Properties

Label 378.3.o.a.307.16
Level $378$
Weight $3$
Character 378.307
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.16
Character \(\chi\) \(=\) 378.307
Dual form 378.3.o.a.181.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(8.58770 + 4.95811i) q^{5} +(-4.53080 + 5.33591i) q^{7} -2.82843 q^{8} +14.0237i q^{10} +(6.74260 + 11.6785i) q^{11} +(-10.5236 - 6.07580i) q^{13} +(-9.73888 - 1.77601i) q^{14} +(-2.00000 - 3.46410i) q^{16} -20.1850i q^{17} -4.66654i q^{19} +(-17.1754 + 9.91622i) q^{20} +(-9.53548 + 16.5159i) q^{22} +(0.0880089 - 0.152436i) q^{23} +(36.6657 + 63.5069i) q^{25} -17.1849i q^{26} +(-4.71127 - 13.1835i) q^{28} +(7.01783 + 12.1552i) q^{29} +(-0.0205898 - 0.0118875i) q^{31} +(2.82843 - 4.89898i) q^{32} +(24.7214 - 14.2729i) q^{34} +(-65.3651 + 23.3590i) q^{35} -2.42366 q^{37} +(5.71533 - 3.29975i) q^{38} +(-24.2897 - 14.0237i) q^{40} +(-9.48159 - 5.47420i) q^{41} +(-3.53303 - 6.11939i) q^{43} -26.9704 q^{44} +0.248927 q^{46} +(-39.7838 + 22.9692i) q^{47} +(-7.94379 - 48.3518i) q^{49} +(-51.8532 + 89.8124i) q^{50} +(21.0472 - 12.1516i) q^{52} +57.1896 q^{53} +133.722i q^{55} +(12.8150 - 15.0922i) q^{56} +(-9.92471 + 17.1901i) q^{58} +(41.9730 + 24.2331i) q^{59} +(34.2752 - 19.7888i) q^{61} -0.0336230i q^{62} +8.00000 q^{64} +(-60.2489 - 104.354i) q^{65} +(-45.1674 + 78.2322i) q^{67} +(34.9614 + 20.1850i) q^{68} +(-74.8289 - 63.5383i) q^{70} +80.6841 q^{71} -17.8424i q^{73} +(-1.71379 - 2.96837i) q^{74} +(8.08269 + 4.66654i) q^{76} +(-92.8649 - 16.9351i) q^{77} +(10.1791 + 17.6308i) q^{79} -39.6649i q^{80} -15.4834i q^{82} +(25.2325 - 14.5680i) q^{83} +(100.079 - 173.342i) q^{85} +(4.99646 - 8.65413i) q^{86} +(-19.0710 - 33.0319i) q^{88} -81.5430i q^{89} +(80.1001 - 28.6247i) q^{91} +(0.176018 + 0.304872i) q^{92} +(-56.2627 - 32.4833i) q^{94} +(23.1372 - 40.0749i) q^{95} +(94.2248 - 54.4007i) q^{97} +(53.6015 - 43.9190i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 1.22474i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 8.58770 + 4.95811i 1.71754 + 0.991622i 0.923356 + 0.383946i \(0.125435\pi\)
0.794185 + 0.607677i \(0.207898\pi\)
\(6\) 0 0
\(7\) −4.53080 + 5.33591i −0.647256 + 0.762272i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 14.0237i 1.40237i
\(11\) 6.74260 + 11.6785i 0.612964 + 1.06168i 0.990738 + 0.135787i \(0.0433562\pi\)
−0.377774 + 0.925898i \(0.623310\pi\)
\(12\) 0 0
\(13\) −10.5236 6.07580i −0.809507 0.467369i 0.0372779 0.999305i \(-0.488131\pi\)
−0.846785 + 0.531936i \(0.821465\pi\)
\(14\) −9.73888 1.77601i −0.695634 0.126858i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 20.1850i 1.18735i −0.804705 0.593675i \(-0.797676\pi\)
0.804705 0.593675i \(-0.202324\pi\)
\(18\) 0 0
\(19\) 4.66654i 0.245608i −0.992431 0.122804i \(-0.960811\pi\)
0.992431 0.122804i \(-0.0391886\pi\)
\(20\) −17.1754 + 9.91622i −0.858770 + 0.495811i
\(21\) 0 0
\(22\) −9.53548 + 16.5159i −0.433431 + 0.750724i
\(23\) 0.0880089 0.152436i 0.00382647 0.00662765i −0.864106 0.503310i \(-0.832115\pi\)
0.867932 + 0.496683i \(0.165449\pi\)
\(24\) 0 0
\(25\) 36.6657 + 63.5069i 1.46663 + 2.54028i
\(26\) 17.1849i 0.660959i
\(27\) 0 0
\(28\) −4.71127 13.1835i −0.168259 0.470838i
\(29\) 7.01783 + 12.1552i 0.241994 + 0.419146i 0.961282 0.275566i \(-0.0888652\pi\)
−0.719288 + 0.694712i \(0.755532\pi\)
\(30\) 0 0
\(31\) −0.0205898 0.0118875i −0.000664188 0.000383469i 0.499668 0.866217i \(-0.333455\pi\)
−0.500332 + 0.865834i \(0.666789\pi\)
\(32\) 2.82843 4.89898i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 24.7214 14.2729i 0.727100 0.419792i
\(35\) −65.3651 + 23.3590i −1.86758 + 0.667399i
\(36\) 0 0
\(37\) −2.42366 −0.0655043 −0.0327522 0.999464i \(-0.510427\pi\)
−0.0327522 + 0.999464i \(0.510427\pi\)
\(38\) 5.71533 3.29975i 0.150403 0.0868354i
\(39\) 0 0
\(40\) −24.2897 14.0237i −0.607242 0.350591i
\(41\) −9.48159 5.47420i −0.231258 0.133517i 0.379894 0.925030i \(-0.375960\pi\)
−0.611152 + 0.791513i \(0.709294\pi\)
\(42\) 0 0
\(43\) −3.53303 6.11939i −0.0821636 0.142311i 0.822015 0.569465i \(-0.192850\pi\)
−0.904179 + 0.427154i \(0.859516\pi\)
\(44\) −26.9704 −0.612964
\(45\) 0 0
\(46\) 0.248927 0.00541145
\(47\) −39.7838 + 22.9692i −0.846463 + 0.488706i −0.859456 0.511210i \(-0.829197\pi\)
0.0129929 + 0.999916i \(0.495864\pi\)
\(48\) 0 0
\(49\) −7.94379 48.3518i −0.162118 0.986771i
\(50\) −51.8532 + 89.8124i −1.03706 + 1.79625i
\(51\) 0 0
\(52\) 21.0472 12.1516i 0.404753 0.233684i
\(53\) 57.1896 1.07905 0.539524 0.841970i \(-0.318604\pi\)
0.539524 + 0.841970i \(0.318604\pi\)
\(54\) 0 0
\(55\) 133.722i 2.43131i
\(56\) 12.8150 15.0922i 0.228840 0.269504i
\(57\) 0 0
\(58\) −9.92471 + 17.1901i −0.171116 + 0.296381i
\(59\) 41.9730 + 24.2331i 0.711406 + 0.410730i 0.811581 0.584239i \(-0.198607\pi\)
−0.100175 + 0.994970i \(0.531940\pi\)
\(60\) 0 0
\(61\) 34.2752 19.7888i 0.561888 0.324406i −0.192015 0.981392i \(-0.561502\pi\)
0.753903 + 0.656986i \(0.228169\pi\)
\(62\) 0.0336230i 0.000542307i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) −60.2489 104.354i −0.926907 1.60545i
\(66\) 0 0
\(67\) −45.1674 + 78.2322i −0.674140 + 1.16764i 0.302580 + 0.953124i \(0.402152\pi\)
−0.976720 + 0.214520i \(0.931181\pi\)
\(68\) 34.9614 + 20.1850i 0.514138 + 0.296838i
\(69\) 0 0
\(70\) −74.8289 63.5383i −1.06898 0.907690i
\(71\) 80.6841 1.13640 0.568198 0.822892i \(-0.307641\pi\)
0.568198 + 0.822892i \(0.307641\pi\)
\(72\) 0 0
\(73\) 17.8424i 0.244417i −0.992504 0.122208i \(-0.961002\pi\)
0.992504 0.122208i \(-0.0389976\pi\)
\(74\) −1.71379 2.96837i −0.0231593 0.0401130i
\(75\) 0 0
\(76\) 8.08269 + 4.66654i 0.106351 + 0.0614019i
\(77\) −92.8649 16.9351i −1.20604 0.219937i
\(78\) 0 0
\(79\) 10.1791 + 17.6308i 0.128850 + 0.223174i 0.923231 0.384245i \(-0.125538\pi\)
−0.794381 + 0.607419i \(0.792205\pi\)
\(80\) 39.6649i 0.495811i
\(81\) 0 0
\(82\) 15.4834i 0.188822i
