Properties

Label 378.3.o.a.181.14
Level $378$
Weight $3$
Character 378.181
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.14
Character \(\chi\) \(=\) 378.181
Dual form 378.3.o.a.307.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(2.08306 - 1.20266i) q^{5} +(-3.78272 + 5.88991i) q^{7} -2.82843 q^{8} -3.40163i q^{10} +(6.79936 - 11.7768i) q^{11} +(11.7604 - 6.78989i) q^{13} +(4.53884 + 8.79766i) q^{14} +(-2.00000 + 3.46410i) q^{16} -19.8181i q^{17} -34.4974i q^{19} +(-4.16613 - 2.40532i) q^{20} +(-9.61574 - 16.6550i) q^{22} +(-4.33552 - 7.50935i) q^{23} +(-9.60723 + 16.6402i) q^{25} -19.2047i q^{26} +(13.9843 + 0.661961i) q^{28} +(-12.9761 + 22.4752i) q^{29} +(21.6671 - 12.5095i) q^{31} +(2.82843 + 4.89898i) q^{32} +(-24.2721 - 14.0135i) q^{34} +(-0.796113 + 16.8184i) q^{35} +39.6839 q^{37} +(-42.2505 - 24.3933i) q^{38} +(-5.89179 + 3.40163i) q^{40} +(-41.8941 + 24.1876i) q^{41} +(13.1169 - 22.7192i) q^{43} -27.1974 q^{44} -12.2627 q^{46} +(-14.5673 - 8.41045i) q^{47} +(-20.3820 - 44.5598i) q^{49} +(13.5867 + 23.5328i) q^{50} +(-23.5209 - 13.5798i) q^{52} -35.6774 q^{53} -32.7092i q^{55} +(10.6992 - 16.6592i) q^{56} +(18.3509 + 31.7848i) q^{58} +(63.9153 - 36.9015i) q^{59} +(78.5405 + 45.3454i) q^{61} -35.3823i q^{62} +8.00000 q^{64} +(16.3318 - 28.2875i) q^{65} +(-10.3681 - 17.9581i) q^{67} +(-34.3259 + 19.8181i) q^{68} +(20.0353 + 12.8674i) q^{70} +38.1972 q^{71} +12.0702i q^{73} +(28.0607 - 48.6026i) q^{74} +(-59.7512 + 34.4974i) q^{76} +(43.6444 + 84.5961i) q^{77} +(-65.4244 + 113.318i) q^{79} +9.62126i q^{80} +68.4128i q^{82} +(-27.6580 - 15.9683i) q^{83} +(-23.8343 - 41.2823i) q^{85} +(-18.5501 - 32.1298i) q^{86} +(-19.2315 + 33.3099i) q^{88} +118.790i q^{89} +(-4.49464 + 94.9521i) q^{91} +(-8.67105 + 15.0187i) q^{92} +(-20.6013 + 11.8942i) q^{94} +(-41.4885 - 71.8602i) q^{95} +(-99.4807 - 57.4352i) q^{97} +(-68.9866 - 6.54575i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) 2.08306 1.20266i 0.416613 0.240532i −0.277014 0.960866i \(-0.589345\pi\)
0.693627 + 0.720334i \(0.256012\pi\)
\(6\) 0 0
\(7\) −3.78272 + 5.88991i −0.540389 + 0.841415i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 3.40163i 0.340163i
\(11\) 6.79936 11.7768i 0.618123 1.07062i −0.371705 0.928351i \(-0.621227\pi\)
0.989828 0.142270i \(-0.0454401\pi\)
\(12\) 0 0
\(13\) 11.7604 6.78989i 0.904648 0.522299i 0.0259430 0.999663i \(-0.491741\pi\)
0.878705 + 0.477364i \(0.158408\pi\)
\(14\) 4.53884 + 8.79766i 0.324203 + 0.628405i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 19.8181i 1.16577i −0.812555 0.582884i \(-0.801924\pi\)
0.812555 0.582884i \(-0.198076\pi\)
\(18\) 0 0
\(19\) 34.4974i 1.81565i −0.419348 0.907826i \(-0.637741\pi\)
0.419348 0.907826i \(-0.362259\pi\)
\(20\) −4.16613 2.40532i −0.208306 0.120266i
\(21\) 0 0
\(22\) −9.61574 16.6550i −0.437079 0.757043i
\(23\) −4.33552 7.50935i −0.188501 0.326493i 0.756250 0.654283i \(-0.227030\pi\)
−0.944751 + 0.327790i \(0.893696\pi\)
\(24\) 0 0
\(25\) −9.60723 + 16.6402i −0.384289 + 0.665608i
\(26\) 19.2047i 0.738642i
\(27\) 0 0
