.323930i
\(179\) 132.848 0.742165 0.371083 0.928600i \(-0.378987\pi\)
0.371083 + 0.928600i \(0.378987\pi\)
\(180\) 35.7541 174.874i 0.198634 0.971524i
\(181\) 93.4546i 0.516323i −0.966102 0.258162i \(-0.916883\pi\)
0.966102 0.258162i \(-0.0831167\pi\)
\(182\) −91.6973 + 77.8615i −0.503831 + 0.427810i
\(183\) 108.279 48.7136i 0.591691 0.266195i
\(184\) −0.248927 0.431154i −0.00135286 0.00234323i
\(185\) 20.8137 12.0168i 0.112506 0.0649556i
\(186\) −0.0818344 0.0589722i −0.000439970 0.000317055i
\(187\) 235.731 + 136.099i 1.26059 + 0.727803i
\(188\) 91.8767i 0.488706i
\(189\) 73.8551 + 173.972i 0.390768 + 0.920489i
\(190\) 65.4420 0.344432
\(191\) −146.456 + 253.668i −0.766783 + 1.32811i 0.172516 + 0.985007i \(0.444810\pi\)
−0.939299 + 0.343100i \(0.888523\pi\)
\(192\) 14.0314 19.4710i 0.0730801 0.101412i
\(193\) 129.618 + 224.504i 0.671594 + 1.16323i 0.977452 + 0.211157i \(0.0677232\pi\)
−0.305859 + 0.952077i \(0.598943\pi\)
\(194\) −133.254 + 76.9342i −0.686876 + 0.396568i
\(195\) −148.313 329.668i −0.760582 1.69060i
\(196\) 91.6916 34.5927i 0.467814 0.176494i
\(197\) 336.752 1.70940 0.854700 0.519123i \(-0.173741\pi\)
0.854700 + 0.519123i \(0.173741\pi\)
\(198\) −113.855 + 128.440i −0.575025 + 0.648687i
\(199\) 92.4947i 0.464797i 0.972621 + 0.232399i \(0.0746574\pi\)
−0.972621 + 0.232399i \(0.925343\pi\)
\(200\) 103.706 179.625i 0.518532 0.898124i
\(201\) −269.627 27.2813i −1.34143 0.135728i
\(202\) 170.204 98.2676i 0.842596 0.486473i
\(203\) 96.6556 17.6264i 0.476136 0.0868296i
\(204\) −12.1918 + 120.494i −0.0597637 + 0.590659i
\(205\) −54.2834 + 94.0215i −0.264797 + 0.458642i
\(206\) 107.934i 0.523953i
\(207\) −1.05084 + 1.18545i −0.00507651 + 0.00572683i
\(208\) 48.6064i 0.233684i
\(209\) −54.4984 31.4647i −0.260758 0.150549i
\(210\) 23.4004 + 293.566i 0.111430 + 1.39793i
\(211\) −99.0672 171.589i −0.469513 0.813220i 0.529880 0.848073i \(-0.322237\pi\)
−0.999392 + 0.0348530i \(0.988904\pi\)
\(212\) 57.1896 + 99.0552i 0.269762 + 0.467242i
\(213\) −141.514 + 196.375i −0.664383 + 0.921950i
\(214\) 59.8049 103.585i 0.279462 0.484043i
\(215\) 70.0687i 0.325901i
\(216\) −72.8997 22.7515i −0.337499 0.105331i
\(217\) 0.156719 + 0.0560054i 0.000722208 + 0.000258089i
\(218\) 17.0491 29.5299i 0.0782069 0.135458i
\(219\) 43.4263 + 31.2942i 0.198294 + 0.142896i
\(220\) −231.614 + 133.722i −1.05279 + 0.607829i
\(221\) 122.640 + 212.418i 0.554930 + 0.961168i
\(222\) −4.21879 9.37743i −0.0190036 0.0422407i
\(223\) −150.650 86.9779i −0.675561 0.390036i 0.122619 0.992454i \(-0.460871\pi\)
−0.798181 + 0.602418i \(0.794204\pi\)
\(224\) −13.3255 + 37.2885i −0.0594887 + 0.166466i
\(225\) −646.607 132.203i −2.87381 0.587567i
\(226\) 205.738 0.910343
\(227\) −178.543 103.082i −0.786535 0.454106i 0.0522063 0.998636i \(-0.483375\pi\)
−0.838741 + 0.544530i \(0.816708\pi\)
\(228\) 2.81861 27.8570i 0.0123623 0.122180i
\(229\) −17.2640 + 9.96735i −0.0753884 + 0.0435255i −0.537220 0.843442i \(-0.680526\pi\)
0.461832 + 0.886967i \(0.347192\pi\)
\(230\) −2.13771 + 1.23421i −0.00929438 + 0.00536611i
\(231\) 121.660 255.725i 0.526665 1.10703i
\(232\) −19.8494 + 34.3802i −0.0855579 + 0.148191i
\(233\) 257.078 1.10334 0.551670 0.834062i \(-0.313991\pi\)
0.551670 + 0.834062i \(0.313991\pi\)
\(234\) −146.719 + 48.9344i −0.627005 + 0.209122i
\(235\) −455.535 −1.93845
\(236\) 83.9459 + 48.4662i 0.355703 + 0.205365i
\(237\) −25.0577 55.6978i −0.105729 0.235012i
\(238\) −35.8487 196.579i −0.150625 0.825961i
\(239\) −6.18007 10.7042i −0.0258580 0.0447874i 0.852807 0.522227i \(-0.174898\pi\)
−0.878665 + 0.477439i \(0.841565\pi\)
\(240\) −96.5395 69.5691i −0.402248 0.289871i
\(241\) −257.287 148.544i −1.06758 0.616367i −0.140060 0.990143i \(-0.544730\pi\)
−0.927519 + 0.373776i \(0.878063\pi\)
\(242\) 86.0560 0.355603
\(243\) 4.71585 + 242.954i 0.0194068 + 0.999812i
\(244\) 79.1551i 0.324406i
\(245\) −171.515 454.617i −0.700060 1.85558i
\(246\) 37.6846 + 27.1566i 0.153189 + 0.110393i
\(247\) −28.3530 49.1088i −0.114789 0.198821i
\(248\) −0.0582368 + 0.0336230i −0.000234826 + 0.000135577i
\(249\) −79.7126 + 35.8617i −0.320131 + 0.144023i
\(250\) −586.978 338.892i −2.34791 1.35557i
\(251\) 349.874i 1.39392i 0.717111 + 0.696959i \(0.245464\pi\)
−0.717111 + 0.696959i \(0.754536\pi\)
\(252\) 125.971 + 2.68301i 0.499887 + 0.0106469i
\(253\) 2.37364 0.00938196
\(254\) 110.204 190.879i 0.433874 0.751492i
\(255\) 597.425 + 60.4483i 2.34284 + 0.237052i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 292.983 169.154i 1.14001 0.658186i 0.193578 0.981085i \(-0.437991\pi\)
0.946433 + 0.322899i \(0.104657\pi\)
\(258\) −29.8265 3.01788i −0.115607 0.0116972i
\(259\) 10.9811 + 12.9324i 0.0423981 + 0.0499321i
\(260\) −240.996 −0.926907
\(261\) 123.761 + 25.3036i 0.474179 + 0.0969486i
\(262\) 140.610i 0.536679i
\(263\) 32.7296 56.6894i 0.124447 0.215549i −0.797069 0.603888i \(-0.793618\pi\)
0.921517 + 0.388339i \(0.126951\pi\)
\(264\) 46.9466 + 104.352i 0.177828 + 0.395272i
\(265\) 491.127 283.552i 1.85331 1.07001i
\(266\) 8.28784 + 45.4469i 0.0311573 + 0.170853i
\(267\) −198.466 143.020i −0.743317 0.535655i
\(268\) −90.3347 + 156.464i −0.337070 + 0.583822i
\(269\) 248.366i 0.923293i −0.887064 0.461646i \(-0.847259\pi\)
0.887064 0.461646i \(-0.152741\pi\)
\(270\) −112.805 + 361.445i −0.417795 + 1.33868i
\(271\) 59.5945i 0.219906i 0.993937 + 0.109953i \(0.0350700\pi\)
−0.993937 + 0.109953i \(0.964930\pi\)
\(272\) 69.9227 + 40.3699i 0.257069 + 0.148419i
\(273\) 210.158 144.748i 0.769810 0.530214i
\(274\) 17.4428 + 30.2118i 0.0636599 + 0.110262i
\(275\) 494.445 + 856.404i 1.79798 + 3.11420i
\(276\) 0.433299 + 0.963127i 0.00156992 + 0.00348959i
\(277\) 222.096 384.682i 0.801791 1.38874i −0.116645 0.993174i \(-0.537214\pi\)
0.918436 0.395569i \(-0.129453\pi\)
\(278\) 161.002i 0.579143i
\(279\) 0.160122 + 0.141939i 0.000573913 + 0.000508742i