\(83\) 25.2325 14.5680i 0.304006 0.175518i −0.340235 0.940340i \(-0.610507\pi\)
0.644241 + 0.764822i \(0.277173\pi\)
\(84\) 0 0
\(85\) 100.079 173.342i 1.17740 2.03932i
\(86\) 4.99646 8.65413i 0.0580984 0.100629i
\(87\) 0 0
\(88\) −19.0710 33.0319i −0.216715 0.375362i
\(89\) 81.5430i 0.916213i −0.888897 0.458107i \(-0.848528\pi\)
0.888897 0.458107i \(-0.151472\pi\)
\(90\) 0 0
\(91\) 80.1001 28.6247i 0.880221 0.314557i
\(92\) 0.176018 + 0.304872i 0.00191324 + 0.00331382i
\(93\) 0 0
\(94\) −56.2627 32.4833i −0.598540 0.345567i
\(95\) 23.1372 40.0749i 0.243550 0.421841i
\(96\) 0 0
\(97\) 94.2248 54.4007i 0.971390 0.560832i 0.0717301 0.997424i \(-0.477148\pi\)
0.899660 + 0.436592i \(0.143815\pi\)
\(98\) 53.6015 43.9190i 0.546954 0.448153i
\(99\) 0 0
\(100\) −146.663 −1.46663
\(101\) 120.353 69.4857i 1.19161 0.687977i 0.232939 0.972491i \(-0.425166\pi\)
0.958672 + 0.284514i \(0.0918323\pi\)
\(102\) 0 0
\(103\) −66.0960 38.1606i −0.641709 0.370491i 0.143563 0.989641i \(-0.454144\pi\)
−0.785273 + 0.619150i \(0.787477\pi\)
\(104\) 29.7652 + 17.1849i 0.286204 + 0.165240i
\(105\) 0 0
\(106\) 40.4391 + 70.0426i 0.381501 + 0.660779i
\(107\) 84.5769 0.790439 0.395219 0.918587i \(-0.370669\pi\)
0.395219 + 0.918587i \(0.370669\pi\)
\(108\) 0 0
\(109\) −24.1111 −0.221203 −0.110601 0.993865i \(-0.535278\pi\)
−0.110601 + 0.993865i \(0.535278\pi\)
\(110\) −163.776 + 94.5560i −1.48887 + 0.859600i
\(111\) 0 0
\(112\) 27.5457 + 5.02332i 0.245944 + 0.0448511i
\(113\) 72.7392 125.988i 0.643710 1.11494i −0.340888 0.940104i \(-0.610728\pi\)
0.984598 0.174835i \(-0.0559390\pi\)
\(114\) 0 0
\(115\) 1.51159 0.872716i 0.0131442 0.00758883i
\(116\) −28.0713 −0.241994
\(117\) 0 0
\(118\) 68.5415i 0.580861i
\(119\) 107.705 + 91.4539i 0.905084 + 0.768520i
\(120\) 0 0
\(121\) −30.4254 + 52.6983i −0.251450 + 0.435523i
\(122\) 48.4724 + 27.9856i 0.397315 + 0.229390i
\(123\) 0 0
\(124\) 0.0411797 0.0237751i 0.000332094 0.000191735i
\(125\) 479.266i 3.83413i
\(126\) 0 0
\(127\) −155.852 −1.22718 −0.613590 0.789625i \(-0.710275\pi\)
−0.613590 + 0.789625i \(0.710275\pi\)
\(128\) 5.65685 + 9.79796i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 85.2049 147.579i 0.655422 1.13522i
\(131\) 86.1056 + 49.7131i 0.657295 + 0.379489i 0.791245 0.611499i \(-0.209433\pi\)
−0.133951 + 0.990988i \(0.542766\pi\)
\(132\) 0 0
\(133\) 24.9002 + 21.1432i 0.187220 + 0.158971i
\(134\) −127.753 −0.953377
\(135\) 0 0
\(136\) 57.0917i 0.419792i
\(137\) −12.3339 21.3630i −0.0900287 0.155934i 0.817494 0.575937i \(-0.195363\pi\)
−0.907523 + 0.420002i \(0.862029\pi\)
\(138\) 0 0
\(139\) 98.5930 + 56.9227i 0.709302 + 0.409516i 0.810803 0.585320i \(-0.199031\pi\)
−0.101500 + 0.994835i \(0.532364\pi\)
\(140\) 24.9062 136.575i 0.177901 0.975534i
\(141\) 0 0
\(142\) 57.0523 + 98.8175i 0.401777 + 0.695898i
\(143\) 163.867i 1.14592i
\(144\) 0 0
\(145\) 139.181i 0.959867i
\(146\) 21.8524 12.6165i 0.149674 0.0864144i
\(147\) 0 0
\(148\) 2.42366 4.19790i 0.0163761 0.0283642i
\(149\) 85.7383 148.503i 0.575425 0.996665i −0.420571 0.907260i \(-0.638170\pi\)
0.995995 0.0894051i \(-0.0284966\pi\)
\(150\) 0 0
\(151\) −118.787 205.745i −0.786669 1.36255i −0.927997 0.372588i \(-0.878471\pi\)
0.141328 0.989963i \(-0.454863\pi\)
\(152\) 13.1990i 0.0868354i
\(153\) 0 0
\(154\) −44.9242 125.711i −0.291715 0.816304i
\(155\) −0.117880 0.204173i −0.000760513 0.00131725i
\(156\) 0 0
\(157\) 67.7529 + 39.1171i 0.431547 + 0.249154i 0.700005 0.714137i \(-0.253181\pi\)
−0.268458 + 0.963291i \(0.586514\pi\)
\(158\) −14.3955 + 24.9337i −0.0911106 + 0.157808i
\(159\) 0 0
\(160\) 48.5794 28.0473i 0.303621 0.175296i
\(161\) 0.414633 + 1.16026i 0.00257536 + 0.00720660i
\(162\) 0 0
\(163\) 236.898 1.45336 0.726682 0.686974i \(-0.241061\pi\)
0.726682 + 0.686974i \(0.241061\pi\)
\(164\) 18.9632 10.9484i 0.115629 0.0667585i
\(165\) 0 0
\(166\) 35.6842 + 20.6023i 0.214965 + 0.124110i
\(167\) −200.478 115.746i −1.20047 0.693089i −0.239807 0.970821i \(-0.577084\pi\)
−0.960659 + 0.277732i \(0.910417\pi\)
\(168\) 0 0
\(169\) −10.6694 18.4800i −0.0631327 0.109349i
\(170\) 283.067 1.66510
\(171\) 0 0
\(172\) 14.1321 0.0821636
\(173\) −110.666 + 63.8930i −0.639688 + 0.369324i −0.784494 0.620136i \(-0.787077\pi\)
0.144807 + 0.989460i \(0.453744\pi\)
\(174\) 0 0
\(175\) −504.992 92.0919i −2.88567 0.526239i
\(176\) 26.9704 46.7141i 0.153241 0.265421i
\(177\) 0 0
\(178\) 99.8694 57.6596i 0.561064 0.323930i
\(179\) −132.848 −0.742165 −0.371083 0.928600i \(-0.621013\pi\)
−0.371083 + 0.928600i \(0.621013\pi\)
\(180\) 0 0
\(181\) 93.4546i 0.516323i 0.966102 + 0.258162i \(0.0831167\pi\)
−0.966102 + 0.258162i \(0.916883\pi\)
\(182\) 91.6973 + 77.8615i 0.503831 + 0.427810i
\(183\) 0 0
\(184\) −0.248927 + 0.431154i −0.00135286 + 0.00234323i
\(185\) −20.8137 12.0168i −0.112506 0.0649556i
\(186\) 0 0
\(187\) 235.731 136.099i 1.26059 0.727803i
\(188\) 91.8767i 0.488706i
\(189\) 0 0
\(190\) 65.4420 0.344432
\(191\) 146.456 + 253.668i 0.766783 + 1.32811i 0.939299 + 0.343100i \(0.111477\pi\)
−0.172516 + 0.985007i \(0.555190\pi\)
\(192\) 0 0
\(193\) 129.618 224.504i 0.671594 1.16323i −0.305859 0.952077i \(-0.598943\pi\)
0.977452 0.211157i \(-0.0677232\pi\)
\(194\) 133.254 + 76.9342i 0.686876 + 0.396568i
\(195\) 0 0
\(196\) 91.6916 + 34.5927i 0.467814 + 0.176494i
\(197\) −336.752 −1.70940 −0.854700 0.519123i \(-0.826259\pi\)
−0.854700 + 0.519123i \(0.826259\pi\)
\(198\) 0 0
\(199\) 92.4947i 0.464797i −0.972621 0.232399i \(-0.925343\pi\)
0.972621 0.232399i \(-0.0746574\pi\)
\(200\) −103.706 179.625i −0.518532 0.898124i
\(201\) 0 0
\(202\) 170.204 + 98.2676i 0.842596 + 0.486473i
\(203\) −96.6556 17.6264i −0.476136 0.0868296i
\(204\) 0 0
\(205\) −54.2834 94.0215i −0.264797 0.458642i
\(206\) 107.934i 0.523953i
\(207\) 0 0
\(208\) 48.6064i 0.233684i
\(209\) 54.4984 31.4647i 0.260758 0.150549i
\(210\) 0 0