\(28\) 13.9843 + 0.661961i 0.499441 + 0.0236415i
\(29\) −12.9761 + 22.4752i −0.447451 + 0.775008i −0.998219 0.0596503i \(-0.981001\pi\)
0.550768 + 0.834658i \(0.314335\pi\)
\(30\) 0 0
\(31\) 21.6671 12.5095i 0.698939 0.403533i −0.108013 0.994149i \(-0.534449\pi\)
0.806952 + 0.590617i \(0.201115\pi\)
\(32\) 2.82843 + 4.89898i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −24.2721 14.0135i −0.713884 0.412161i
\(35\) −0.796113 + 16.8184i −0.0227461 + 0.480525i
\(36\) 0 0
\(37\) 39.6839 1.07254 0.536268 0.844047i \(-0.319833\pi\)
0.536268 + 0.844047i \(0.319833\pi\)
\(38\) −42.2505 24.3933i −1.11185 0.641930i
\(39\) 0 0
\(40\) −5.89179 + 3.40163i −0.147295 + 0.0850407i
\(41\) −41.8941 + 24.1876i −1.02181 + 0.589941i −0.914627 0.404299i \(-0.867516\pi\)
−0.107180 + 0.994240i \(0.534182\pi\)
\(42\) 0 0
\(43\) 13.1169 22.7192i 0.305045 0.528353i −0.672226 0.740346i \(-0.734662\pi\)
0.977271 + 0.211992i \(0.0679952\pi\)
\(44\) −27.1974 −0.618123
\(45\) 0 0
\(46\) −12.2627 −0.266581
\(47\) −14.5673 8.41045i −0.309943 0.178946i 0.336958 0.941520i \(-0.390602\pi\)
−0.646901 + 0.762574i \(0.723935\pi\)
\(48\) 0 0
\(49\) −20.3820 44.5598i −0.415959 0.909383i
\(50\) 13.5867 + 23.5328i 0.271733 + 0.470656i
\(51\) 0 0
\(52\) −23.5209 13.5798i −0.452324 0.261150i
\(53\) −35.6774 −0.673159 −0.336579 0.941655i \(-0.609270\pi\)
−0.336579 + 0.941655i \(0.609270\pi\)
\(54\) 0 0
\(55\) 32.7092i 0.594712i
\(56\) 10.6992 16.6592i 0.191056 0.297485i
\(57\) 0 0
\(58\) 18.3509 + 31.7848i 0.316396 + 0.548013i
\(59\) 63.9153 36.9015i 1.08331 0.625449i 0.151522 0.988454i \(-0.451582\pi\)
0.931787 + 0.363005i \(0.118249\pi\)
\(60\) 0 0
\(61\) 78.5405 + 45.3454i 1.28755 + 0.743367i 0.978217 0.207587i \(-0.0665611\pi\)
0.309332 + 0.950954i \(0.399894\pi\)
\(62\) 35.3823i 0.570682i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 16.3318 28.2875i 0.251259 0.435193i
\(66\) 0 0
\(67\) −10.3681 17.9581i −0.154748 0.268031i 0.778219 0.627992i \(-0.216123\pi\)
−0.932967 + 0.359962i \(0.882790\pi\)
\(68\) −34.3259 + 19.8181i −0.504792 + 0.291442i
\(69\) 0 0
\(70\) 20.0353 + 12.8674i 0.286218 + 0.183820i
\(71\) 38.1972 0.537989 0.268995 0.963142i \(-0.413309\pi\)
0.268995 + 0.963142i \(0.413309\pi\)
\(72\) 0 0
\(73\) 12.0702i 0.165345i 0.996577 + 0.0826726i \(0.0263456\pi\)
−0.996577 + 0.0826726i \(0.973654\pi\)
\(74\) 28.0607 48.6026i 0.379199 0.656792i
\(75\) 0 0
\(76\) −59.7512 + 34.4974i −0.786200 + 0.453913i
\(77\) 43.6444 + 84.5961i 0.566810 + 1.09865i
\(78\) 0 0
\(79\) −65.4244 + 113.318i −0.828157 + 1.43441i 0.0713263 + 0.997453i \(0.477277\pi\)
−0.899483 + 0.436956i \(0.856056\pi\)
\(80\) 9.62126i 0.120266i
\(81\) 0 0
\(82\) 68.4128i 0.834302i
\(83\) −27.6580 15.9683i −0.333229 0.192390i 0.324045 0.946042i \(-0.394957\pi\)
−0.657274 + 0.753652i \(0.728290\pi\)
\(84\) 0 0
\(85\) −23.8343 41.2823i −0.280404 0.485674i
\(86\) −18.5501 32.1298i −0.215699 0.373602i
\(87\) 0 0
\(88\) −19.2315 + 33.3099i −0.218540 + 0.378522i
\(89\) 118.790i 1.33472i 0.744737 + 0.667358i \(0.232575\pi\)
−0.744737 + 0.667358i \(0.767425\pi\)
\(90\) 0 0