\(280\) 184.881 + 66.0692i 0.660288 + 0.235961i
\(281\) −231.769 + 401.435i −0.824799 + 1.42859i 0.0772735 + 0.997010i \(0.475379\pi\)
−0.902073 + 0.431584i \(0.857955\pi\)
\(282\) −19.6200 + 193.910i −0.0695746 + 0.687623i
\(283\) −88.7084 + 51.2158i −0.313457 + 0.180975i −0.648472 0.761238i \(-0.724592\pi\)
0.335015 + 0.942213i \(0.391259\pi\)
\(284\) 80.6841 + 139.749i 0.284099 + 0.492074i
\(285\) −138.118 13.9750i −0.484626 0.0490351i
\(286\) 200.695 + 115.871i 0.701730 + 0.405144i
\(287\) −72.1689 25.7904i −0.251460 0.0898620i
\(288\) −33.7718 + 38.0981i −0.117263 + 0.132285i
\(289\) −118.432 −0.409800
\(290\) 170.461 + 98.4157i 0.587796 + 0.339364i
\(291\) 297.668 133.917i 1.02291 0.460196i
\(292\) 30.9040 17.8424i 0.105836 0.0611042i
\(293\) −288.554 + 166.597i −0.984825 + 0.568589i −0.903723 0.428117i \(-0.859177\pi\)
−0.0811016 + 0.996706i \(0.525844\pi\)
\(294\) −200.906 + 53.4290i −0.683355 + 0.181731i
\(295\) 240.301 416.213i 0.814579 1.41089i
\(296\) −6.85515 −0.0231593
\(297\) 267.724 246.765i 0.901428 0.830859i
\(298\) 242.504 0.813773
\(299\) 1.85234 + 1.06945i 0.00619511 + 0.00357675i
\(300\) −257.235 + 356.960i −0.857451 + 1.18987i
\(301\) 48.6600 8.87378i 0.161661 0.0294810i
\(302\) −167.990 290.968i −0.556259 0.963469i
\(303\) −380.209 + 171.051i −1.25481 + 0.564526i
\(304\) −16.1654 9.33309i −0.0531756 0.0307010i
\(305\) −392.460 −1.28675
\(306\) 51.4626 251.705i 0.168179 0.822567i
\(307\) 323.443i 1.05356i 0.850002 + 0.526780i \(0.176601\pi\)
−0.850002 + 0.526780i \(0.823399\pi\)
\(308\) −122.197 143.912i −0.396745 0.467245i
\(309\) −23.0491 + 227.800i −0.0745927 + 0.737218i
\(310\) 0.166707 + 0.288745i 0.000537764 + 0.000931434i
\(311\) 399.241 230.502i 1.28373 0.741164i 0.306205 0.951965i \(-0.400941\pi\)
0.977529 + 0.210801i \(0.0676072\pi\)
\(312\) −10.3798 + 102.586i −0.0332685 + 0.328801i
\(313\) 237.475 + 137.106i 0.758705 + 0.438039i 0.828831 0.559500i \(-0.189007\pi\)
−0.0701256 + 0.997538i \(0.522340\pi\)
\(314\) 110.640i 0.352357i
\(315\) 13.3027 624.580i 0.0422307 1.98279i
\(316\) −40.7165 −0.128850
\(317\) 212.280 367.679i 0.669652 1.15987i −0.308349 0.951273i \(-0.599777\pi\)
0.978001 0.208598i \(-0.0668901\pi\)
\(318\) −99.5481 221.273i −0.313044 0.695827i
\(319\) −94.6369 163.916i −0.296667 0.513843i
\(320\) −68.7016 + 39.6649i −0.214693 + 0.123953i
\(321\) −148.341 + 205.850i −0.462122 + 0.641277i
\(322\) −1.12784 1.32825i −0.00350260 0.00412500i
\(323\) 94.1940 0.291622
\(324\) 149.000 + 63.5857i 0.459875 + 0.196252i
\(325\) 891.094i 2.74183i
\(326\) −167.512 + 290.140i −0.513842 + 0.890000i
\(327\) −42.2889 + 58.6834i −0.129324 + 0.179460i
\(328\) 26.8180 15.4834i 0.0817621 0.0472054i
\(329\) −57.6907 316.351i −0.175352 0.961553i
\(330\) 517.387 232.766i 1.56784 0.705352i
\(331\) −123.513 + 213.931i −0.373152 + 0.646318i −0.990049 0.140726i \(-0.955056\pi\)
0.616897 + 0.787044i \(0.288390\pi\)
\(332\) 58.2720i 0.175518i
\(333\) 6.90142 + 20.6924i 0.0207250 + 0.0621393i
\(334\) 327.379i 0.980176i
\(335\) 775.768 + 447.890i 2.31572 + 1.33698i
\(336\) 36.0869 75.8534i 0.107401 0.225754i
\(337\) −57.2883 99.2262i −0.169995 0.294440i 0.768423 0.639942i \(-0.221042\pi\)
−0.938418 + 0.345503i \(0.887708\pi\)
\(338\) −15.0888 26.1346i −0.0446415 0.0773214i
\(339\) −434.218 43.9348i −1.28088 0.129601i
\(340\) 200.158 346.685i 0.588701 1.01966i
\(341\) 0.320612i 0.000940211i
\(342\) −11.8976 + 58.1916i −0.0347883 + 0.170151i
\(343\) 293.992 176.685i 0.857121 0.515116i
\(344\) −9.99293 + 17.3083i −0.0290492 + 0.0503147i
\(345\) 4.77529 2.14834i 0.0138414 0.00622709i
\(346\) −156.505 + 90.3584i −0.452327 + 0.261151i
\(347\) −172.728 299.174i −0.497776 0.862173i 0.502221 0.864739i \(-0.332516\pi\)
−0.999997 + 0.00256650i \(0.999183\pi\)
\(348\) 49.2349 68.3222i 0.141480 0.196328i
\(349\) −584.225 337.302i −1.67400 0.966483i −0.965365 0.260905i \(-0.915979\pi\)
−0.708632 0.705578i \(-0.750687\pi\)
\(350\) 244.294 683.605i 0.697983 1.95316i
\(351\) 320.107 71.9467i 0.911986 0.204976i
\(352\) 76.2838 0.216715
\(353\) −82.7699 47.7872i −0.234476 0.135375i 0.378159 0.925740i \(-0.376557\pi\)
−0.612635 + 0.790366i \(0.709890\pi\)
\(354\) −166.822 120.216i −0.471248 0.339595i
\(355\) 692.891 400.041i 1.95181 1.12688i
\(356\) −141.237 + 81.5430i −0.396732 + 0.229053i
\(357\) 33.6814 + 422.544i 0.0943456 + 1.18360i
\(358\) −93.9374 + 162.704i −0.262395 + 0.454482i
\(359\) −27.2256 −0.0758374 −0.0379187 0.999281i \(-0.512073\pi\)
−0.0379187 + 0.999281i \(0.512073\pi\)
\(360\) 188.895 + 167.444i 0.524707 + 0.465124i
\(361\) 339.223 0.939677
\(362\) 114.458 + 66.0823i 0.316182 + 0.182548i
\(363\) −181.625 18.3771i −0.500344 0.0506255i
\(364\) −30.5207 167.362i −0.0838480 0.459786i
\(365\) −88.4647 153.225i −0.242369 0.419796i
\(366\) −16.9034 + 167.060i −0.0461841 + 0.456449i
\(367\) −130.761 75.4949i −0.356297 0.205708i 0.311158 0.950358i \(-0.399283\pi\)
−0.667455 + 0.744650i \(0.732616\pi\)
\(368\) 0.704071 0.00191324
\(369\) −73.7358 65.3627i −0.199826 0.177135i
\(370\) 33.9886i 0.0918610i
\(371\) 259.114 + 305.158i 0.698421 + 0.822529i
\(372\) 0.130092 0.0585266i 0.000349708 0.000157330i
\(373\) 81.4304 + 141.042i 0.218312 + 0.378128i 0.954292 0.298876i \(-0.0966116\pi\)
−0.735980 + 0.677003i \(0.763278\pi\)
\(374\) −333.373 + 192.473i −0.891373 + 0.514634i
\(375\) 1166.47 + 840.595i 3.11060 + 2.24159i
\(376\) 112.525 + 64.9666i 0.299270 + 0.172784i
\(377\) 170.556i 0.452402i
\(378\) −265.295 32.5635i −0.701840 0.0861469i
\(379\) −391.275 −1.03239 −0.516194 0.856472i \(-0.672651\pi\)
−0.516194 + 0.856472i \(0.672651\pi\)
\(380\) −46.2745 + 80.1498i −0.121775 + 0.210920i
\(381\) −273.352 + 379.324i −0.717460 + 0.995602i
\(382\) −207.119 358.741i −0.542197 0.939113i
\(383\) −263.816 + 152.314i −0.688815 + 0.397687i −0.803168 0.595753i \(-0.796854\pi\)