\(211\) −99.0672 + 171.589i −0.469513 + 0.813220i −0.999392 0.0348530i \(-0.988904\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(212\) −57.1896 + 99.0552i −0.269762 + 0.467242i
\(213\) 0 0
\(214\) 59.8049 + 103.585i 0.279462 + 0.484043i
\(215\) 70.0687i 0.325901i
\(216\) 0 0
\(217\) 0.156719 0.0560054i 0.000722208 0.000258089i
\(218\) −17.0491 29.5299i −0.0782069 0.135458i
\(219\) 0 0
\(220\) −231.614 133.722i −1.05279 0.607829i
\(221\) −122.640 + 212.418i −0.554930 + 0.961168i
\(222\) 0 0
\(223\) −150.650 + 86.9779i −0.675561 + 0.390036i −0.798181 0.602418i \(-0.794204\pi\)
0.122619 + 0.992454i \(0.460871\pi\)
\(224\) 13.3255 + 37.2885i 0.0594887 + 0.166466i
\(225\) 0 0
\(226\) 205.738 0.910343
\(227\) 178.543 103.082i 0.786535 0.454106i −0.0522063 0.998636i \(-0.516625\pi\)
0.838741 + 0.544530i \(0.183292\pi\)
\(228\) 0 0
\(229\) −17.2640 9.96735i −0.0753884 0.0435255i 0.461832 0.886967i \(-0.347192\pi\)
−0.537220 + 0.843442i \(0.680526\pi\)
\(230\) 2.13771 + 1.23421i 0.00929438 + 0.00536611i
\(231\) 0 0
\(232\) −19.8494 34.3802i −0.0855579 0.148191i
\(233\) −257.078 −1.10334 −0.551670 0.834062i \(-0.686009\pi\)
−0.551670 + 0.834062i \(0.686009\pi\)
\(234\) 0 0
\(235\) −455.535 −1.93845
\(236\) −83.9459 + 48.4662i −0.355703 + 0.205365i
\(237\) 0 0
\(238\) −35.8487 + 196.579i −0.150625 + 0.825961i
\(239\) 6.18007 10.7042i 0.0258580 0.0447874i −0.852807 0.522227i \(-0.825102\pi\)
0.878665 + 0.477439i \(0.158435\pi\)
\(240\) 0 0
\(241\) −257.287 + 148.544i −1.06758 + 0.616367i −0.927519 0.373776i \(-0.878063\pi\)
−0.140060 + 0.990143i \(0.544730\pi\)
\(242\) −86.0560 −0.355603
\(243\) 0 0
\(244\) 79.1551i 0.324406i
\(245\) 171.515 454.617i 0.700060 1.85558i
\(246\) 0 0
\(247\) −28.3530 + 49.1088i −0.114789 + 0.198821i
\(248\) 0.0582368 + 0.0336230i 0.000234826 + 0.000135577i
\(249\) 0 0
\(250\) −586.978 + 338.892i −2.34791 + 1.35557i
\(251\) 349.874i 1.39392i 0.717111 + 0.696959i \(0.245464\pi\)
−0.717111 + 0.696959i \(0.754536\pi\)
\(252\) 0 0
\(253\) 2.37364 0.00938196
\(254\) −110.204 190.879i −0.433874 0.751492i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −292.983 169.154i −1.14001 0.658186i −0.193578 0.981085i \(-0.562009\pi\)
−0.946433 + 0.322899i \(0.895343\pi\)
\(258\) 0 0
\(259\) 10.9811 12.9324i 0.0423981 0.0499321i
\(260\) 240.996 0.926907
\(261\) 0 0
\(262\) 140.610i 0.536679i
\(263\) −32.7296 56.6894i −0.124447 0.215549i 0.797069 0.603888i \(-0.206382\pi\)
−0.921517 + 0.388339i \(0.873049\pi\)
\(264\) 0 0
\(265\) 491.127 + 283.552i 1.85331 + 1.07001i
\(266\) −8.28784 + 45.4469i −0.0311573 + 0.170853i
\(267\) 0 0
\(268\) −90.3347 156.464i −0.337070 0.583822i
\(269\) 248.366i 0.923293i −0.887064 0.461646i \(-0.847259\pi\)
0.887064 0.461646i \(-0.152741\pi\)
\(270\) 0 0
\(271\) 59.5945i 0.219906i −0.993937 0.109953i \(-0.964930\pi\)
0.993937 0.109953i \(-0.0350700\pi\)
\(272\) −69.9227 + 40.3699i −0.257069 + 0.148419i
\(273\) 0 0
\(274\) 17.4428 30.2118i 0.0636599 0.110262i
\(275\) −494.445 + 856.404i −1.79798 + 3.11420i
\(276\) 0 0
\(277\) 222.096 + 384.682i 0.801791 + 1.38874i 0.918436 + 0.395569i \(0.129453\pi\)
−0.116645 + 0.993174i \(0.537214\pi\)
\(278\) 161.002i 0.579143i
\(279\) 0 0
\(280\) 184.881 66.0692i 0.660288 0.235961i
\(281\) 231.769 + 401.435i 0.824799 + 1.42859i 0.902073 + 0.431584i \(0.142045\pi\)
−0.0772735 + 0.997010i \(0.524621\pi\)
\(282\) 0 0
\(283\) −88.7084 51.2158i −0.313457 0.180975i 0.335015 0.942213i \(-0.391259\pi\)
−0.648472 + 0.761238i \(0.724592\pi\)
\(284\) −80.6841 + 139.749i −0.284099 + 0.492074i
\(285\) 0 0
\(286\) 200.695 115.871i 0.701730 0.405144i
\(287\) 72.1689 25.7904i 0.251460 0.0898620i
\(288\) 0 0
\(289\) −118.432 −0.409800
\(290\) −170.461 + 98.4157i −0.587796 + 0.339364i
\(291\) 0 0
\(292\) 30.9040 + 17.8424i 0.105836 + 0.0611042i
\(293\) 288.554 + 166.597i 0.984825 + 0.568589i 0.903723 0.428117i \(-0.140823\pi\)
0.0811016 + 0.996706i \(0.474156\pi\)
\(294\) 0 0
\(295\) 240.301 + 416.213i 0.814579 + 1.41089i
\(296\) 6.85515 0.0231593
\(297\) 0 0
\(298\) 242.504 0.813773
\(299\) −1.85234 + 1.06945i −0.00619511 + 0.00357675i
\(300\) 0 0
\(301\) 48.6600 + 8.87378i 0.161661 + 0.0294810i
\(302\) 167.990 290.968i 0.556259 0.963469i
\(303\) 0 0
\(304\) −16.1654 + 9.33309i −0.0531756 + 0.0307010i
\(305\) 392.460 1.28675
\(306\) 0 0
\(307\) 323.443i 1.05356i −0.850002 0.526780i \(-0.823399\pi\)
0.850002 0.526780i \(-0.176601\pi\)
\(308\) 122.197 143.912i 0.396745 0.467245i
\(309\) 0 0
\(310\) 0.166707 0.288745i 0.000537764 0.000931434i
\(311\) −399.241 230.502i −1.28373 0.741164i −0.306205 0.951965i \(-0.599059\pi\)
−0.977529 + 0.210801i \(0.932393\pi\)
\(312\) 0 0
\(313\) 237.475 137.106i 0.758705 0.438039i −0.0701256 0.997538i \(-0.522340\pi\)
0.828831 + 0.559500i \(0.189007\pi\)
\(314\) 110.640i 0.352357i
\(315\) 0 0
\(316\) −40.7165 −0.128850
\(317\) −212.280 367.679i −0.669652 1.15987i −0.978001 0.208598i \(-0.933110\pi\)
0.308349 0.951273i \(-0.400223\pi\)
\(318\) 0 0
\(319\) −94.6369 + 163.916i −0.296667 + 0.513843i
\(320\) 68.7016 + 39.6649i 0.214693 + 0.123953i
\(321\) 0 0
\(322\) −1.12784 + 1.32825i −0.00350260 + 0.00412500i
\(323\) −94.1940 −0.291622
\(324\) 0 0
\(325\) 891.094i 2.74183i
\(326\) 167.512 + 290.140i 0.513842 + 0.890000i
\(327\) 0 0
\(328\) 26.8180 + 15.4834i 0.0817621 + 0.0472054i
\(329\) 57.6907 316.351i 0.175352 0.961553i
\(330\) 0 0
\(331\) −123.513 213.931i −0.373152 0.646318i 0.616897 0.787044i \(-0.288390\pi\)
−0.990049 + 0.140726i \(0.955056\pi\)
\(332\) 58.2720i 0.175518i
\(333\) 0 0
\(334\) 327.379i 0.980176i
\(335\) −775.768 + 447.890i −2.31572 + 1.33698i
\(336\) 0 0
\(337\) −57.2883 + 99.2262i −0.169995 + 0.294440i −0.938418 0.345503i \(-0.887708\pi\)
0.768423 + 0.639942i \(0.221042\pi\)
\(338\) 15.0888 26.1346i 0.0446415 0.0773214i
\(339\) 0 0
\(340\) 200.158 + 346.685i 0.588701 + 1.01966i
\(341\) 0.320612i 0.000940211i
\(342\) 0 0
\(343\) 293.992 + 176.685i 0.857121 + 0.515116i