\(91\) −4.49464 + 94.9521i −0.0493917 + 1.04343i
\(92\) −8.67105 + 15.0187i −0.0942505 + 0.163247i
\(93\) 0 0
\(94\) −20.6013 + 11.8942i −0.219163 + 0.126534i
\(95\) −41.4885 71.8602i −0.436721 0.756423i
\(96\) 0 0
\(97\) −99.4807 57.4352i −1.02557 0.592116i −0.109861 0.993947i \(-0.535040\pi\)
−0.915714 + 0.401831i \(0.868374\pi\)
\(98\) −68.9866 6.54575i −0.703945 0.0667934i
\(99\) 0 0
\(100\) 38.4289 0.384289
\(101\) 149.663 + 86.4081i 1.48181 + 0.855526i 0.999787 0.0206305i \(-0.00656734\pi\)
0.482027 + 0.876156i \(0.339901\pi\)
\(102\) 0 0
\(103\) 40.4444 23.3506i 0.392664 0.226705i −0.290650 0.956830i \(-0.593871\pi\)
0.683314 + 0.730125i \(0.260538\pi\)
\(104\) −33.2635 + 19.2047i −0.319842 + 0.184661i
\(105\) 0 0
\(106\) −25.2277 + 43.6957i −0.237998 + 0.412224i
\(107\) 69.5084 0.649611 0.324806 0.945781i \(-0.394701\pi\)
0.324806 + 0.945781i \(0.394701\pi\)
\(108\) 0 0
\(109\) 135.887 1.24667 0.623334 0.781956i \(-0.285778\pi\)
0.623334 + 0.781956i \(0.285778\pi\)
\(110\) −40.0604 23.1289i −0.364186 0.210263i
\(111\) 0 0
\(112\) −12.8378 24.8836i −0.114623 0.222175i
\(113\) 2.05580 + 3.56076i 0.0181930 + 0.0315111i 0.874979 0.484162i \(-0.160875\pi\)
−0.856786 + 0.515673i \(0.827542\pi\)
\(114\) 0 0
\(115\) −18.0623 10.4283i −0.157064 0.0906809i
\(116\) 51.9043 0.447451
\(117\) 0 0
\(118\) 104.373i 0.884519i
\(119\) 116.727 + 74.9662i 0.980895 + 0.629968i
\(120\) 0 0
\(121\) −31.9625 55.3606i −0.264153 0.457526i
\(122\) 111.073 64.1280i 0.910435 0.525640i
\(123\) 0 0
\(124\) −43.3342 25.0190i −0.349470 0.201766i
\(125\) 106.350i 0.850798i
\(126\) 0 0
\(127\) 12.0291 0.0947171 0.0473585 0.998878i \(-0.484920\pi\)
0.0473585 + 0.998878i \(0.484920\pi\)
\(128\) 5.65685 9.79796i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −23.0967 40.0046i −0.177667 0.307728i
\(131\) 72.6514 41.9453i 0.554591 0.320193i −0.196381 0.980528i \(-0.562919\pi\)
0.750971 + 0.660335i \(0.229586\pi\)
\(132\) 0 0
\(133\) 203.186 + 130.494i 1.52772 + 0.981158i
\(134\) −29.3254 −0.218846
\(135\) 0 0
\(136\) 56.0539i 0.412161i
\(137\) −99.9694 + 173.152i −0.729703 + 1.26388i 0.227305 + 0.973824i \(0.427008\pi\)
−0.957009 + 0.290060i \(0.906325\pi\)
\(138\) 0 0
\(139\) −127.666 + 73.7083i −0.918464 + 0.530275i −0.883145 0.469101i \(-0.844578\pi\)
−0.0353192 + 0.999376i \(0.511245\pi\)
\(140\) 29.9264 15.4395i 0.213760 0.110282i
\(141\) 0 0
\(142\) 27.0095 46.7819i 0.190208 0.329450i
\(143\) 184.667i 1.29138i
\(144\) 0 0
\(145\) 62.4231i 0.430504i
\(146\) 14.7829 + 8.53492i 0.101253 + 0.0584584i
\(147\) 0 0
\(148\) −39.6839 68.7345i −0.268134 0.464422i
\(149\) −105.785 183.225i −0.709967 1.22970i −0.964869 0.262731i \(-0.915377\pi\)
0.254902 0.966967i \(-0.417957\pi\)
\(150\) 0 0
\(151\) −9.48372 + 16.4263i −0.0628061 + 0.108783i −0.895719 0.444621i \(-0.853338\pi\)
0.832913 + 0.553405i \(0.186672\pi\)
\(152\) 97.5733i 0.641930i
\(153\) 0 0
\(154\) 134.470 + 6.36525i 0.873181 + 0.0413328i
\(155\) 30.0893 52.1163i 0.194125 0.336234i
\(156\) 0 0
\(157\) −6.98156 + 4.03081i −0.0444685 + 0.0256739i −0.522069 0.852903i \(-0.674840\pi\)