0.114353 + 0.993440i \(0.463521\pi\)
\(384\) 13.9254 + 30.9529i 0.0362639 + 0.0806066i
\(385\) −713.530 + 605.868i −1.85332 + 1.57368i
\(386\) −366.614 −0.949777
\(387\) 62.3057 + 12.7388i 0.160997 + 0.0329167i
\(388\) 217.603i 0.560832i
\(389\) −135.460 + 234.623i −0.348225 + 0.603144i −0.985934 0.167134i \(-0.946549\pi\)
0.637709 + 0.770277i \(0.279882\pi\)
\(390\) 508.632 + 51.4641i 1.30419 + 0.131959i
\(391\) −3.07691 + 1.77645i −0.00786934 + 0.00454336i
\(392\) −22.4684 + 136.760i −0.0573174 + 0.348876i
\(393\) −30.0269 + 296.763i −0.0764044 + 0.755123i
\(394\) −238.119 + 412.435i −0.604364 + 1.04679i
\(395\) 201.877i 0.511081i
\(396\) −76.7987 230.264i −0.193936 0.581475i
\(397\) 455.963i 1.14852i −0.818672 0.574261i \(-0.805290\pi\)
0.818672 0.574261i \(-0.194710\pi\)
\(398\) −113.282 65.4036i −0.284629 0.164331i
\(399\) −7.78677 97.6876i −0.0195157 0.244831i
\(400\) 146.663 + 254.028i 0.366657 + 0.635069i
\(401\) −214.070 370.780i −0.533841 0.924640i −0.999218 0.0395273i \(-0.987415\pi\)
0.465378 0.885112i \(-0.345919\pi\)
\(402\) 224.068 310.934i 0.557383 0.773468i
\(403\) 0.144453 0.250199i 0.000358443 0.000620842i
\(404\) 277.943i 0.687977i
\(405\) 315.265 738.756i 0.778432 1.82409i
\(406\) −46.7580 + 130.842i −0.115167 + 0.322271i
\(407\) 16.3418 28.3048i 0.0401518 0.0695449i
\(408\) −138.954 100.134i −0.340574 0.245427i
\(409\) −310.087 + 179.029i −0.758159 + 0.437723i −0.828634 0.559790i \(-0.810882\pi\)
0.0704753 + 0.997514i \(0.477548\pi\)
\(410\) −76.7683 132.967i −0.187240 0.324309i
\(411\) −30.3622 67.4883i −0.0738738 0.164205i
\(412\) 132.192 + 76.3211i 0.320855 + 0.185245i
\(413\) 319.476 + 114.169i 0.773551 + 0.276437i
\(414\) −0.708823 2.12525i −0.00171213 0.00513346i
\(415\) 288.919 0.696191
\(416\) 59.5304 + 34.3699i 0.143102 + 0.0826199i
\(417\) 34.3815 339.801i 0.0824497 0.814871i
\(418\) 77.0724 44.4977i 0.184384 0.106454i
\(419\) −396.340 + 228.827i −0.945919 + 0.546127i −0.891811 0.452409i \(-0.850565\pi\)
−0.0541082 + 0.998535i \(0.517232\pi\)
\(420\) −376.090 178.923i −0.895451 0.426007i
\(421\) 3.35845 5.81701i 0.00797732 0.0138171i −0.862009 0.506893i \(-0.830794\pi\)
0.869987 + 0.493076i \(0.164127\pi\)
\(422\) 280.204 0.663991
\(423\) 82.8180 405.065i 0.195787 0.957601i
\(424\) −161.757 −0.381501
\(425\) −1281.88 740.096i −3.01620 1.74140i
\(426\) −140.444 312.176i −0.329682 0.732808i
\(427\) −49.7027 272.548i −0.116400 0.638286i
\(428\) 84.5769 + 146.492i 0.197610 + 0.342270i
\(429\) −398.831 287.409i −0.929677 0.669952i
\(430\) 85.8163 + 49.5460i 0.199573 + 0.115223i
\(431\) −399.366 −0.926602 −0.463301 0.886201i \(-0.653335\pi\)
−0.463301 + 0.886201i \(0.653335\pi\)
\(432\) 79.4127 73.1958i 0.183826 0.169435i
\(433\) 566.950i 1.30935i −0.755909 0.654677i \(-0.772805\pi\)
0.755909 0.654677i \(-0.227195\pi\)
\(434\) −0.179409 + 0.152339i −0.000413386 + 0.000351012i
\(435\) −338.749 244.112i −0.778733 0.561177i
\(436\) 24.1111 + 41.7616i 0.0553006 + 0.0957835i
\(437\) 0.711349 0.410697i 0.00162780 0.000939811i
\(438\) −69.0345 + 31.0578i −0.157613 + 0.0709081i
\(439\) −170.327 98.3382i −0.387988 0.224005i 0.293300 0.956020i \(-0.405247\pi\)
−0.681288 + 0.732015i \(0.738580\pi\)
\(440\) 378.224i 0.859600i
\(441\) 435.431 69.8612i 0.987373 0.158415i
\(442\) −346.877 −0.784790
\(443\) 89.4345 154.905i 0.201884 0.349673i −0.747252 0.664541i \(-0.768627\pi\)
0.949135 + 0.314868i \(0.101960\pi\)
\(444\) 14.4681 + 1.46390i 0.0325858 + 0.00329707i
\(445\) 404.299 + 700.267i 0.908538 + 1.57363i
\(446\) 213.052 123.005i 0.477694 0.275797i
\(447\) −511.816 51.7863i −1.14500 0.115853i
\(448\) −36.2464 42.6873i −0.0809071 0.0952840i
\(449\) 381.811 0.850358 0.425179 0.905109i \(-0.360211\pi\)
0.425179 + 0.905109i \(0.360211\pi\)
\(450\) 619.135 698.447i 1.37585 1.55210i
\(451\) 147.641i 0.327364i
\(452\) −145.478 + 251.976i −0.321855 + 0.557469i
\(453\) 292.415 + 649.974i 0.645508 + 1.43482i
\(454\) 252.499 145.780i 0.556164 0.321102i
\(455\) −829.800 + 151.325i −1.82374 + 0.332582i
\(456\) 32.1247 + 23.1500i 0.0704489 + 0.0507675i
\(457\) −284.366 + 492.537i −0.622245 + 1.07776i 0.366821 + 0.930291i \(0.380446\pi\)
−0.989067 + 0.147469i \(0.952887\pi\)
\(458\) 28.1919i 0.0615544i
\(459\) −162.365 + 520.246i −0.353737 + 1.13343i
\(460\) 3.49086i 0.00758883i
\(461\) 315.707 + 182.273i 0.684830 + 0.395387i 0.801672 0.597764i \(-0.203944\pi\)
−0.116842 + 0.993150i \(0.537277\pi\)
\(462\) 227.171 + 329.827i 0.491712 + 0.713911i
\(463\) −59.3958 102.877i −0.128285 0.222196i 0.794727 0.606967i \(-0.207614\pi\)
−0.923012 + 0.384771i \(0.874280\pi\)
\(464\) −28.0713 48.6210i −0.0604985 0.104787i
\(465\) −0.290181 0.645008i −0.000624046 0.00138711i
\(466\) −181.782 + 314.855i −0.390090 + 0.675655i
\(467\) 401.009i 0.858692i −0.903140 0.429346i \(-0.858744\pi\)
0.903140 0.429346i \(-0.141256\pi\)
\(468\) 43.8140 214.295i 0.0936196 0.457896i
\(469\) −212.795 + 595.463i −0.453722 + 1.26964i
\(470\) 322.112 557.914i 0.685344 1.18705i
\(471\) 23.6269 233.511i 0.0501633 0.495776i
\(472\) −118.717 + 68.5415i −0.251520 + 0.145215i
\(473\) −47.6437 82.5213i −0.100727 0.174464i
\(474\) 85.9341 + 8.69492i 0.181295 + 0.0183437i
\(475\) 296.358 + 171.102i 0.623911 + 0.360215i
\(476\) 266.108 + 95.0967i 0.559050 + 0.199783i
\(477\) 162.848 + 488.265i 0.341401 + 1.02362i
\(478\) 17.4799 0.0365688
\(479\) 103.679 + 59.8591i 0.216449 + 0.124967i 0.604305 0.796753i \(-0.293451\pi\)
−0.387856 + 0.921720i \(0.626784\pi\)
\(480\) 153.468 69.0434i 0.319725 0.143841i
\(481\) 25.5056 14.7257i 0.0530262 0.0306147i
\(482\) 363.858 210.074i 0.754893 0.435837i
\(483\) 2.09670 + 3.04418i 0.00434100 + 0.00630264i
\(484\) −60.8508 + 105.397i −0.125725 + 0.217762i
\(485\) −1078.90 −2.22453
\(486\) −300.892 166.019i −0.619118 0.341603i