\(344\) 9.99293 + 17.3083i 0.0290492 + 0.0503147i
\(345\) 0 0
\(346\) −156.505 90.3584i −0.452327 0.261151i
\(347\) 172.728 299.174i 0.497776 0.862173i −0.502221 0.864739i \(-0.667484\pi\)
0.999997 + 0.00256650i \(0.000816944\pi\)
\(348\) 0 0
\(349\) −584.225 + 337.302i −1.67400 + 0.966483i −0.708632 + 0.705578i \(0.750687\pi\)
−0.965365 + 0.260905i \(0.915979\pi\)
\(350\) −244.294 683.605i −0.697983 1.95316i
\(351\) 0 0
\(352\) 76.2838 0.216715
\(353\) 82.7699 47.7872i 0.234476 0.135375i −0.378159 0.925740i \(-0.623443\pi\)
0.612635 + 0.790366i \(0.290110\pi\)
\(354\) 0 0
\(355\) 692.891 + 400.041i 1.95181 + 1.12688i
\(356\) 141.237 + 81.5430i 0.396732 + 0.229053i
\(357\) 0 0
\(358\) −93.9374 162.704i −0.262395 0.454482i
\(359\) 27.2256 0.0758374 0.0379187 0.999281i \(-0.487927\pi\)
0.0379187 + 0.999281i \(0.487927\pi\)
\(360\) 0 0
\(361\) 339.223 0.939677
\(362\) −114.458 + 66.0823i −0.316182 + 0.182548i
\(363\) 0 0
\(364\) −30.5207 + 167.362i −0.0838480 + 0.459786i
\(365\) 88.4647 153.225i 0.242369 0.419796i
\(366\) 0 0
\(367\) −130.761 + 75.4949i −0.356297 + 0.205708i −0.667455 0.744650i \(-0.732616\pi\)
0.311158 + 0.950358i \(0.399283\pi\)
\(368\) −0.704071 −0.00191324
\(369\) 0 0
\(370\) 33.9886i 0.0918610i
\(371\) −259.114 + 305.158i −0.698421 + 0.822529i
\(372\) 0 0
\(373\) 81.4304 141.042i 0.218312 0.378128i −0.735980 0.677003i \(-0.763278\pi\)
0.954292 + 0.298876i \(0.0966116\pi\)
\(374\) 333.373 + 192.473i 0.891373 + 0.514634i
\(375\) 0 0
\(376\) 112.525 64.9666i 0.299270 0.172784i
\(377\) 170.556i 0.452402i
\(378\) 0 0
\(379\) −391.275 −1.03239 −0.516194 0.856472i \(-0.672651\pi\)
−0.516194 + 0.856472i \(0.672651\pi\)
\(380\) 46.2745 + 80.1498i 0.121775 + 0.210920i
\(381\) 0 0
\(382\) −207.119 + 358.741i −0.542197 + 0.939113i
\(383\) 263.816 + 152.314i 0.688815 + 0.397687i 0.803168 0.595753i \(-0.203146\pi\)
−0.114353 + 0.993440i \(0.536479\pi\)
\(384\) 0 0
\(385\) −713.530 605.868i −1.85332 1.57368i
\(386\) 366.614 0.949777
\(387\) 0 0
\(388\) 217.603i 0.560832i
\(389\) 135.460 + 234.623i 0.348225 + 0.603144i 0.985934 0.167134i \(-0.0534511\pi\)
−0.637709 + 0.770277i \(0.720118\pi\)
\(390\) 0 0
\(391\) −3.07691 1.77645i −0.00786934 0.00454336i
\(392\) 22.4684 + 136.760i 0.0573174 + 0.348876i
\(393\) 0 0
\(394\) −238.119 412.435i −0.604364 1.04679i
\(395\) 201.877i 0.511081i
\(396\) 0 0
\(397\) 455.963i 1.14852i 0.818672 + 0.574261i \(0.194710\pi\)
−0.818672 + 0.574261i \(0.805290\pi\)
\(398\) 113.282 65.4036i 0.284629 0.164331i
\(399\) 0 0
\(400\) 146.663 254.028i 0.366657 0.635069i
\(401\) 214.070 370.780i 0.533841 0.924640i −0.465378 0.885112i \(-0.654081\pi\)
0.999218 0.0395273i \(-0.0125852\pi\)
\(402\) 0 0
\(403\) 0.144453 + 0.250199i 0.000358443 + 0.000620842i
\(404\) 277.943i 0.687977i
\(405\) 0 0
\(406\) −46.7580 130.842i −0.115167 0.322271i
\(407\) −16.3418 28.3048i −0.0401518 0.0695449i
\(408\) 0 0
\(409\) −310.087 179.029i −0.758159 0.437723i 0.0704753 0.997514i \(-0.477548\pi\)
−0.828634 + 0.559790i \(0.810882\pi\)
\(410\) 76.7683 132.967i 0.187240 0.324309i
\(411\) 0 0
\(412\) 132.192 76.3211i 0.320855 0.185245i
\(413\) −319.476 + 114.169i −0.773551 + 0.276437i
\(414\) 0 0
\(415\) 288.919 0.696191
\(416\) −59.5304 + 34.3699i −0.143102 + 0.0826199i
\(417\) 0 0
\(418\) 77.0724 + 44.4977i 0.184384 + 0.106454i
\(419\) 396.340 + 228.827i 0.945919 + 0.546127i 0.891811 0.452409i \(-0.149435\pi\)
0.0541082 + 0.998535i \(0.482768\pi\)
\(420\) 0 0
\(421\) 3.35845 + 5.81701i 0.00797732 + 0.0138171i 0.869987 0.493076i \(-0.164127\pi\)
−0.862009 + 0.506893i \(0.830794\pi\)
\(422\) −280.204 −0.663991
\(423\) 0 0
\(424\) −161.757 −0.381501
\(425\) 1281.88 740.096i 3.01620 1.74140i
\(426\) 0 0
\(427\) −49.7027 + 272.548i −0.116400 + 0.638286i
\(428\) −84.5769 + 146.492i −0.197610 + 0.342270i
\(429\) 0 0
\(430\) 85.8163 49.5460i 0.199573 0.115223i
\(431\) 399.366 0.926602 0.463301 0.886201i \(-0.346665\pi\)
0.463301 + 0.886201i \(0.346665\pi\)
\(432\) 0 0
\(433\) 566.950i 1.30935i 0.755909 + 0.654677i \(0.227195\pi\)
−0.755909 + 0.654677i \(0.772805\pi\)
\(434\) 0.179409 + 0.152339i 0.000413386 + 0.000351012i
\(435\) 0 0
\(436\) 24.1111 41.7616i 0.0553006 0.0957835i
\(437\) −0.711349 0.410697i −0.00162780 0.000939811i
\(438\) 0 0
\(439\) −170.327 + 98.3382i −0.387988 + 0.224005i −0.681288 0.732015i \(-0.738580\pi\)
0.293300 + 0.956020i \(0.405247\pi\)
\(440\) 378.224i 0.859600i
\(441\) 0 0
\(442\) −346.877 −0.784790
\(443\) −89.4345 154.905i −0.201884 0.349673i 0.747252 0.664541i \(-0.231373\pi\)
−0.949135 + 0.314868i \(0.898040\pi\)
\(444\) 0 0
\(445\) 404.299 700.267i 0.908538 1.57363i
\(446\) −213.052 123.005i −0.477694 0.275797i
\(447\) 0 0
\(448\) −36.2464 + 42.6873i −0.0809071 + 0.0952840i
\(449\) −381.811 −0.850358 −0.425179 0.905109i \(-0.639789\pi\)
−0.425179 + 0.905109i \(0.639789\pi\)
\(450\) 0 0
\(451\) 147.641i 0.327364i
\(452\) 145.478 + 251.976i 0.321855 + 0.557469i
\(453\) 0 0
\(454\) 252.499 + 145.780i 0.556164 + 0.321102i
\(455\) 829.800 + 151.325i 1.82374 + 0.332582i
\(456\) 0 0
\(457\) −284.366 492.537i −0.622245 1.07776i −0.989067 0.147469i \(-0.952887\pi\)
0.366821 0.930291i \(-0.380446\pi\)
\(458\) 28.1919i 0.0615544i
\(459\) 0 0
\(460\) 3.49086i 0.00758883i
\(461\) −315.707 + 182.273i −0.684830 + 0.395387i −0.801672 0.597764i \(-0.796056\pi\)
0.116842 + 0.993150i \(0.462723\pi\)
\(462\) 0 0
\(463\) −59.3958 + 102.877i −0.128285 + 0.222196i −0.923012 0.384771i \(-0.874280\pi\)
0.794727 + 0.606967i \(0.207614\pi\)
\(464\) 28.0713 48.6210i 0.0604985 0.104787i
\(465\) 0 0
\(466\) −181.782 314.855i −0.390090 0.675655i
\(467\) 401.009i 0.858692i −0.903140 0.429346i \(-0.858744\pi\)
0.903140 0.429346i \(-0.141256\pi\)
\(468\) 0 0
\(469\) −212.795 595.463i −0.453722 1.26964i
\(470\) −322.112 557.914i −0.685344 1.18705i
\(471\) 0 0
\(472\) −118.717 68.5415i −0.251520 0.145215i