0.477601 + 0.878577i \(0.341506\pi\)
\(158\) 92.5240 + 160.256i 0.585595 + 1.01428i
\(159\) 0 0
\(160\) 11.7836 + 6.80326i 0.0736474 + 0.0425204i
\(161\) 60.6294 + 2.86995i 0.376580 + 0.0178258i
\(162\) 0 0
\(163\) 49.1196 0.301347 0.150673 0.988584i \(-0.451856\pi\)
0.150673 + 0.988584i \(0.451856\pi\)
\(164\) 83.7882 + 48.3751i 0.510904 + 0.294970i
\(165\) 0 0
\(166\) −39.1143 + 22.5826i −0.235628 + 0.136040i
\(167\) −168.024 + 97.0088i −1.00613 + 0.580891i −0.910057 0.414483i \(-0.863962\pi\)
−0.0960758 + 0.995374i \(0.530629\pi\)
\(168\) 0 0
\(169\) 7.70514 13.3457i 0.0455926 0.0789686i
\(170\) −67.4137 −0.396551
\(171\) 0 0
\(172\) −52.4677 −0.305045
\(173\) 65.2186 + 37.6540i 0.376986 + 0.217653i 0.676506 0.736437i \(-0.263493\pi\)
−0.299520 + 0.954090i \(0.596827\pi\)
\(174\) 0 0
\(175\) −61.6678 119.531i −0.352387 0.683034i
\(176\) 27.1974 + 47.1073i 0.154531 + 0.267655i
\(177\) 0 0
\(178\) 145.487 + 83.9970i 0.817343 + 0.471893i
\(179\) 97.4357 0.544334 0.272167 0.962250i \(-0.412260\pi\)
0.272167 + 0.962250i \(0.412260\pi\)
\(180\) 0 0
\(181\) 83.1541i 0.459415i −0.973260 0.229707i \(-0.926223\pi\)
0.973260 0.229707i \(-0.0737769\pi\)
\(182\) 113.114 + 72.6461i 0.621505 + 0.399154i
\(183\) 0 0
\(184\) 12.2627 + 21.2396i 0.0666452 + 0.115433i
\(185\) 82.6640 47.7261i 0.446833 0.257979i
\(186\) 0 0
\(187\) −233.394 134.750i −1.24810 0.720588i
\(188\) 33.6418i 0.178946i
\(189\) 0 0
\(190\) −117.347 −0.617617
\(191\) −109.890 + 190.335i −0.575341 + 0.996520i 0.420664 + 0.907217i \(0.361797\pi\)
−0.996005 + 0.0893029i \(0.971536\pi\)
\(192\) 0 0
\(193\) 57.6084 + 99.7807i 0.298489 + 0.516998i 0.975790 0.218707i \(-0.0701840\pi\)
−0.677301 + 0.735706i \(0.736851\pi\)
\(194\) −140.687 + 81.2257i −0.725190 + 0.418689i
\(195\) 0 0
\(196\) −56.7978 + 79.8625i −0.289785 + 0.407462i
\(197\) −44.1864 −0.224297 −0.112148 0.993691i \(-0.535773\pi\)
−0.112148 + 0.993691i \(0.535773\pi\)
\(198\) 0 0
\(199\) 14.5566i 0.0731488i 0.999331 + 0.0365744i \(0.0116446\pi\)
−0.999331 + 0.0365744i \(0.988355\pi\)
\(200\) 27.1733 47.0656i 0.135867 0.235328i
\(201\) 0 0
\(202\) 211.656 122.200i 1.04780 0.604948i
\(203\) −83.2921 161.445i −0.410306 0.795298i
\(204\) 0 0
\(205\) −58.1787 + 100.769i −0.283799 + 0.491554i
\(206\) 66.0455i 0.320609i
\(207\) 0 0
\(208\) 54.3191i 0.261150i
\(209\) −406.270 234.560i −1.94387 1.12230i
\(210\) 0 0
\(211\) 175.108 + 303.296i 0.829896 + 1.43742i 0.898119 + 0.439752i \(0.144934\pi\)
−0.0682235 + 0.997670i \(0.521733\pi\)
\(212\) 35.6774 + 61.7951i 0.168290 + 0.291486i
\(213\) 0 0
\(214\) 49.1499 85.1300i 0.229672 0.397804i
\(215\) 63.1007i 0.293492i
\(216\) 0 0
\(217\) −8.28082 + 174.937i −0.0381604 + 0.806163i
\(218\) 96.0864 166.427i 0.440763 0.763425i
\(219\) 0 0
\(220\) −56.6540 + 32.7092i −0.257518 + 0.148678i
\(221\) −134.562 233.069i −0.608880 1.05461i
\(222\) 0 0
\(223\) −277.642 160.297i −1.24503 0.718820i −0.274918 0.961468i \(-0.588651\pi\)
−0.970114 + 0.242648i \(0.921984\pi\)
\(224\) −39.5537 1.87231i −0.176579 0.00835852i
\(225\) 0 0
\(226\) 5.81469 0.0257287