\(487\) −570.074 −1.17058 −0.585291 0.810823i \(-0.699020\pi\)
−0.585291 + 0.810823i \(0.699020\pi\)
\(488\) 96.9448 + 55.9711i 0.198657 + 0.114695i
\(489\) 415.501 576.582i 0.849696 1.17910i
\(490\) 678.069 + 111.401i 1.38381 + 0.227349i
\(491\) −141.060 244.323i −0.287291 0.497602i 0.685871 0.727723i \(-0.259421\pi\)
−0.973162 + 0.230121i \(0.926088\pi\)
\(492\) −59.9070 + 26.9514i −0.121762 + 0.0547793i
\(493\) 245.353 + 141.655i 0.497673 + 0.287332i
\(494\) 80.1943 0.162337
\(495\) −1141.68 + 380.777i −2.30642 + 0.769246i
\(496\) 0.0951003i 0.000191735i
\(497\) 365.563 + 430.523i 0.735540 + 0.866243i
\(498\) 12.4439 122.986i 0.0249877 0.246959i
\(499\) 30.1314 + 52.1891i 0.0603835 + 0.104587i 0.894637 0.446794i \(-0.147434\pi\)
−0.834253 + 0.551381i \(0.814101\pi\)
\(500\) 830.113 479.266i 1.66023 0.958532i
\(501\) 69.9110 690.947i 0.139543 1.37914i
\(502\) −428.506 247.398i −0.853597 0.492825i
\(503\) 3.37300i 0.00670576i −0.999994 0.00335288i \(-0.998933\pi\)
0.999994 0.00335288i \(-0.00106726\pi\)
\(504\) −92.3613 + 152.386i −0.183256 + 0.302353i
\(505\) 1378.07 2.72885
\(506\) −1.67841 + 2.90710i −0.00331702 + 0.00574525i
\(507\) 26.2647 + 58.3805i 0.0518041 + 0.115149i
\(508\) 155.852 + 269.943i 0.306795 + 0.531385i
\(509\) 11.9659 6.90849i 0.0235086 0.0135727i −0.488200 0.872732i \(-0.662346\pi\)
0.511708 + 0.859159i \(0.329013\pi\)
\(510\) −496.477 + 688.950i −0.973484 + 1.35088i
\(511\) 95.2055 80.8404i 0.186312 0.158200i
\(512\) 22.6274 0.0441942
\(513\) 37.5371 120.275i 0.0731718 0.234455i
\(514\) 478.439i 0.930816i
\(515\) 378.409 655.423i 0.734774 1.27267i
\(516\) 24.7867 34.3959i 0.0480362 0.0666587i
\(517\) −536.492 + 309.744i −1.03770 + 0.599118i
\(518\) −23.6037 + 4.30445i −0.0455671 + 0.00830975i
\(519\) 349.607 157.284i 0.673617 0.303052i
\(520\) 170.410 295.158i 0.327711 0.567612i
\(521\) 163.277i 0.313391i 0.987647 + 0.156695i \(0.0500841\pi\)
−0.987647 + 0.156695i \(0.949916\pi\)
\(522\) −118.502 + 133.683i −0.227016 + 0.256098i
\(523\) 953.671i 1.82346i 0.410787 + 0.911731i \(0.365254\pi\)
−0.410787 + 0.911731i \(0.634746\pi\)
\(524\) 172.211 + 99.4262i 0.328647 + 0.189745i
\(525\) −661.576 + 1390.61i −1.26014 + 2.64878i
\(526\) 46.2867 + 80.1709i 0.0879975 + 0.152416i
\(527\) 0.239949 + 0.415605i 0.000455312 + 0.000788624i
\(528\) −161.000 16.2902i −0.304925 0.0308527i
\(529\) 264.485 458.101i 0.499971 0.865975i
\(530\) 802.007i 1.51322i
\(531\) 326.413 + 289.347i 0.614713 + 0.544909i
\(532\) −61.5213 21.9853i −0.115641 0.0413258i
\(533\) −66.5202 + 115.216i −0.124803 + 0.216166i
\(534\) 315.499 141.939i 0.590823 0.265804i
\(535\) 726.321 419.342i 1.35761 0.783817i
\(536\) −127.753 221.274i −0.238344 0.412825i
\(537\) 233.004 323.335i 0.433900 0.602113i
\(538\) 304.185 + 175.621i 0.565399 + 0.326433i
\(539\) −511.116 418.789i −0.948267 0.776974i
\(540\) −362.913 393.737i −0.672061 0.729143i
\(541\) 296.567 0.548183 0.274092 0.961704i \(-0.411623\pi\)
0.274092 + 0.961704i \(0.411623\pi\)
\(542\) −72.9881 42.1397i −0.134664 0.0777485i
\(543\) −227.457 163.912i −0.418889 0.301864i
\(544\) −98.8857 + 57.0917i −0.181775 + 0.104948i
\(545\) 207.059 119.545i 0.379924 0.219349i
\(546\) 28.6754 + 359.743i 0.0525191 + 0.658870i
\(547\) −205.972 + 356.754i −0.376548 + 0.652201i −0.990557 0.137098i \(-0.956223\pi\)
0.614009 + 0.789299i \(0.289556\pi\)
\(548\) −49.3357 −0.0900287
\(549\) 71.3507 348.979i 0.129965 0.635663i
\(550\) −1398.50 −2.54273
\(551\) −56.7230 32.7490i −0.102945 0.0594356i
\(552\) −1.48597 0.150353i −0.00269198 0.000272378i
\(553\) −140.196 + 25.5665i −0.253519 + 0.0462324i
\(554\) 314.091 + 544.022i 0.566952 + 0.981989i
\(555\) 7.25818 71.7344i 0.0130778 0.129251i
\(556\) −197.186 113.845i −0.354651 0.204758i
\(557\) 558.037 1.00186 0.500931 0.865487i \(-0.332991\pi\)
0.500931 + 0.865487i \(0.332991\pi\)
\(558\) −0.287062 + 0.0957422i −0.000514448 + 0.000171581i
\(559\) 85.8639i 0.153603i
\(560\) −211.648 + 179.713i −0.377943 + 0.320917i
\(561\) 744.702 335.032i 1.32745 0.597205i
\(562\) −327.770 567.715i −0.583221 1.01017i
\(563\) −251.341 + 145.112i −0.446432 + 0.257748i −0.706322 0.707891i \(-0.749647\pi\)
0.259890 + 0.965638i \(0.416314\pi\)
\(564\) −223.616 161.144i −0.396483 0.285717i
\(565\) 1249.33 + 721.298i 2.21120 + 1.27663i
\(566\) 144.860i 0.255937i
\(567\) 552.964 + 125.380i 0.975245 + 0.221129i
\(568\) −228.209 −0.401777
\(569\) 321.956 557.644i 0.565828 0.980043i −0.431144 0.902283i \(-0.641890\pi\)
0.996972 0.0777596i \(-0.0247767\pi\)
\(570\) 114.780 159.278i 0.201369 0.279435i
\(571\) 542.172 + 939.070i 0.949514 + 1.64461i 0.746451 + 0.665441i \(0.231756\pi\)
0.203063 + 0.979166i \(0.434910\pi\)
\(572\) −283.825 + 163.867i −0.496198 + 0.286480i
\(573\) 360.526 + 801.369i 0.629191 + 1.39855i
\(574\) 82.6178 70.1520i 0.143933 0.122216i
\(575\) −12.9076 −0.0224481
\(576\) −22.7801 68.3013i −0.0395489 0.118579i
\(577\) 650.622i 1.12759i −0.825913 0.563797i \(-0.809340\pi\)
0.825913 0.563797i \(-0.190660\pi\)
\(578\) 83.7443 145.049i 0.144886 0.250950i
\(579\) 773.755 + 78.2895i 1.33636 + 0.135215i
\(580\) −241.068 + 139.181i −0.415635 + 0.239967i
\(581\) 36.5899 + 200.643i 0.0629774 + 0.345341i
\(582\) −46.4686 + 459.261i −0.0798429 + 0.789107i
\(583\) 385.607 667.890i 0.661418 1.14561i
\(584\) 50.4660i 0.0864144i
\(585\) −1062.50 217.234i −1.81624 0.371341i
\(586\) 471.206i 0.804106i
\(587\) −199.425 115.138i −0.339736 0.196147i 0.320419 0.947276i \(-0.396176\pi\)
−0.660155 + 0.751129i \(0.729510\pi\)
\(588\) 76.6253 283.839i 0.130315 0.482719i
\(589\) −0.0554737 0.0960833i −9.41829e−5 0.000163130i
\(590\) 339.837 + 588.614i 0.575994 + 0.997651i
\(591\) 590.636 819.612i 0.999384 1.38682i
\(592\) 4.84732 8.39581i 0.00818804 0.0141821i
\(593\) 715.009i 1.20575i 0.797836 + 0.602875i \(0.205978\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(594\) 112.915 + 502.383i 0.190092 + 0.845763i