\(473\) 47.6437 82.5213i 0.100727 0.174464i
\(474\) 0 0
\(475\) 296.358 171.102i 0.623911 0.360215i
\(476\) −266.108 + 95.0967i −0.559050 + 0.199783i
\(477\) 0 0
\(478\) 17.4799 0.0365688
\(479\) −103.679 + 59.8591i −0.216449 + 0.124967i −0.604305 0.796753i \(-0.706549\pi\)
0.387856 + 0.921720i \(0.373216\pi\)
\(480\) 0 0
\(481\) 25.5056 + 14.7257i 0.0530262 + 0.0306147i
\(482\) −363.858 210.074i −0.754893 0.435837i
\(483\) 0 0
\(484\) −60.8508 105.397i −0.125725 0.217762i
\(485\) 1078.90 2.22453
\(486\) 0 0
\(487\) −570.074 −1.17058 −0.585291 0.810823i \(-0.699020\pi\)
−0.585291 + 0.810823i \(0.699020\pi\)
\(488\) −96.9448 + 55.9711i −0.198657 + 0.114695i
\(489\) 0 0
\(490\) 678.069 111.401i 1.38381 0.227349i
\(491\) 141.060 244.323i 0.287291 0.497602i −0.685871 0.727723i \(-0.740579\pi\)
0.973162 + 0.230121i \(0.0739121\pi\)
\(492\) 0 0
\(493\) 245.353 141.655i 0.497673 0.287332i
\(494\) −80.1943 −0.162337
\(495\) 0 0
\(496\) 0.0951003i 0.000191735i
\(497\) −365.563 + 430.523i −0.735540 + 0.866243i
\(498\) 0 0
\(499\) 30.1314 52.1891i 0.0603835 0.104587i −0.834253 0.551381i \(-0.814101\pi\)
0.894637 + 0.446794i \(0.147434\pi\)
\(500\) −830.113 479.266i −1.66023 0.958532i
\(501\) 0 0
\(502\) −428.506 + 247.398i −0.853597 + 0.492825i
\(503\) 3.37300i 0.00670576i −0.999994 0.00335288i \(-0.998933\pi\)
0.999994 0.00335288i \(-0.00106726\pi\)
\(504\) 0 0
\(505\) 1378.07 2.72885
\(506\) 1.67841 + 2.90710i 0.00331702 + 0.00574525i
\(507\) 0 0
\(508\) 155.852 269.943i 0.306795 0.531385i
\(509\) −11.9659 6.90849i −0.0235086 0.0135727i 0.488200 0.872732i \(-0.337654\pi\)
−0.511708 + 0.859159i \(0.670987\pi\)
\(510\) 0 0
\(511\) 95.2055 + 80.8404i 0.186312 + 0.158200i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 478.439i 0.930816i
\(515\) −378.409 655.423i −0.734774 1.27267i
\(516\) 0 0
\(517\) −536.492 309.744i −1.03770 0.599118i
\(518\) 23.6037 + 4.30445i 0.0455671 + 0.00830975i
\(519\) 0 0
\(520\) 170.410 + 295.158i 0.327711 + 0.567612i
\(521\) 163.277i 0.313391i 0.987647 + 0.156695i \(0.0500841\pi\)
−0.987647 + 0.156695i \(0.949916\pi\)
\(522\) 0 0
\(523\) 953.671i 1.82346i −0.410787 0.911731i \(-0.634746\pi\)
0.410787 0.911731i \(-0.365254\pi\)
\(524\) −172.211 + 99.4262i −0.328647 + 0.189745i
\(525\) 0 0
\(526\) 46.2867 80.1709i 0.0879975 0.152416i
\(527\) −0.239949 + 0.415605i −0.000455312 + 0.000788624i
\(528\) 0 0
\(529\) 264.485 + 458.101i 0.499971 + 0.865975i
\(530\) 802.007i 1.51322i
\(531\) 0 0
\(532\) −61.5213 + 21.9853i −0.115641 + 0.0413258i
\(533\) 66.5202 + 115.216i 0.124803 + 0.216166i
\(534\) 0 0
\(535\) 726.321 + 419.342i 1.35761 + 0.783817i
\(536\) 127.753 221.274i 0.238344 0.412825i
\(537\) 0 0
\(538\) 304.185 175.621i 0.565399 0.326433i
\(539\) 511.116 418.789i 0.948267 0.776974i
\(540\) 0 0
\(541\) 296.567 0.548183 0.274092 0.961704i \(-0.411623\pi\)
0.274092 + 0.961704i \(0.411623\pi\)
\(542\) 72.9881 42.1397i 0.134664 0.0777485i
\(543\) 0 0
\(544\) −98.8857 57.0917i −0.181775 0.104948i
\(545\) −207.059 119.545i −0.379924 0.219349i
\(546\) 0 0
\(547\) −205.972 356.754i −0.376548 0.652201i 0.614009 0.789299i \(-0.289556\pi\)
−0.990557 + 0.137098i \(0.956223\pi\)
\(548\) 49.3357 0.0900287
\(549\) 0 0
\(550\) −1398.50 −2.54273
\(551\) 56.7230 32.7490i 0.102945 0.0594356i
\(552\) 0 0
\(553\) −140.196 25.5665i −0.253519 0.0462324i
\(554\) −314.091 + 544.022i −0.566952 + 0.981989i
\(555\) 0 0
\(556\) −197.186 + 113.845i −0.354651 + 0.204758i
\(557\) −558.037 −1.00186 −0.500931 0.865487i \(-0.667009\pi\)
−0.500931 + 0.865487i \(0.667009\pi\)
\(558\) 0 0
\(559\) 85.8639i 0.153603i
\(560\) 211.648 + 179.713i 0.377943 + 0.320917i
\(561\) 0 0
\(562\) −327.770 + 567.715i −0.583221 + 1.01017i
\(563\) 251.341 + 145.112i 0.446432 + 0.257748i 0.706322 0.707891i \(-0.250353\pi\)
−0.259890 + 0.965638i \(0.583686\pi\)
\(564\) 0 0
\(565\) 1249.33 721.298i 2.21120 1.27663i
\(566\) 144.860i 0.255937i
\(567\) 0 0
\(568\) −228.209 −0.401777
\(569\) −321.956 557.644i −0.565828 0.980043i −0.996972 0.0777596i \(-0.975223\pi\)
0.431144 0.902283i \(-0.358110\pi\)
\(570\) 0 0
\(571\) 542.172 939.070i 0.949514 1.64461i 0.203063 0.979166i \(-0.434910\pi\)
0.746451 0.665441i \(-0.231756\pi\)
\(572\) 283.825 + 163.867i 0.496198 + 0.286480i
\(573\) 0 0
\(574\) 82.6178 + 70.1520i 0.143933 + 0.122216i
\(575\) 12.9076 0.0224481
\(576\) 0 0
\(577\) 650.622i 1.12759i 0.825913 + 0.563797i \(0.190660\pi\)
−0.825913 + 0.563797i \(0.809340\pi\)
\(578\) −83.7443 145.049i −0.144886 0.250950i
\(579\) 0 0
\(580\) −241.068 139.181i −0.415635 0.239967i
\(581\) −36.5899 + 200.643i −0.0629774 + 0.345341i
\(582\) 0 0
\(583\) 385.607 + 667.890i 0.661418 + 1.14561i
\(584\) 50.4660i 0.0864144i
\(585\) 0 0
\(586\) 471.206i 0.804106i
\(587\) 199.425 115.138i 0.339736 0.196147i −0.320419 0.947276i \(-0.603824\pi\)
0.660155 + 0.751129i \(0.270490\pi\)
\(588\) 0 0
\(589\) −0.0554737 + 0.0960833i −9.41829e−5 + 0.000163130i
\(590\) −339.837 + 588.614i −0.575994 + 0.997651i
\(591\) 0 0
\(592\) 4.84732 + 8.39581i 0.00818804 + 0.0141821i
\(593\) 715.009i 1.20575i 0.797836 + 0.602875i \(0.205978\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(594\) 0 0
\(595\) 471.500 + 1319.39i 0.792437 + 2.21747i
\(596\) 171.477 + 297.006i 0.287712 + 0.498332i
\(597\) 0 0
\(598\) −2.61960 1.51243i −0.00438060 0.00252914i
\(599\) −433.990 + 751.692i −0.724523 + 1.25491i 0.234646 + 0.972081i \(0.424607\pi\)
−0.959170 + 0.282831i \(0.908727\pi\)
\(600\) 0 0
\(601\) −242.032 + 139.737i −0.402716 + 0.232508i −0.687655 0.726037i \(-0.741360\pi\)
0.284939 + 0.958546i \(0.408027\pi\)
\(602\) 23.5397 + 65.8707i 0.0391024 + 0.109420i
\(603\) 0 0
\(604\) 475.148 0.786669
\(605\) −522.568 + 301.705i −0.863749 + 0.498686i
\(606\) 0 0
\(607\) −381.944 220.515i −0.629232 0.363287i 0.151223 0.988500i \(-0.451679\pi\)
−0.780454 + 0.625213i \(0.785012\pi\)
\(608\) −22.8613 13.1990i −0.0376008 0.0217089i