\(227\) −242.920 140.250i −1.07013 0.617841i −0.141915 0.989879i \(-0.545326\pi\)
−0.928218 + 0.372037i \(0.878659\pi\)
\(228\) 0 0
\(229\) −31.1962 + 18.0111i −0.136228 + 0.0786512i −0.566565 0.824017i \(-0.691728\pi\)
0.430337 + 0.902668i \(0.358395\pi\)
\(230\) −25.5440 + 14.7478i −0.111061 + 0.0641211i
\(231\) 0 0
\(232\) 36.7019 63.5695i 0.158198 0.274007i
\(233\) 418.773 1.79731 0.898654 0.438658i \(-0.144546\pi\)
0.898654 + 0.438658i \(0.144546\pi\)
\(234\) 0 0
\(235\) −40.4596 −0.172168
\(236\) −127.831 73.8030i −0.541655 0.312725i
\(237\) 0 0
\(238\) 174.353 89.9511i 0.732574 0.377946i
\(239\) 25.6058 + 44.3506i 0.107137 + 0.185567i 0.914609 0.404338i \(-0.132498\pi\)
−0.807472 + 0.589906i \(0.799165\pi\)
\(240\) 0 0
\(241\) 227.784 + 131.511i 0.945161 + 0.545689i 0.891574 0.452874i \(-0.149601\pi\)
0.0535868 + 0.998563i \(0.482935\pi\)
\(242\) −90.4035 −0.373568
\(243\) 0 0
\(244\) 181.381i 0.743367i
\(245\) −96.0472 68.3083i −0.392029 0.278809i
\(246\) 0 0
\(247\) −234.233 405.704i −0.948313 1.64253i
\(248\) −61.2839 + 35.3823i −0.247112 + 0.142670i
\(249\) 0 0
\(250\) 130.251 + 75.2006i 0.521005 + 0.300802i
\(251\) 244.001i 0.972115i −0.873927 0.486058i \(-0.838435\pi\)
0.873927 0.486058i \(-0.161565\pi\)
\(252\) 0 0
\(253\) −117.915 −0.466067
\(254\) 8.50584 14.7325i 0.0334875 0.0580021i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −185.090 + 106.862i −0.720193 + 0.415804i −0.814824 0.579709i \(-0.803166\pi\)
0.0946307 + 0.995512i \(0.469833\pi\)
\(258\) 0 0
\(259\) −150.113 + 233.734i −0.579587 + 0.902449i
\(260\) −65.3273 −0.251259
\(261\) 0 0
\(262\) 118.639i 0.452821i
\(263\) −77.6298 + 134.459i −0.295170 + 0.511250i −0.975025 0.222097i \(-0.928710\pi\)
0.679854 + 0.733347i \(0.262043\pi\)
\(264\) 0 0
\(265\) −74.3184 + 42.9077i −0.280447 + 0.161916i
\(266\) 303.496 156.578i 1.14096 0.588640i
\(267\) 0 0
\(268\) −20.7362 + 35.9161i −0.0773739 + 0.134015i
\(269\) 128.394i 0.477302i 0.971105 + 0.238651i \(0.0767052\pi\)
−0.971105 + 0.238651i \(0.923295\pi\)
\(270\) 0 0
\(271\) 520.915i 1.92219i −0.276210 0.961097i \(-0.589079\pi\)
0.276210 0.961097i \(-0.410921\pi\)
\(272\) 68.6518 + 39.6361i 0.252396 + 0.145721i
\(273\) 0 0
\(274\) 141.378 + 244.874i 0.515978 + 0.893700i
\(275\) 130.646 + 226.285i 0.475076 + 0.822856i
\(276\) 0 0
\(277\) 191.963 332.489i 0.693007 1.20032i −0.277841 0.960627i \(-0.589619\pi\)
0.970848 0.239696i \(-0.0770477\pi\)
\(278\) 208.478i 0.749923i
\(279\) 0 0
\(280\) 2.25175 47.5695i 0.00804195 0.169891i
\(281\) 45.4795 78.7728i 0.161849 0.280330i −0.773683 0.633573i \(-0.781588\pi\)
0.935532 + 0.353243i \(0.114921\pi\)
\(282\) 0 0
\(283\) 86.2442 49.7931i 0.304750 0.175947i −0.339825 0.940489i \(-0.610368\pi\)
0.644575 + 0.764541i \(0.277034\pi\)
\(284\) −38.1972 66.1595i −0.134497 0.232956i
\(285\) 0 0
\(286\) −226.170 130.580i −0.790806 0.456572i
\(287\) 16.0112 338.247i 0.0557883 1.17856i
\(288\) 0 0
\(289\) −103.755 −0.359015
\(290\) 76.4524 + 44.1398i 0.263629 + 0.152206i
\(291\) 0 0
\(292\) 20.9062 12.0702i 0.0715966 0.0413363i