\(595\) 471.500 1319.39i 0.792437 2.21747i
\(596\) −171.477 + 297.006i −0.287712 + 0.498332i
\(597\) 225.121 + 162.228i 0.377087 + 0.271739i
\(598\) −2.61960 + 1.51243i −0.00438060 + 0.00252914i
\(599\) 433.990 + 751.692i 0.724523 + 1.25491i 0.959170 + 0.282831i \(0.0912734\pi\)
−0.234646 + 0.972081i \(0.575393\pi\)
\(600\) −255.292 567.456i −0.425486 0.945760i
\(601\) −242.032 139.737i −0.402716 0.232508i 0.284939 0.958546i \(-0.408027\pi\)
−0.687655 + 0.726037i \(0.741360\pi\)
\(602\) −23.5397 + 65.8707i −0.0391024 + 0.109420i
\(603\) −539.305 + 608.391i −0.894369 + 1.00894i
\(604\) 475.148 0.786669
\(605\) 522.568 + 301.705i 0.863749 + 0.498686i
\(606\) 59.3540 586.610i 0.0979439 0.968004i
\(607\) −381.944 + 220.515i −0.629232 + 0.363287i −0.780454 0.625213i \(-0.785012\pi\)
0.151223 + 0.988500i \(0.451679\pi\)
\(608\) 22.8613 13.1990i 0.0376008 0.0217089i
\(609\) 126.626 266.163i 0.207924 0.437049i
\(610\) 277.511 480.663i 0.454936 0.787973i
\(611\) −558.224 −0.913623
\(612\) 271.885 + 241.011i 0.444257 + 0.393809i
\(613\) −249.504 −0.407022 −0.203511 0.979073i \(-0.565235\pi\)
−0.203511 + 0.979073i \(0.565235\pi\)
\(614\) −396.135 228.709i −0.645171 0.372490i
\(615\) 133.628 + 297.025i 0.217282 + 0.482968i
\(616\) 262.662 47.8998i 0.426399 0.0777594i
\(617\) 276.294 + 478.555i 0.447802 + 0.775616i 0.998243 0.0592581i \(-0.0188735\pi\)
−0.550440 + 0.834874i \(0.685540\pi\)
\(618\) −262.699 189.308i −0.425079 0.306324i
\(619\) −855.461 493.901i −1.38201 0.797901i −0.389609 0.920980i \(-0.627390\pi\)
−0.992397 + 0.123079i \(0.960723\pi\)
\(620\) −0.471518 −0.000760513
\(621\) 1.04216 + 4.63680i 0.00167820 + 0.00746667i
\(622\) 651.958i 1.04816i
\(623\) −435.106 + 369.455i −0.698404 + 0.593025i
\(624\) −118.302 85.2518i −0.189586 0.136621i
\(625\) −1459.61 2528.12i −2.33538 4.04499i
\(626\) −335.840 + 193.897i −0.536485 + 0.309740i
\(627\) −172.167 + 77.4558i −0.274589 + 0.123534i
\(628\) −135.506 78.2343i −0.215774 0.124577i
\(629\) 48.9215i 0.0777766i
\(630\) 755.545 + 457.937i 1.19928 + 0.726885i
\(631\) −236.443 −0.374712 −0.187356 0.982292i \(-0.559992\pi\)
−0.187356 + 0.982292i \(0.559992\pi\)
\(632\) 28.7909 49.8674i 0.0455553 0.0789041i
\(633\) −591.383 59.8370i −0.934255 0.0945292i
\(634\) 300.209 + 519.977i 0.473516 + 0.820153i
\(635\) 1338.41 772.731i 2.10773 1.21690i
\(636\) 341.394 + 34.5427i 0.536783 + 0.0543125i
\(637\) −210.178 557.099i −0.329950 0.874567i
\(638\) 267.674 0.419551
\(639\) 229.750 + 688.854i 0.359545 + 1.07802i
\(640\) 112.189i 0.175296i
\(641\) 122.793 212.685i 0.191565 0.331801i −0.754204 0.656640i \(-0.771977\pi\)
0.945769 + 0.324839i \(0.105310\pi\)
\(642\) −147.220 327.238i −0.229315 0.509717i
\(643\) −1004.04 + 579.685i −1.56150 + 0.901532i −0.564394 + 0.825505i \(0.690890\pi\)
−0.997106 + 0.0760269i \(0.975777\pi\)
\(644\) 2.42427 0.442097i 0.00376439 0.000686486i
\(645\) −170.539 122.895i −0.264401 0.190535i
\(646\) −66.6052 + 115.364i −0.103104 + 0.178581i
\(647\) 78.1821i 0.120838i −0.998173 0.0604189i \(-0.980756\pi\)
0.998173 0.0604189i \(-0.0192437\pi\)
\(648\) −183.235 + 137.525i −0.282770 + 0.212229i
\(649\) 653.577i 1.00705i
\(650\) −1091.36 630.099i −1.67902 0.969383i
\(651\) 0.411183 0.283206i 0.000631618 0.000435032i
\(652\) −236.898 410.320i −0.363341 0.629325i
\(653\) −615.100 1065.38i −0.941960 1.63152i −0.761727 0.647898i \(-0.775648\pi\)
−0.180233 0.983624i \(-0.557685\pi\)
\(654\) −41.9694 93.2886i −0.0641734 0.142643i
\(655\) 492.966 853.843i 0.752620 1.30358i
\(656\) 43.7936i 0.0667585i
\(657\) 152.333 50.8066i 0.231861 0.0773312i
\(658\) 428.243 + 153.037i 0.650825 + 0.232580i
\(659\) 59.0656 102.305i 0.0896291 0.155242i −0.817725 0.575609i \(-0.804765\pi\)
0.907354 + 0.420367i \(0.138099\pi\)
\(660\) −80.7688 + 798.258i −0.122377 + 1.20948i
\(661\) 558.811 322.629i 0.845402 0.488093i −0.0136948 0.999906i \(-0.504359\pi\)
0.859097 + 0.511813i \(0.171026\pi\)
\(662\) −174.674 302.545i −0.263858 0.457016i
\(663\) 732.100 + 74.0748i 1.10422 + 0.111727i
\(664\) −71.3683 41.2045i −0.107482 0.0620550i
\(665\) −109.006 + 305.029i −0.163918 + 0.458691i
\(666\) −30.2229 6.17925i −0.0453798 0.00927816i
\(667\) 2.47053 0.00370394
\(668\) −400.955 231.492i −0.600233 0.346545i
\(669\) −475.922 + 214.112i −0.711393 + 0.320047i
\(670\) −1097.10 + 633.412i −1.63746 + 0.945390i
\(671\) −462.208 + 266.856i −0.688834 + 0.397699i
\(672\) 67.3838 + 97.8337i 0.100273 + 0.145586i
\(673\) −429.109 + 743.239i −0.637607 + 1.10437i 0.348350 + 0.937365i \(0.386742\pi\)
−0.985956 + 0.167002i \(0.946591\pi\)
\(674\) 162.036 0.240409
\(675\) −1455.86 + 1341.89i −2.15683 + 1.98798i
\(676\) 42.6777 0.0631327
\(677\) 88.6309 + 51.1710i 0.130917 + 0.0755850i 0.564028 0.825756i \(-0.309251\pi\)
−0.433111 + 0.901341i \(0.642584\pi\)
\(678\) 360.848 500.740i 0.532224 0.738555i
\(679\) −136.636 749.253i −0.201231 1.10347i
\(680\) 283.067 + 490.286i 0.416275 + 0.721009i
\(681\) −564.040 + 253.755i −0.828253 + 0.372621i
\(682\) 0.392668 + 0.226707i 0.000575759 + 0.000332415i
\(683\) 1031.39 1.51009 0.755044 0.655674i \(-0.227616\pi\)
0.755044 + 0.655674i \(0.227616\pi\)
\(684\) −62.8570 55.7192i −0.0918962 0.0814608i
\(685\) 244.612i 0.357098i
\(686\) 8.50975 + 485.001i 0.0124049 + 0.706998i
\(687\) −6.02032 + 59.5003i −0.00876320 + 0.0866089i
\(688\) −14.1321 24.4776i −0.0205409 0.0355779i
\(689\) 601.839 347.472i 0.873497 0.504314i
\(690\) −0.745466 + 7.36762i −0.00108038 + 0.0106777i
\(691\) −791.470 456.956i −1.14540 0.661296i −0.197637 0.980275i \(-0.563327\pi\)
−0.947762 + 0.318979i \(0.896660\pi\)
\(692\) 255.572i 0.369324i
\(693\) −409.021 744.626i −0.590218 1.07450i
\(694\) 488.549 0.703961
\(695\) −564.458 + 977.670i −0.812170 + 1.40672i
\(696\) 48.8629 + 108.611i 0.0702053 + 0.156051i