\(609\) 0 0
\(610\) 277.511 + 480.663i 0.454936 + 0.787973i
\(611\) 558.224 0.913623
\(612\) 0 0
\(613\) −249.504 −0.407022 −0.203511 0.979073i \(-0.565235\pi\)
−0.203511 + 0.979073i \(0.565235\pi\)
\(614\) 396.135 228.709i 0.645171 0.372490i
\(615\) 0 0
\(616\) 262.662 + 47.8998i 0.426399 + 0.0777594i
\(617\) −276.294 + 478.555i −0.447802 + 0.775616i −0.998243 0.0592581i \(-0.981127\pi\)
0.550440 + 0.834874i \(0.314460\pi\)
\(618\) 0 0
\(619\) −855.461 + 493.901i −1.38201 + 0.797901i −0.992397 0.123079i \(-0.960723\pi\)
−0.389609 + 0.920980i \(0.627390\pi\)
\(620\) 0.471518 0.000760513
\(621\) 0 0
\(622\) 651.958i 1.04816i
\(623\) 435.106 + 369.455i 0.698404 + 0.593025i
\(624\) 0 0
\(625\) −1459.61 + 2528.12i −2.33538 + 4.04499i
\(626\) 335.840 + 193.897i 0.536485 + 0.309740i
\(627\) 0 0
\(628\) −135.506 + 78.2343i −0.215774 + 0.124577i
\(629\) 48.9215i 0.0777766i
\(630\) 0 0
\(631\) −236.443 −0.374712 −0.187356 0.982292i \(-0.559992\pi\)
−0.187356 + 0.982292i \(0.559992\pi\)
\(632\) −28.7909 49.8674i −0.0455553 0.0789041i
\(633\) 0 0
\(634\) 300.209 519.977i 0.473516 0.820153i
\(635\) −1338.41 772.731i −2.10773 1.21690i
\(636\) 0 0
\(637\) −210.178 + 557.099i −0.329950 + 0.874567i
\(638\) −267.674 −0.419551
\(639\) 0 0
\(640\) 112.189i 0.175296i
\(641\) −122.793 212.685i −0.191565 0.331801i 0.754204 0.656640i \(-0.228023\pi\)
−0.945769 + 0.324839i \(0.894690\pi\)
\(642\) 0 0
\(643\) −1004.04 579.685i −1.56150 0.901532i −0.997106 0.0760269i \(-0.975777\pi\)
−0.564394 0.825505i \(-0.690890\pi\)
\(644\) −2.42427 0.442097i −0.00376439 0.000686486i
\(645\) 0 0
\(646\) −66.6052 115.364i −0.103104 0.178581i
\(647\) 78.1821i 0.120838i −0.998173 0.0604189i \(-0.980756\pi\)
0.998173 0.0604189i \(-0.0192437\pi\)
\(648\) 0 0
\(649\) 653.577i 1.00705i
\(650\) 1091.36 630.099i 1.67902 0.969383i
\(651\) 0 0
\(652\) −236.898 + 410.320i −0.363341 + 0.629325i
\(653\) 615.100 1065.38i 0.941960 1.63152i 0.180233 0.983624i \(-0.442315\pi\)
0.761727 0.647898i \(-0.224352\pi\)
\(654\) 0 0
\(655\) 492.966 + 853.843i 0.752620 + 1.30358i
\(656\) 43.7936i 0.0667585i
\(657\) 0 0
\(658\) 428.243 153.037i 0.650825 0.232580i
\(659\) −59.0656 102.305i −0.0896291 0.155242i 0.817725 0.575609i \(-0.195235\pi\)
−0.907354 + 0.420367i \(0.861901\pi\)
\(660\) 0 0
\(661\) 558.811 + 322.629i 0.845402 + 0.488093i 0.859097 0.511813i \(-0.171026\pi\)
−0.0136948 + 0.999906i \(0.504359\pi\)
\(662\) 174.674 302.545i 0.263858 0.457016i
\(663\) 0 0
\(664\) −71.3683 + 41.2045i −0.107482 + 0.0620550i
\(665\) 109.006 + 305.029i 0.163918 + 0.458691i
\(666\) 0 0
\(667\) 2.47053 0.00370394
\(668\) 400.955 231.492i 0.600233 0.346545i
\(669\) 0 0
\(670\) −1097.10 633.412i −1.63746 0.945390i
\(671\) 462.208 + 266.856i 0.688834 + 0.397699i
\(672\) 0 0
\(673\) −429.109 743.239i −0.637607 1.10437i −0.985956 0.167002i \(-0.946591\pi\)
0.348350 0.937365i \(-0.386742\pi\)
\(674\) −162.036 −0.240409
\(675\) 0 0
\(676\) 42.6777 0.0631327
\(677\) −88.6309 + 51.1710i −0.130917 + 0.0755850i −0.564028 0.825756i \(-0.690749\pi\)
0.433111 + 0.901341i \(0.357416\pi\)
\(678\) 0 0
\(679\) −136.636 + 749.253i −0.201231 + 1.10347i
\(680\) −283.067 + 490.286i −0.416275 + 0.721009i
\(681\) 0 0
\(682\) 0.392668 0.226707i 0.000575759 0.000332415i
\(683\) −1031.39 −1.51009 −0.755044 0.655674i \(-0.772384\pi\)
−0.755044 + 0.655674i \(0.772384\pi\)
\(684\) 0 0
\(685\) 244.612i 0.357098i
\(686\) −8.50975 + 485.001i −0.0124049 + 0.706998i
\(687\) 0 0
\(688\) −14.1321 + 24.4776i −0.0205409 + 0.0355779i
\(689\) −601.839 347.472i −0.873497 0.504314i
\(690\) 0 0
\(691\) −791.470 + 456.956i −1.14540 + 0.661296i −0.947762 0.318979i \(-0.896660\pi\)
−0.197637 + 0.980275i \(0.563327\pi\)
\(692\) 255.572i 0.369324i
\(693\) 0 0
\(694\) 488.549 0.703961
\(695\) 564.458 + 977.670i 0.812170 + 1.40672i
\(696\) 0 0
\(697\) −110.496 + 191.385i −0.158531 + 0.274584i
\(698\) −826.219 477.018i −1.18369 0.683406i
\(699\) 0 0
\(700\) 664.500 782.580i 0.949285 1.11797i
\(701\) 194.138 0.276945 0.138472 0.990366i \(-0.455781\pi\)
0.138472 + 0.990366i \(0.455781\pi\)
\(702\) 0 0
\(703\) 11.3101i 0.0160884i
\(704\) 53.9408 + 93.4282i 0.0766205 + 0.132711i
\(705\) 0 0
\(706\) 117.054 + 67.5813i 0.165799 + 0.0957243i
\(707\) −174.524 + 957.016i −0.246852 + 1.35363i
\(708\) 0 0
\(709\) 217.583 + 376.864i 0.306886 + 0.531543i 0.977680 0.210102i \(-0.0673795\pi\)
−0.670793 + 0.741645i \(0.734046\pi\)
\(710\) 1131.49i 1.59364i
\(711\) 0 0
\(712\) 230.638i 0.323930i
\(713\) −0.00362417 + 0.00209242i −5.08299e−6 + 2.93467e-6i
\(714\) 0 0
\(715\) 812.469 1407.24i 1.13632 1.96817i
\(716\) 132.848 230.099i 0.185541 0.321367i
\(717\) 0 0
\(718\) 19.2514 + 33.3445i 0.0268126 + 0.0464408i
\(719\) 922.050i 1.28241i −0.767371 0.641203i \(-0.778436\pi\)
0.767371 0.641203i \(-0.221564\pi\)
\(720\) 0 0
\(721\) 503.089 179.785i 0.697765 0.249354i
\(722\) 239.867 + 415.462i 0.332226 + 0.575432i
\(723\) 0 0
\(724\) −161.868 93.4546i −0.223575 0.129081i
\(725\) −514.628 + 891.362i −0.709832 + 1.22946i
\(726\) 0 0
\(727\) 451.861 260.882i 0.621542 0.358847i −0.155927 0.987769i \(-0.549837\pi\)
0.777469 + 0.628921i \(0.216503\pi\)
\(728\) −226.557 + 80.9628i −0.311205 + 0.111213i
\(729\) 0 0
\(730\) 250.216 0.342762
\(731\) −123.520 + 71.3141i −0.168974 + 0.0975569i
\(732\) 0 0
\(733\) 132.926 + 76.7450i 0.181346 + 0.104700i 0.587925 0.808916i \(-0.299945\pi\)
−0.406579 + 0.913616i \(0.633278\pi\)
\(734\) −184.924 106.766i −0.251940 0.145458i
\(735\) 0 0
\(736\) −0.497853 0.862307i −0.000676431 0.00117161i
\(737\) −1218.18 −1.65289
\(738\) 0 0
\(739\) −316.707 −0.428561 −0.214280 0.976772i \(-0.568741\pi\)
−0.214280 + 0.976772i \(0.568741\pi\)
\(740\) 41.6273 24.0336i 0.0562532 0.0324778i
\(741\) 0 0
\(742\) −556.962 101.569i −0.750623 0.136886i
\(743\) 658.244 1140.11i 0.885927 1.53447i 0.0412793 0.999148i \(-0.486857\pi\)