\(293\) −493.237 + 284.771i −1.68340 + 0.971914i −0.724033 + 0.689765i \(0.757714\pi\)
−0.959371 + 0.282149i \(0.908953\pi\)
\(294\) 0 0
\(295\) 88.7597 153.736i 0.300880 0.521140i
\(296\) −112.243 −0.379199
\(297\) 0 0
\(298\) −299.205 −1.00404
\(299\) −101.975 58.8754i −0.341054 0.196908i
\(300\) 0 0
\(301\) 84.1962 + 163.198i 0.279722 + 0.542186i
\(302\) 13.4120 + 23.2303i 0.0444106 + 0.0769215i
\(303\) 0 0
\(304\) 119.502 + 68.9947i 0.393100 + 0.226956i
\(305\) 218.140 0.715213
\(306\) 0 0
\(307\) 235.830i 0.768176i −0.923296 0.384088i \(-0.874516\pi\)
0.923296 0.384088i \(-0.125484\pi\)
\(308\) 102.880 160.190i 0.334027 0.520098i
\(309\) 0 0
\(310\) −42.5527 73.7035i −0.137267 0.237753i
\(311\) 525.110 303.172i 1.68846 0.974831i 0.732756 0.680492i \(-0.238234\pi\)
0.955701 0.294339i \(-0.0950996\pi\)
\(312\) 0 0
\(313\) −21.4543 12.3867i −0.0685442 0.0395740i 0.465336 0.885134i \(-0.345933\pi\)
−0.533880 + 0.845560i \(0.679267\pi\)
\(314\) 11.4008i 0.0363084i
\(315\) 0 0
\(316\) 261.697 0.828157
\(317\) −219.173 + 379.619i −0.691398 + 1.19754i 0.279982 + 0.960005i \(0.409672\pi\)
−0.971380 + 0.237531i \(0.923662\pi\)
\(318\) 0 0
\(319\) 176.458 + 305.634i 0.553160 + 0.958101i
\(320\) 16.6645 9.62126i 0.0520766 0.0300664i
\(321\) 0 0
\(322\) 46.3864 72.2262i 0.144057 0.224305i
\(323\) −683.671 −2.11663
\(324\) 0 0
\(325\) 260.928i 0.802855i
\(326\) 34.7328 60.1589i 0.106542 0.184537i
\(327\) 0 0
\(328\) 118.494 68.4128i 0.361263 0.208576i
\(329\) 104.641 53.9858i 0.318058 0.164091i
\(330\) 0 0
\(331\) 301.074 521.476i 0.909590 1.57546i 0.0949566 0.995481i \(-0.469729\pi\)
0.814634 0.579976i \(-0.196938\pi\)
\(332\) 63.8733i 0.192390i
\(333\) 0 0
\(334\) 274.382i 0.821504i
\(335\) −43.1948 24.9385i −0.128940 0.0744434i
\(336\) 0 0
\(337\) −58.8515 101.934i −0.174634 0.302474i 0.765401 0.643554i \(-0.222541\pi\)
−0.940034 + 0.341080i \(0.889207\pi\)
\(338\) −10.8967 18.8737i −0.0322388 0.0558393i
\(339\) 0 0
\(340\) −47.6687 + 82.5646i −0.140202 + 0.242837i
\(341\) 340.227i 0.997732i
\(342\) 0 0
\(343\) 339.552 + 48.5091i 0.989949 + 0.141426i
\(344\) −37.1003 + 64.2596i −0.107850 + 0.186801i
\(345\) 0 0
\(346\) 92.2331 53.2508i 0.266570 0.153904i
\(347\) 136.895 + 237.110i 0.394511 + 0.683313i 0.993039 0.117789i \(-0.0375807\pi\)
−0.598528 + 0.801102i \(0.704247\pi\)
\(348\) 0 0
\(349\) −184.692 106.632i −0.529203 0.305535i 0.211489 0.977380i \(-0.432169\pi\)
−0.740692 + 0.671845i \(0.765502\pi\)
\(350\) −190.001 8.99385i −0.542859 0.0256967i
\(351\) 0 0
\(352\) 76.9259 0.218540
\(353\) 497.182 + 287.048i 1.40845 + 0.813168i 0.995239 0.0974679i \(-0.0310743\pi\)
0.413210 + 0.910636i \(0.364408\pi\)
\(354\) 0 0
\(355\) 79.5673 45.9382i 0.224133 0.129403i
\(356\) 205.750 118.790i 0.577949 0.333679i
\(357\) 0 0
\(358\) 68.8975 119.334i 0.192451 0.333335i
\(359\) −34.8283 −0.0970149 −0.0485074 0.998823i \(-0.515446\pi\)
−0.0485074 + 0.998823i \(0.515446\pi\)
\(360\) 0 0
\(361\) −829.069 −2.29659
\(362\) −101.843 58.7988i −0.281333 0.162428i
\(363\) 0 0
\(364\) 168.957 87.1672i 0.464166 0.239470i