\(697\) −110.496 191.385i −0.158531 0.274584i
\(698\) 826.219 477.018i 1.18369 0.683406i
\(699\) 450.895 625.697i 0.645057 0.895132i
\(700\) 664.500 + 782.580i 0.949285 + 1.11797i
\(701\) −194.138 −0.276945 −0.138472 0.990366i \(-0.544219\pi\)
−0.138472 + 0.990366i \(0.544219\pi\)
\(702\) −138.234 + 442.924i −0.196914 + 0.630945i
\(703\) 11.3101i 0.0160884i
\(704\) −53.9408 + 93.4282i −0.0766205 + 0.132711i
\(705\) −798.972 + 1108.72i −1.13329 + 1.57265i
\(706\) 117.054 67.5813i 0.165799 0.0957243i
\(707\) 174.524 + 957.016i 0.246852 + 1.35363i
\(708\) 265.195 119.308i 0.374570 0.168514i
\(709\) 217.583 376.864i 0.306886 0.531543i −0.670793 0.741645i \(-0.734046\pi\)
0.977680 + 0.210102i \(0.0673795\pi\)
\(710\) 1131.49i 1.59364i
\(711\) −179.511 36.7020i −0.252477 0.0516203i
\(712\) 230.638i 0.323930i
\(713\) 0.00362417 + 0.00209242i 5.08299e−6 + 2.93467e-6i
\(714\) −541.325 257.532i −0.758158 0.360690i
\(715\) 812.469 + 1407.24i 1.13632 + 1.96817i
\(716\) −132.848 230.099i −0.185541 0.321367i
\(717\) −36.8921 3.73279i −0.0514534 0.00520612i
\(718\) 19.2514 33.3445i 0.0268126 0.0464408i
\(719\) 922.050i 1.28241i −0.767371 0.641203i \(-0.778436\pi\)
0.767371 0.641203i \(-0.221564\pi\)
\(720\) −338.645 + 112.946i −0.470341 + 0.156870i
\(721\) 503.089 + 179.785i 0.697765 + 0.249354i
\(722\) −239.867 + 415.462i −0.332226 + 0.575432i
\(723\) −812.800 + 365.669i −1.12420 + 0.505766i
\(724\) −161.868 + 93.4546i −0.223575 + 0.129081i
\(725\) 514.628 + 891.362i 0.709832 + 1.22946i
\(726\) 150.935 209.450i 0.207900 0.288498i
\(727\) 451.861 + 260.882i 0.621542 + 0.358847i 0.777469 0.628921i \(-0.216503\pi\)
−0.155927 + 0.987769i \(0.549837\pi\)
\(728\) 226.557 + 80.9628i 0.311205 + 0.111213i
\(729\) 599.592 + 414.645i 0.822486 + 0.568786i
\(730\) 250.216 0.342762
\(731\) 123.520 + 71.3141i 0.168974 + 0.0975569i
\(732\) −192.654 138.832i −0.263188 0.189661i
\(733\) 132.926 76.7450i 0.181346 0.104700i −0.406579 0.913616i \(-0.633278\pi\)
0.587925 + 0.808916i \(0.299945\pi\)
\(734\) 184.924 106.766i 0.251940 0.145458i
\(735\) −1407.31 379.917i −1.91470 0.516894i
\(736\) −0.497853 + 0.862307i −0.000676431 + 0.00117161i
\(737\) 1218.18 1.65289
\(738\) 132.192 44.0892i 0.179122 0.0597414i
\(739\) −316.707 −0.428561 −0.214280 0.976772i \(-0.568741\pi\)
−0.214280 + 0.976772i \(0.568741\pi\)
\(740\) −41.6273 24.0336i −0.0562532 0.0324778i
\(741\) −169.254 17.1253i −0.228412 0.0231111i
\(742\) −556.962 + 101.569i −0.750623 + 0.136886i
\(743\) −658.244 1140.11i −0.885927 1.53447i −0.844648 0.535323i \(-0.820190\pi\)
−0.0412793 0.999148i \(-0.513143\pi\)
\(744\) −0.0203085 + 0.200713i −2.72963e−5 + 0.000269776i
\(745\) 1472.59 + 850.200i 1.97663 + 1.14121i
\(746\) −230.320 −0.308740
\(747\) −52.5266 + 256.909i −0.0703167 + 0.343921i
\(748\) 544.396i 0.727803i
\(749\) 383.201 + 451.295i 0.511616 + 0.602529i
\(750\) −1854.34 + 834.243i −2.47245 + 1.11232i
\(751\) 423.985 + 734.364i 0.564561 + 0.977848i 0.997090 + 0.0762280i \(0.0242877\pi\)
−0.432530 + 0.901620i \(0.642379\pi\)
\(752\) −159.135 + 91.8767i −0.211616 + 0.122176i
\(753\) 851.549 + 613.651i 1.13088 + 0.814941i
\(754\) 208.887 + 120.601i 0.277039 + 0.159948i
\(755\) 2355.84i 3.12031i
\(756\) 227.474 301.893i 0.300892 0.399330i
\(757\) −1170.49 −1.54622 −0.773112 0.634269i \(-0.781301\pi\)
−0.773112 + 0.634269i \(0.781301\pi\)
\(758\) 276.673 479.212i 0.365004 0.632205i
\(759\) 4.16317 5.77714i 0.00548507 0.00761151i
\(760\) −65.4420 113.349i −0.0861079 0.149143i
\(761\) −240.508 + 138.858i −0.316043 + 0.182467i −0.649627 0.760253i \(-0.725075\pi\)
0.333585 + 0.942720i \(0.391742\pi\)
\(762\) −271.287 603.009i −0.356019 0.791351i
\(763\) 109.242 + 128.654i 0.143175 + 0.168617i
\(764\) 585.822 0.766783
\(765\) 1194.96 1348.04i 1.56204 1.76214i
\(766\) 430.810i 0.562415i
\(767\) 294.471 510.038i 0.383925 0.664978i
\(768\) −47.7562 4.83203i −0.0621825 0.00629171i
\(769\) −460.984 + 266.149i −0.599459 + 0.346098i −0.768829 0.639455i \(-0.779160\pi\)
0.169370 + 0.985553i \(0.445827\pi\)
\(770\) −237.492 1302.31i −0.308432 1.69131i
\(771\) 102.170 1009.77i 0.132516 1.30968i
\(772\) 259.235 449.008i 0.335797 0.581617i
\(773\) 323.697i 0.418755i 0.977835 + 0.209377i \(0.0671437\pi\)
−0.977835 + 0.209377i \(0.932856\pi\)
\(774\) −59.6585 + 67.3009i −0.0770782 + 0.0869521i
\(775\) 1.74346i 0.00224963i
\(776\) 266.508 + 153.868i 0.343438 + 0.198284i
\(777\) 50.7359 4.04421i 0.0652972 0.00520490i
\(778\) −191.569 331.807i −0.246232 0.426487i
\(779\) 25.5456 + 44.2462i 0.0327928 + 0.0567988i
\(780\) −422.688 + 586.554i −0.541907 + 0.751992i
\(781\) 544.021 942.272i 0.696570 1.20649i
\(782\) 5.02457i 0.00642529i
\(783\) 278.652 256.838i 0.355878 0.328018i
\(784\) −151.608 124.222i −0.193377 0.158446i
\(785\) −387.894 + 671.853i −0.494133 + 0.855863i
\(786\) −342.227 246.619i −0.435404 0.313764i
\(787\) −943.069 + 544.481i −1.19831 + 0.691844i −0.960178 0.279389i \(-0.909868\pi\)
−0.238131 + 0.971233i \(0.576535\pi\)
\(788\) −336.752 583.271i −0.427350 0.740192i
\(789\) −80.5698 179.089i −0.102116 0.226982i
\(790\) −247.248 142.749i −0.312972 0.180695i
\(791\) −342.694 + 958.956i −0.433241 + 1.21233i
\(792\) 336.320 + 68.7625i 0.424646 + 0.0868214i
\(793\) −480.930 −0.606470
\(794\) 558.438 + 322.415i 0.703323 + 0.406064i
\(795\) 171.267 1692.67i 0.215430 2.12915i
\(796\) 160.205 92.4947i 0.201263 0.116199i
\(797\) 1.86876 1.07893i 0.00234475 0.00135374i −0.498827 0.866701i \(-0.666236\pi\)
0.501172 + 0.865348i \(0.332902\pi\)
\(798\) 125.148 + 59.5387i 0.156828 + 0.0746100i
\(799\) 463.631 803.033i 0.580265 1.00505i
\(800\) −414.826 −0.518532
\(801\) −696.186 + 232.195i −0.869146 + 0.289882i
\(802\) 605.482 0.754965
\(803\) −208.373 120.304i −0.259494 0.149819i
\(804\) 222.375 + 494.290i 0.276586 + 0.614788i