0.844648 0.535323i \(-0.179810\pi\)
\(744\) 0 0
\(745\) 1472.59 850.200i 1.97663 1.14121i
\(746\) 230.320 0.308740
\(747\) 0 0
\(748\) 544.396i 0.727803i
\(749\) −383.201 + 451.295i −0.511616 + 0.602529i
\(750\) 0 0
\(751\) 423.985 734.364i 0.564561 0.977848i −0.432530 0.901620i \(-0.642379\pi\)
0.997090 0.0762280i \(-0.0242877\pi\)
\(752\) 159.135 + 91.8767i 0.211616 + 0.122176i
\(753\) 0 0
\(754\) 208.887 120.601i 0.277039 0.159948i
\(755\) 2355.84i 3.12031i
\(756\) 0 0
\(757\) −1170.49 −1.54622 −0.773112 0.634269i \(-0.781301\pi\)
−0.773112 + 0.634269i \(0.781301\pi\)
\(758\) −276.673 479.212i −0.365004 0.632205i
\(759\) 0 0
\(760\) −65.4420 + 113.349i −0.0861079 + 0.149143i
\(761\) 240.508 + 138.858i 0.316043 + 0.182467i 0.649627 0.760253i \(-0.274925\pi\)
−0.333585 + 0.942720i \(0.608258\pi\)
\(762\) 0 0
\(763\) 109.242 128.654i 0.143175 0.168617i
\(764\) −585.822 −0.766783
\(765\) 0 0
\(766\) 430.810i 0.562415i
\(767\) −294.471 510.038i −0.383925 0.664978i
\(768\) 0 0
\(769\) −460.984 266.149i −0.599459 0.346098i 0.169370 0.985553i \(-0.445827\pi\)
−0.768829 + 0.639455i \(0.779160\pi\)
\(770\) 237.492 1302.31i 0.308432 1.69131i
\(771\) 0 0
\(772\) 259.235 + 449.008i 0.335797 + 0.581617i
\(773\) 323.697i 0.418755i 0.977835 + 0.209377i \(0.0671437\pi\)
−0.977835 + 0.209377i \(0.932856\pi\)
\(774\) 0 0
\(775\) 1.74346i 0.00224963i
\(776\) −266.508 + 153.868i −0.343438 + 0.198284i
\(777\) 0 0
\(778\) −191.569 + 331.807i −0.246232 + 0.426487i
\(779\) −25.5456 + 44.2462i −0.0327928 + 0.0567988i
\(780\) 0 0
\(781\) 544.021 + 942.272i 0.696570 + 1.20649i
\(782\) 5.02457i 0.00642529i
\(783\) 0 0
\(784\) −151.608 + 124.222i −0.193377 + 0.158446i
\(785\) 387.894 + 671.853i 0.494133 + 0.855863i
\(786\) 0 0
\(787\) −943.069 544.481i −1.19831 0.691844i −0.238131 0.971233i \(-0.576535\pi\)
−0.960178 + 0.279389i \(0.909868\pi\)
\(788\) 336.752 583.271i 0.427350 0.740192i
\(789\) 0 0
\(790\) −247.248 + 142.749i −0.312972 + 0.180695i
\(791\) 342.694 + 958.956i 0.433241 + 1.21233i
\(792\) 0 0
\(793\) −480.930 −0.606470
\(794\) −558.438 + 322.415i −0.703323 + 0.406064i
\(795\) 0 0
\(796\) 160.205 + 92.4947i 0.201263 + 0.116199i
\(797\) −1.86876 1.07893i −0.00234475 0.00135374i 0.498827 0.866701i \(-0.333764\pi\)
−0.501172 + 0.865348i \(0.667098\pi\)
\(798\) 0 0
\(799\) 463.631 + 803.033i 0.580265 + 1.00505i
\(800\) 414.826 0.518532
\(801\) 0 0
\(802\) 605.482 0.754965
\(803\) 208.373 120.304i 0.259494 0.149819i
\(804\) 0 0
\(805\) −2.19197 + 12.0198i −0.00272294 + 0.0149314i
\(806\) −0.204287 + 0.353835i −0.000253458 + 0.000439001i
\(807\) 0 0
\(808\) −340.409 + 196.535i −0.421298 + 0.243237i
\(809\) 137.194 0.169585 0.0847924 0.996399i \(-0.472977\pi\)
0.0847924 + 0.996399i \(0.472977\pi\)
\(810\) 0 0
\(811\) 724.583i 0.893444i −0.894673 0.446722i \(-0.852591\pi\)
0.894673 0.446722i \(-0.147409\pi\)
\(812\) 127.185 149.786i 0.156632 0.184465i
\(813\) 0 0
\(814\) 23.1108 40.0290i 0.0283916 0.0491757i
\(815\) 2034.41 + 1174.57i 2.49621 + 1.44119i
\(816\) 0 0
\(817\) −28.5564 + 16.4871i −0.0349528 + 0.0201800i
\(818\) 506.370i 0.619034i
\(819\) 0 0
\(820\) 217.133 0.264797
\(821\) 557.777 + 966.098i 0.679387 + 1.17673i 0.975166 + 0.221477i \(0.0710877\pi\)
−0.295778 + 0.955257i \(0.595579\pi\)
\(822\) 0 0
\(823\) 255.274 442.148i 0.310175 0.537239i −0.668225 0.743959i \(-0.732946\pi\)
0.978400 + 0.206720i \(0.0662790\pi\)
\(824\) 186.948 + 107.934i 0.226878 + 0.130988i
\(825\) 0 0
\(826\) −365.731 310.548i −0.442774 0.375966i
\(827\) −1088.29 −1.31594 −0.657972 0.753042i \(-0.728585\pi\)
−0.657972 + 0.753042i \(0.728585\pi\)
\(828\) 0 0
\(829\) 1155.53i 1.39388i 0.717128 + 0.696942i \(0.245456\pi\)
−0.717128 + 0.696942i \(0.754544\pi\)
\(830\) 204.297 + 353.852i 0.246141 + 0.426328i
\(831\) 0 0
\(832\) −84.1887 48.6064i −0.101188 0.0584211i
\(833\) −975.979 + 160.345i −1.17164 + 0.192491i
\(834\) 0 0
\(835\) −1147.76 1987.98i −1.37457 2.38082i
\(836\) 125.859i 0.150549i
\(837\) 0 0
\(838\) 647.221i 0.772340i
\(839\) 162.598 93.8762i 0.193800 0.111891i −0.399960 0.916533i \(-0.630976\pi\)
0.593760 + 0.804642i \(0.297643\pi\)
\(840\) 0 0
\(841\) 322.000 557.721i 0.382878 0.663164i
\(842\) −4.74957 + 8.22649i −0.00564082 + 0.00977018i
\(843\) 0 0
\(844\) −198.134 343.179i −0.234756 0.406610i
\(845\) 211.601i 0.250415i
\(846\) 0 0
\(847\) −143.342 401.112i −0.169235 0.473568i
\(848\) −114.379 198.110i −0.134881 0.233621i
\(849\) 0 0
\(850\) 1812.86 + 1046.65i 2.13277 + 1.23136i
\(851\) −0.213304 + 0.369453i −0.000250651 + 0.000434139i
\(852\) 0 0
\(853\) −659.061 + 380.509i −0.772639 + 0.446083i −0.833815 0.552044i \(-0.813848\pi\)
0.0611763 + 0.998127i \(0.480515\pi\)
\(854\) −368.947 + 131.847i −0.432022 + 0.154388i
\(855\) 0 0
\(856\) −239.220 −0.279462
\(857\) 779.492 450.040i 0.909558 0.525134i 0.0292694 0.999572i \(-0.490682\pi\)
0.880289 + 0.474438i \(0.157349\pi\)
\(858\) 0 0
\(859\) 1001.95 + 578.477i 1.16642 + 0.673431i 0.952833 0.303494i \(-0.0981531\pi\)
0.213584 + 0.976925i \(0.431486\pi\)
\(860\) 121.363 + 70.0687i 0.141119 + 0.0814752i
\(861\) 0 0
\(862\) 282.394 + 489.121i 0.327603 + 0.567426i
\(863\) −512.272 −0.593594 −0.296797 0.954941i \(-0.595918\pi\)
−0.296797 + 0.954941i \(0.595918\pi\)
\(864\) 0 0
\(865\) −1267.15 −1.46492
\(866\) −694.369 + 400.894i −0.801812 + 0.462926i
\(867\) 0 0
\(868\) −0.0597150 + 0.327451i −6.87960e−5 + 0.000377247i
\(869\) −137.268 + 237.755i −0.157961 + 0.273596i
\(870\) 0 0
\(871\) 950.645 548.855i 1.09144 0.630144i
\(872\) 68.1964 0.0782069
\(873\) 0 0
\(874\) 1.16163i 0.00132909i
\(875\) −2557.32 2171.45i −2.92265 2.48166i
\(876\) 0 0
\(877\) 644.224 1115.83i 0.734577 1.27233i −0.220331 0.975425i \(-0.570714\pi\)
0.954909 0.296900i \(-0.0959528\pi\)
\(878\) −240.878 139.071i −0.274349 0.158395i
\(879\) 0 0
\(880\) 463.228 267.445i 0.526395 0.303914i