\(365\) 14.5163 + 25.1430i 0.0397708 + 0.0688850i
\(366\) 0 0
\(367\) 12.0980 + 6.98480i 0.0329646 + 0.0190321i 0.516392 0.856352i \(-0.327275\pi\)
−0.483427 + 0.875385i \(0.660608\pi\)
\(368\) 34.6842 0.0942505
\(369\) 0 0
\(370\) 134.990i 0.364837i
\(371\) 134.958 210.137i 0.363768 0.566406i
\(372\) 0 0
\(373\) 285.616 + 494.702i 0.765727 + 1.32628i 0.939861 + 0.341556i \(0.110954\pi\)
−0.174135 + 0.984722i \(0.555713\pi\)
\(374\) −330.069 + 190.565i −0.882537 + 0.509533i
\(375\) 0 0
\(376\) 41.2026 + 23.7883i 0.109581 + 0.0632669i
\(377\) 352.424i 0.934813i
\(378\) 0 0
\(379\) −387.493 −1.02241 −0.511205 0.859459i \(-0.670801\pi\)
−0.511205 + 0.859459i \(0.670801\pi\)
\(380\) −82.9770 + 143.720i −0.218361 + 0.378212i
\(381\) 0 0
\(382\) 155.408 + 269.175i 0.406827 + 0.704646i
\(383\) 499.981 288.664i 1.30543 0.753693i 0.324104 0.946022i \(-0.394937\pi\)
0.981331 + 0.192329i \(0.0616039\pi\)
\(384\) 0 0
\(385\) 192.654 + 123.730i 0.500400 + 0.321376i
\(386\) 162.941 0.422127
\(387\) 0 0
\(388\) 229.741i 0.592116i
\(389\) 166.634 288.618i 0.428364 0.741948i −0.568364 0.822777i \(-0.692423\pi\)
0.996728 + 0.0808291i \(0.0257568\pi\)
\(390\) 0 0
\(391\) −148.821 + 85.9217i −0.380616 + 0.219748i
\(392\) 57.6490 + 126.034i 0.147064 + 0.321515i
\(393\) 0 0
\(394\) −31.2445 + 54.1171i −0.0793009 + 0.137353i
\(395\) 314.732i 0.796791i
\(396\) 0 0
\(397\) 279.218i 0.703321i −0.936128 0.351661i \(-0.885617\pi\)
0.936128 0.351661i \(-0.114383\pi\)
\(398\) 17.8281 + 10.2931i 0.0447943 + 0.0258620i
\(399\) 0 0
\(400\) −38.4289 66.5608i −0.0960723 0.166402i
\(401\) −110.631 191.619i −0.275888 0.477852i 0.694471 0.719521i \(-0.255639\pi\)
−0.970359 + 0.241669i \(0.922305\pi\)
\(402\) 0 0
\(403\) 169.876 294.235i 0.421530 0.730111i
\(404\) 345.632i 0.855526i
\(405\) 0 0
\(406\) −256.626 12.1476i −0.632084 0.0299202i
\(407\) 269.825 467.350i 0.662960 1.14828i
\(408\) 0 0
\(409\) 261.910 151.214i 0.640366 0.369715i −0.144390 0.989521i \(-0.546122\pi\)
0.784755 + 0.619806i \(0.212789\pi\)
\(410\) 82.2771 + 142.508i 0.200676 + 0.347581i
\(411\) 0 0
\(412\) −80.8889 46.7012i −0.196332 0.113352i
\(413\) −24.4274 + 516.043i −0.0591461 + 1.24950i
\(414\) 0 0
\(415\) −76.8178 −0.185103
\(416\) 66.5270 + 38.4094i 0.159921 + 0.0923303i
\(417\) 0 0
\(418\) −574.552 + 331.718i −1.37453 + 0.793583i
\(419\) −437.785 + 252.755i −1.04483 + 0.603234i −0.921198 0.389093i \(-0.872788\pi\)
−0.123634 + 0.992328i \(0.539455\pi\)
\(420\) 0 0
\(421\) 22.8490 39.5757i 0.0542733 0.0940040i −0.837612 0.546265i \(-0.816049\pi\)
0.891886 + 0.452261i \(0.149382\pi\)
\(422\) 495.280 1.17365
\(423\) 0 0
\(424\) 100.911 0.237998
\(425\) 329.777 + 190.397i 0.775945 + 0.447992i
\(426\) 0 0
\(427\) −564.177 + 291.067i −1.32126 + 0.681656i
\(428\) −69.5084 120.392i −0.162403 0.281290i
\(429\) 0 0
\(430\) −77.2822 44.6189i −0.179726 0.103765i
\(431\) −252.544 −0.585948 −0.292974 0.956120i \(-0.594645\pi\)
−0.292974 + 0.956120i \(0.594645\pi\)
\(432\) 0 0
\(433\) 830.225i 1.91738i 0.284454 + 0.958690i \(0.408188\pi\)
−0.284454 + 0.958690i \(0.591812\pi\)