\(805\) −2.19197 12.0198i −0.00272294 0.0149314i
\(806\) 0.204287 + 0.353835i 0.000253458 + 0.000439001i
\(807\) −604.492 435.614i −0.749060 0.539794i
\(808\) −340.409 196.535i −0.421298 0.243237i
\(809\) −137.194 −0.169585 −0.0847924 0.996399i \(-0.527023\pi\)
−0.0847924 + 0.996399i \(0.527023\pi\)
\(810\) 681.862 + 908.499i 0.841805 + 1.12160i
\(811\) 724.583i 0.893444i 0.894673 + 0.446722i \(0.147409\pi\)
−0.894673 + 0.446722i \(0.852591\pi\)
\(812\) −127.185 149.786i −0.156632 0.184465i
\(813\) 145.046 + 104.524i 0.178408 + 0.128566i
\(814\) 23.1108 + 40.0290i 0.0283916 + 0.0491757i
\(815\) −2034.41 + 1174.57i −2.49621 + 1.44119i
\(816\) 220.894 99.3777i 0.270704 0.121786i
\(817\) −28.5564 16.4871i −0.0349528 0.0201800i
\(818\) 506.370i 0.619034i
\(819\) 16.3014 765.377i 0.0199041 0.934526i
\(820\) 217.133 0.264797
\(821\) −557.777 + 966.098i −0.679387 + 1.17673i 0.295778 + 0.955257i \(0.404421\pi\)
−0.975166 + 0.221477i \(0.928912\pi\)
\(822\) 104.125 + 10.5355i 0.126673 + 0.0128169i
\(823\) 255.274 + 442.148i 0.310175 + 0.537239i 0.978400 0.206720i \(-0.0662790\pi\)
−0.668225 + 0.743959i \(0.732946\pi\)
\(824\) −186.948 + 107.934i −0.226878 + 0.130988i
\(825\) 2951.60 + 298.647i 3.57770 + 0.361996i
\(826\) −365.731 + 310.548i −0.442774 + 0.375966i
\(827\) 1088.29 1.31594 0.657972 0.753042i \(-0.271415\pi\)
0.657972 + 0.753042i \(0.271415\pi\)
\(828\) 3.10410 + 0.634652i 0.00374892 + 0.000766488i
\(829\) 1155.53i 1.39388i −0.717128 0.696942i \(-0.754544\pi\)
0.717128 0.696942i \(-0.245456\pi\)
\(830\) −204.297 + 353.852i −0.246141 + 0.426328i
\(831\) −546.729 1215.26i −0.657917 1.46240i
\(832\) −84.1887 + 48.6064i −0.101188 + 0.0584211i
\(833\) 975.979 + 160.345i 1.17164 + 0.192491i
\(834\) 391.858 + 282.384i 0.469854 + 0.338590i
\(835\) −1147.76 + 1987.98i −1.37457 + 2.38082i
\(836\) 125.859i 0.150549i
\(837\) 0.626303 0.140767i 0.000748271 0.000168180i
\(838\) 647.221i 0.772340i
\(839\) −162.598 93.8762i −0.193800 0.111891i 0.399960 0.916533i \(-0.369024\pi\)
−0.593760 + 0.804642i \(0.702357\pi\)
\(840\) 485.070 334.096i 0.577465 0.397734i
\(841\) 322.000 + 557.721i 0.382878 + 0.663164i
\(842\) 4.74957 + 8.22649i 0.00564082 + 0.00977018i
\(843\) 570.539 + 1268.18i 0.676797 + 1.50437i
\(844\) −198.134 + 343.179i −0.234756 + 0.406610i
\(845\) 211.601i 0.250415i
\(846\) 437.541 + 387.855i 0.517187 + 0.458458i
\(847\) −143.342 + 401.112i −0.169235 + 0.473568i
\(848\) 114.379 198.110i 0.134881 0.233621i
\(849\) −30.9346 + 305.734i −0.0364365 + 0.360111i
\(850\) 1812.86 1046.65i 2.13277 1.23136i
\(851\) 0.213304 + 0.369453i 0.000250651 + 0.000434139i
\(852\) 481.646 + 48.7335i 0.565312 + 0.0571990i
\(853\) −659.061 380.509i −0.772639 0.446083i 0.0611763 0.998127i \(-0.480515\pi\)
−0.833815 + 0.552044i \(0.813848\pi\)
\(854\) 368.947 + 131.847i 0.432022 + 0.154388i
\(855\) −276.262 + 311.652i −0.323114 + 0.364505i
\(856\) −239.220 −0.279462
\(857\) −779.492 450.040i −0.909558 0.525134i −0.0292694 0.999572i \(-0.509318\pi\)
−0.880289 + 0.474438i \(0.842651\pi\)
\(858\) 634.020 285.238i 0.738951 0.332445i
\(859\) 1001.95 578.477i 1.16642 0.673431i 0.213584 0.976925i \(-0.431486\pi\)
0.952833 + 0.303494i \(0.0981531\pi\)
\(860\) −121.363 + 70.0687i −0.141119 + 0.0814752i
\(861\) −189.349 + 130.416i −0.219918 + 0.151470i
\(862\) 282.394 489.121i 0.327603 0.567426i
\(863\) 512.272 0.593594 0.296797 0.954941i \(-0.404082\pi\)
0.296797 + 0.954941i \(0.404082\pi\)
\(864\) 33.4929 + 149.018i 0.0387650 + 0.172474i
\(865\) −1267.15 −1.46492
\(866\) 694.369 + 400.894i 0.801812 + 0.462926i
\(867\) −207.721 + 288.250i −0.239586 + 0.332468i
\(868\) −0.0597150 0.327451i −6.87960e−5 0.000377247i
\(869\) 137.268 + 237.755i 0.157961 + 0.273596i
\(870\) 538.507 242.268i 0.618973 0.278469i
\(871\) 950.645 + 548.855i 1.09144 + 0.630144i
\(872\) −68.1964 −0.0782069
\(873\) 196.148 959.366i 0.224683 1.09893i
\(874\) 1.16163i 0.00132909i
\(875\) 2557.32 2171.45i 2.92265 2.48166i
\(876\) 10.7769 106.511i 0.0123024 0.121588i
\(877\) 644.224 + 1115.83i 0.734577 + 1.27233i 0.954909 + 0.296900i \(0.0959528\pi\)
−0.220331 + 0.975425i \(0.570714\pi\)
\(878\) 240.878 139.071i 0.274349 0.158395i
\(879\) −100.625 + 994.502i −0.114477 + 1.13140i
\(880\) 463.228 + 267.445i 0.526395 + 0.303914i
\(881\) 1247.46i 1.41596i 0.706235 + 0.707978i \(0.250392\pi\)
−0.706235 + 0.707978i \(0.749608\pi\)
\(882\) −222.334 + 582.692i −0.252080 + 0.660648i
\(883\) −936.870 −1.06101 −0.530504 0.847682i \(-0.677997\pi\)
−0.530504 + 0.847682i \(0.677997\pi\)
\(884\) 245.279 424.836i 0.277465 0.480584i
\(885\) −591.543 1314.87i −0.668410 1.48573i
\(886\) 126.479 + 219.069i 0.142753 + 0.247256i
\(887\) −1251.49 + 722.546i −1.41092 + 0.814595i −0.995475 0.0950234i \(-0.969707\pi\)
−0.415445 + 0.909618i \(0.636374\pi\)
\(888\) −12.0234 + 16.6846i −0.0135399 + 0.0187889i
\(889\) 706.133 + 831.611i 0.794301 + 0.935446i
\(890\) −1143.53 −1.28487
\(891\) −131.029 1084.41i −0.147058 1.21708i
\(892\) 347.912i 0.390036i
\(893\) −107.187 + 185.653i −0.120030 + 0.207898i
\(894\) 425.334 590.226i 0.475765 0.660208i
\(895\) −1140.86 + 658.673i −1.27470 + 0.735948i
\(896\) 77.9110 14.2081i 0.0869543 0.0158573i
\(897\) 5.85176 2.63264i 0.00652370 0.00293493i
\(898\) −269.981 + 467.621i −0.300647 + 0.520736i
\(899\) 0.333699i 0.000371189i
\(900\) 417.625 + 1252.16i 0.464028 + 1.39129i
\(901\) 1154.37i 1.28121i
\(902\) −180.823 104.398i −0.200469 0.115741i
\(903\) 63.7481 133.996i 0.0705959 0.148390i
\(904\) −205.738 356.348i −0.227586 0.394190i
\(905\) 463.358 + 802.560i 0.511998 + 0.886806i
\(906\) −1002.82 101.467i −1.10687 0.111994i
\(907\) 20.3747 35.2899i 0.0224638 0.0389084i −0.854575 0.519328i \(-0.826182\pi\)
0.877039 + 0.480420i \(0.159516\pi\)
\(908\) 412.328i 0.454106i
\(909\) −250.539 + 1225.39i −0.275620 + 1.34807i
\(910\) 401.423 1123.30i 0.441124 1.23439i