\(881\) 1247.46i 1.41596i 0.706235 + 0.707978i \(0.250392\pi\)
−0.706235 + 0.707978i \(0.749608\pi\)
\(882\) 0 0
\(883\) −936.870 −1.06101 −0.530504 0.847682i \(-0.677997\pi\)
−0.530504 + 0.847682i \(0.677997\pi\)
\(884\) −245.279 424.836i −0.277465 0.480584i
\(885\) 0 0
\(886\) 126.479 219.069i 0.142753 0.247256i
\(887\) 1251.49 + 722.546i 1.41092 + 0.814595i 0.995475 0.0950234i \(-0.0302926\pi\)
0.415445 + 0.909618i \(0.363626\pi\)
\(888\) 0 0
\(889\) 706.133 831.611i 0.794301 0.935446i
\(890\) 1143.53 1.28487
\(891\) 0 0
\(892\) 347.912i 0.390036i
\(893\) 107.187 + 185.653i 0.120030 + 0.207898i
\(894\) 0 0
\(895\) −1140.86 658.673i −1.27470 0.735948i
\(896\) −77.9110 14.2081i −0.0869543 0.0158573i
\(897\) 0 0
\(898\) −269.981 467.621i −0.300647 0.520736i
\(899\) 0.333699i 0.000371189i
\(900\) 0 0
\(901\) 1154.37i 1.28121i
\(902\) 180.823 104.398i 0.200469 0.115741i
\(903\) 0 0
\(904\) −205.738 + 356.348i −0.227586 + 0.394190i
\(905\) −463.358 + 802.560i −0.511998 + 0.886806i
\(906\) 0 0
\(907\) 20.3747 + 35.2899i 0.0224638 + 0.0389084i 0.877039 0.480420i \(-0.159516\pi\)
−0.854575 + 0.519328i \(0.826182\pi\)
\(908\) 412.328i 0.454106i
\(909\) 0 0
\(910\) 401.423 + 1123.30i 0.441124 + 1.23439i
\(911\) 96.3670 + 166.913i 0.105782 + 0.183219i 0.914057 0.405585i \(-0.132932\pi\)
−0.808276 + 0.588804i \(0.799599\pi\)
\(912\) 0 0
\(913\) 340.266 + 196.452i 0.372690 + 0.215172i
\(914\) 402.154 696.552i 0.439994 0.762092i
\(915\) 0 0
\(916\) 34.5279 19.9347i 0.0376942 0.0217628i
\(917\) −655.391 + 234.212i −0.714713 + 0.255411i
\(918\) 0 0
\(919\) 851.690 0.926757 0.463378 0.886161i \(-0.346637\pi\)
0.463378 + 0.886161i \(0.346637\pi\)
\(920\) −4.27542 + 2.46841i −0.00464719 + 0.00268306i
\(921\) 0 0
\(922\) −446.477 257.773i −0.484248 0.279581i
\(923\) −849.086 490.220i −0.919920 0.531116i
\(924\) 0 0
\(925\) −88.8653 153.919i −0.0960706 0.166399i
\(926\) −167.997 −0.181422
\(927\) 0 0
\(928\) 79.3977 0.0855579
\(929\) −1301.36 + 751.342i −1.40082 + 0.808764i −0.994477 0.104957i \(-0.966530\pi\)
−0.406343 + 0.913721i \(0.633196\pi\)
\(930\) 0 0
\(931\) −225.636 + 37.0701i −0.242359 + 0.0398175i
\(932\) 257.078 445.273i 0.275835 0.477760i
\(933\) 0 0
\(934\) 491.134 283.556i 0.525840 0.303594i
\(935\) 2699.18 2.88682
\(936\) 0 0
\(937\) 1330.62i 1.42009i −0.704158 0.710043i \(-0.748675\pi\)
0.704158 0.710043i \(-0.251325\pi\)
\(938\) 578.821 681.676i 0.617080 0.726733i
\(939\) 0 0
\(940\) 455.535 789.009i 0.484611 0.839372i
\(941\) −1089.81 629.201i −1.15814 0.668651i −0.207281 0.978282i \(-0.566461\pi\)
−0.950857 + 0.309631i \(0.899795\pi\)
\(942\) 0 0
\(943\) −1.66893 + 0.963556i −0.00176981 + 0.00102180i
\(944\) 193.865i 0.205365i
\(945\) 0 0
\(946\) 134.757 0.142449
\(947\) −671.501 1163.07i −0.709083 1.22817i −0.965198 0.261521i \(-0.915776\pi\)
0.256115 0.966646i \(-0.417557\pi\)
\(948\) 0 0
\(949\) −108.407 + 187.766i −0.114233 + 0.197857i
\(950\) 419.113 + 241.975i 0.441172 + 0.254711i
\(951\) 0 0
\(952\) −304.636 258.671i −0.319996 0.271713i
\(953\) 1593.34 1.67192 0.835961 0.548789i \(-0.184911\pi\)
0.835961 + 0.548789i \(0.184911\pi\)
\(954\) 0 0
\(955\) 2904.57i 3.04144i
\(956\) 12.3601 + 21.4084i 0.0129290 + 0.0223937i
\(957\) 0 0
\(958\) −146.624 84.6536i −0.153053 0.0883649i
\(959\) 169.873 + 30.9786i 0.177136 + 0.0323031i
\(960\) 0 0
\(961\) −480.500 832.250i −0.500000 0.866025i
\(962\) 41.6505i 0.0432957i
\(963\) 0 0
\(964\) 594.178i 0.616367i
\(965\) 2226.23 1285.32i 2.30698 1.33193i
\(966\) 0 0
\(967\) −819.205 + 1418.91i −0.847162 + 1.46733i 0.0365690 + 0.999331i \(0.488357\pi\)
−0.883731 + 0.467996i \(0.844976\pi\)
\(968\) 86.0560 149.053i 0.0889008 0.153981i
\(969\) 0 0
\(970\) 762.897 + 1321.38i 0.786492 + 1.36224i
\(971\) 1718.35i 1.76967i −0.465902 0.884836i \(-0.654270\pi\)
0.465902 0.884836i \(-0.345730\pi\)
\(972\) 0 0
\(973\) −750.439 + 268.178i −0.771263 + 0.275620i
\(974\) −403.103 698.195i −0.413863 0.716832i
\(975\) 0 0
\(976\) −137.101 79.1551i −0.140472 0.0811016i
\(977\) 179.274 310.512i 0.183495 0.317822i −0.759573 0.650422i \(-0.774592\pi\)
0.943068 + 0.332599i \(0.107926\pi\)
\(978\) 0 0
\(979\) 952.302 549.812i 0.972730 0.561606i
\(980\) 615.905 + 751.689i 0.628475 + 0.767030i
\(981\) 0 0
\(982\) 398.977 0.406290
\(983\) −924.703 + 533.877i −0.940694 + 0.543110i −0.890178 0.455613i \(-0.849420\pi\)
−0.0505165 + 0.998723i \(0.516087\pi\)
\(984\) 0 0
\(985\) −2891.92 1669.65i −2.93596 1.69508i
\(986\) 346.981 + 200.330i 0.351908 + 0.203174i
\(987\) 0 0
\(988\) −56.7059 98.2176i −0.0573947 0.0994105i
\(989\) −1.24375 −0.00125759
\(990\) 0 0
\(991\) 431.606 0.435526 0.217763 0.976002i \(-0.430124\pi\)
0.217763 + 0.976002i \(0.430124\pi\)
\(992\) −0.116474 + 0.0672461i −0.000117413 + 6.77884e-5i
\(993\) 0 0
\(994\) −785.773 143.296i −0.790516 0.144161i
\(995\) 458.599 794.317i 0.460903 0.798308i
\(996\) 0 0
\(997\) −123.674 + 71.4033i −0.124046 + 0.0716181i −0.560739 0.827993i \(-0.689483\pi\)
0.436693 + 0.899611i \(0.356150\pi\)
\(998\) 85.2244 0.0853952
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.307.16 32
3.2 odd 2 126.3.o.a.13.5 yes 32
7.6 odd 2 inner 378.3.o.a.307.9 32
9.2 odd 6 126.3.o.a.97.4 yes 32
9.4 even 3 1134.3.c.d.811.1 16
9.5 odd 6 1134.3.c.e.811.16 16
9.7 even 3 inner 378.3.o.a.181.9 32
21.20 even 2 126.3.o.a.13.4 32
63.13 odd 6 1134.3.c.d.811.8 16
63.20 even 6 126.3.o.a.97.5 yes 32
63.34 odd 6 inner 378.3.o.a.181.16 32
63.41 even 6 1134.3.c.e.811.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.4 32 21.20 even 2
126.3.o.a.13.5 yes 32 3.2 odd 2
126.3.o.a.97.4 yes 32 9.2 odd 6
126.3.o.a.97.5 yes 32 63.20 even 6
378.3.o.a.181.9 32 9.7 even 3 inner
378.3.o.a.181.16 32 63.34 odd 6 inner
378.3.o.a.307.9 32 7.6 odd 2 inner
378.3.o.a.307.16 32 1.1 even 1 trivial
1134.3.c.d.811.1 16 9.4 even 3
1134.3.c.d.811.8 16 63.13 odd 6
1134.3.c.e.811.9 16 63.41 even 6
1134.3.c.e.811.16 16 9.5 odd 6