\(911\) −96.3670 + 166.913i −0.105782 + 0.183219i −0.914057 0.405585i \(-0.867068\pi\)
0.808276 + 0.588804i \(0.200401\pi\)
\(912\) −51.0684 + 22.9751i −0.0559961 + 0.0251919i
\(913\) 340.266 196.452i 0.372690 0.215172i
\(914\) −402.154 696.552i −0.439994 0.762092i
\(915\) −688.344 + 955.199i −0.752289 + 1.04393i
\(916\) 34.5279 + 19.9347i 0.0376942 + 0.0217628i
\(917\) 655.391 + 234.212i 0.714713 + 0.255411i
\(918\) −522.359 566.725i −0.569018 0.617348i
\(919\) 851.690 0.926757 0.463378 0.886161i \(-0.346637\pi\)
0.463378 + 0.886161i \(0.346637\pi\)
\(920\) 4.27542 + 2.46841i 0.00464719 + 0.00268306i
\(921\) 787.221 + 567.294i 0.854746 + 0.615954i
\(922\) −446.477 + 257.773i −0.484248 + 0.279581i
\(923\) 849.086 490.220i 0.919920 0.531116i
\(924\) −564.588 + 45.0038i −0.611026 + 0.0487055i
\(925\) −88.8653 + 153.919i −0.0960706 + 0.166399i
\(926\) 167.997 0.181422
\(927\) 514.012 + 455.643i 0.554489 + 0.491524i
\(928\) 79.3977 0.0855579
\(929\) 1301.36 + 751.342i 1.40082 + 0.808764i 0.994477 0.104957i \(-0.0334704\pi\)
0.406343 + 0.913721i \(0.366804\pi\)
\(930\) 0.995160 + 0.100692i 0.00107006 + 0.000108271i
\(931\) −225.636 37.0701i −0.242359 0.0398175i
\(932\) −257.078 445.273i −0.275835 0.477760i
\(933\) 139.224 1375.99i 0.149222 1.47480i
\(934\) 491.134 + 283.556i 0.525840 + 0.303594i
\(935\) −2699.18 −2.88682
\(936\) 231.476 + 205.191i 0.247304 + 0.219221i
\(937\) 1330.62i 1.42009i 0.704158 + 0.710043i \(0.251325\pi\)
−0.704158 + 0.710043i \(0.748675\pi\)
\(938\) −578.821 681.676i −0.617080 0.726733i
\(939\) 750.211 337.511i 0.798947 0.359437i
\(940\) 455.535 + 789.009i 0.484611 + 0.839372i
\(941\) 1089.81 629.201i 1.15814 0.668651i 0.207281 0.978282i \(-0.433539\pi\)
0.950857 + 0.309631i \(0.100205\pi\)
\(942\) 269.284 + 194.054i 0.285864 + 0.206002i
\(943\) −1.66893 0.963556i −0.00176981 0.00102180i
\(944\) 193.865i 0.205365i
\(945\) −1496.82 1127.84i −1.58394 1.19348i
\(946\) 134.757 0.142449
\(947\) 671.501 1163.07i 0.709083 1.22817i −0.256115 0.966646i \(-0.582443\pi\)
0.965198 0.261521i \(-0.0842240\pi\)
\(948\) −71.4136 + 99.0991i −0.0753308 + 0.104535i
\(949\) −108.407 187.766i −0.114233 0.197857i
\(950\) −419.113 + 241.975i −0.441172 + 0.254711i
\(951\) −522.564 1161.54i −0.549489 1.22139i
\(952\) −304.636 + 258.671i −0.319996 + 0.271713i
\(953\) −1593.34 −1.67192 −0.835961 0.548789i \(-0.815089\pi\)
−0.835961 + 0.548789i \(0.815089\pi\)
\(954\) −713.151 145.808i −0.747538 0.152838i
\(955\) 2904.57i 3.04144i
\(956\) −12.3601 + 21.4084i −0.0129290 + 0.0223937i
\(957\) −564.937 57.1611i −0.590321 0.0597294i
\(958\) −146.624 + 84.6536i −0.153053 + 0.0883649i
\(959\) −169.873 + 30.9786i −0.177136 + 0.0323031i
\(960\) −23.9578 + 236.780i −0.0249560 + 0.246646i
\(961\) −480.500 + 832.250i −0.500000 + 0.866025i
\(962\) 41.6505i 0.0432957i
\(963\) 240.834 + 722.089i 0.250088 + 0.749833i
\(964\) 594.178i 0.616367i
\(965\) −2226.23 1285.32i −2.30698 1.33193i
\(966\) −5.21093 + 0.415368i −0.00539434 + 0.000429988i
\(967\) −819.205 1418.91i −0.847162 1.46733i −0.883731 0.467996i \(-0.844976\pi\)
0.0365690 0.999331i \(-0.488357\pi\)
\(968\) −86.0560 149.053i −0.0889008 0.153981i
\(969\) 165.209 229.257i 0.170494 0.236591i
\(970\) 762.897 1321.38i 0.786492 1.36224i
\(971\) 1718.35i 1.76967i −0.465902 0.884836i \(-0.654270\pi\)
0.465902 0.884836i \(-0.345730\pi\)
\(972\) 416.093 251.122i 0.428079 0.258356i
\(973\) −750.439 268.178i −0.771263 0.275620i
\(974\) 403.103 698.195i 0.413863 0.716832i
\(975\) 2168.81 + 1562.91i 2.22442 + 1.60298i
\(976\) −137.101 + 79.1551i −0.140472 + 0.0811016i
\(977\) −179.274 310.512i −0.183495 0.317822i 0.759573 0.650422i \(-0.225408\pi\)
−0.943068 + 0.332599i \(0.892074\pi\)
\(978\) 412.362 + 916.588i 0.421638 + 0.937206i
\(979\) 952.302 + 549.812i 0.972730 + 0.561606i
\(980\) −615.905 + 751.689i −0.628475 + 0.767030i
\(981\) 68.6567 + 205.852i 0.0699865 + 0.209839i
\(982\) 398.977 0.406290
\(983\) 924.703 + 533.877i 0.940694 + 0.543110i 0.890178 0.455613i \(-0.150580\pi\)
0.0505165 + 0.998723i \(0.483913\pi\)
\(984\) 9.35202 92.4283i 0.00950408 0.0939312i
\(985\) −2891.92 + 1669.65i −2.93596 + 1.69508i
\(986\) −346.981 + 200.330i −0.351908 + 0.203174i
\(987\) −871.144 414.443i −0.882619 0.419901i
\(988\) −56.7059 + 98.2176i −0.0573947 + 0.0994105i
\(989\) 1.24375 0.00125759
\(990\) 340.932 1667.51i 0.344376 1.68435i
\(991\) 431.606 0.435526 0.217763 0.976002i \(-0.430124\pi\)
0.217763 + 0.976002i \(0.430124\pi\)
\(992\) 0.116474 + 0.0672461i 0.000117413 + 6.77884e-5i
\(993\) 304.050 + 675.835i 0.306193 + 0.680599i
\(994\) −785.773 + 143.296i −0.790516 + 0.144161i
\(995\) −458.599 794.317i −0.460903 0.798308i
\(996\) 141.827 + 102.205i 0.142396 + 0.102615i
\(997\) −123.674 71.4033i −0.124046 0.0716181i 0.436693 0.899611i \(-0.356150\pi\)
−0.560739 + 0.827993i \(0.689483\pi\)
\(998\) −85.2244 −0.0853952
\(999\) 62.4673 + 19.4956i 0.0625298 + 0.0195151i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.o.a.97.5 yes 32
3.2 odd 2 378.3.o.a.181.16 32
7.6 odd 2 inner 126.3.o.a.97.4 yes 32
9.2 odd 6 1134.3.c.d.811.8 16
9.4 even 3 inner 126.3.o.a.13.4 32
9.5 odd 6 378.3.o.a.307.9 32
9.7 even 3 1134.3.c.e.811.9 16
21.20 even 2 378.3.o.a.181.9 32
63.13 odd 6 inner 126.3.o.a.13.5 yes 32
63.20 even 6 1134.3.c.d.811.1 16
63.34 odd 6 1134.3.c.e.811.16 16
63.41 even 6 378.3.o.a.307.16 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.4 32 9.4 even 3 inner
126.3.o.a.13.5 yes 32 63.13 odd 6 inner
126.3.o.a.97.4 yes 32 7.6 odd 2 inner
126.3.o.a.97.5 yes 32 1.1 even 1 trivial
378.3.o.a.181.9 32 21.20 even 2
378.3.o.a.181.16 32 3.2 odd 2
378.3.o.a.307.9 32 9.5 odd 6
378.3.o.a.307.16 32 63.41 even 6
1134.3.c.d.811.1 16 63.20 even 6
1134.3.c.d.811.8 16 9.2 odd 6
1134.3.c.e.811.9 16 9.7 even 3
1134.3.c.e.811.16 16 63.34 odd 6