\(434\) 208.398 + 133.841i 0.480180 + 0.308390i
\(435\) 0 0
\(436\) −135.887 235.363i −0.311667 0.539823i
\(437\) −259.053 + 149.564i −0.592798 + 0.342252i
\(438\) 0 0
\(439\) −193.141 111.510i −0.439956 0.254009i 0.263623 0.964626i \(-0.415083\pi\)
−0.703579 + 0.710617i \(0.748416\pi\)
\(440\) 92.5155i 0.210263i
\(441\) 0 0
\(442\) −380.600 −0.861086
\(443\) 102.606 177.719i 0.231616 0.401171i −0.726668 0.686989i \(-0.758932\pi\)
0.958284 + 0.285818i \(0.0922654\pi\)
\(444\) 0 0
\(445\) 142.863 + 247.447i 0.321041 + 0.556060i
\(446\) −392.645 + 226.694i −0.880371 + 0.508282i
\(447\) 0 0
\(448\) −30.2618 + 47.1193i −0.0675486 + 0.105177i
\(449\) 441.157 0.982532 0.491266 0.871010i \(-0.336534\pi\)
0.491266 + 0.871010i \(0.336534\pi\)
\(450\) 0 0
\(451\) 657.839i 1.45862i
\(452\) 4.11161 7.12151i 0.00909648 0.0157556i
\(453\) 0 0
\(454\) −343.541 + 198.343i −0.756698 + 0.436880i
\(455\) 104.832 + 203.197i 0.230401 + 0.446586i
\(456\) 0 0
\(457\) −337.214 + 584.071i −0.737886 + 1.27806i 0.215560 + 0.976491i \(0.430842\pi\)
−0.953446 + 0.301565i \(0.902491\pi\)
\(458\) 50.9432i 0.111230i
\(459\) 0 0
\(460\) 41.7132i 0.0906809i
\(461\) 82.1484 + 47.4284i 0.178196 + 0.102882i 0.586445 0.809989i \(-0.300527\pi\)
−0.408249 + 0.912871i \(0.633860\pi\)
\(462\) 0 0
\(463\) 195.201 + 338.099i 0.421601 + 0.730235i 0.996096 0.0882733i \(-0.0281349\pi\)
−0.574495 + 0.818508i \(0.694802\pi\)
\(464\) −51.9043 89.9009i −0.111863 0.193752i
\(465\) 0 0
\(466\) 296.117 512.890i 0.635445 1.10062i
\(467\) 135.589i 0.290341i −0.989407 0.145170i \(-0.953627\pi\)
0.989407 0.145170i \(-0.0463731\pi\)
\(468\) 0 0
\(469\) 144.991 + 6.86328i 0.309149 + 0.0146339i
\(470\) −28.6092 + 49.5527i −0.0608707 + 0.105431i
\(471\) 0 0
\(472\) −180.780 + 104.373i −0.383008 + 0.221130i
\(473\) −178.373 308.952i −0.377111 0.653175i
\(474\) 0 0
\(475\) 574.043 + 331.424i 1.20851 + 0.697735i
\(476\) 13.1188 277.143i 0.0275605 0.582232i
\(477\) 0 0
\(478\) 72.4242 0.151515
\(479\) 176.072 + 101.655i 0.367583 + 0.212224i 0.672402 0.740186i \(-0.265263\pi\)
−0.304819 + 0.952410i \(0.598596\pi\)
\(480\) 0 0
\(481\) 466.699 269.449i 0.970269 0.560185i
\(482\) 322.135 185.985i 0.668330 0.385860i
\(483\) 0 0
\(484\) −63.9249 + 110.721i −0.132076 + 0.228763i
\(485\) −276.300 −0.569690
\(486\) 0 0
\(487\) −237.902 −0.488504 −0.244252 0.969712i \(-0.578542\pi\)
−0.244252 + 0.969712i \(0.578542\pi\)
\(488\) −222.146 128.256i −0.455217 0.262820i
\(489\) 0 0
\(490\) −151.576 + 69.3321i −0.309338 + 0.141494i
\(491\) 283.247 + 490.597i 0.576877 + 0.999180i 0.995835 + 0.0911744i \(0.0290621\pi\)
−0.418958 + 0.908006i \(0.637605\pi\)
\(492\) 0 0
\(493\) 445.415 + 257.161i 0.903480 + 0.521624i
\(494\) −662.512 −1.34112
\(495\) 0 0
\(496\) 100.076i 0.201766i
\(497\) −144.490 + 224.978i −0.290723 + 0.452672i
\(498\) 0 0
\(499\) −118.082 204.523i −0.236636 0.409866i 0.723111 0.690732i \(-0.242712\pi\)
−0.959747 + 0.280866i \(0.909378\pi\)
\(500\) 184.203 106.350i 0.368406 0.212699i
\(501\) 0 0
\(502\) −298.839 172.535i −0.595297 0.343695i
\(503\) 711.182i 1.41388i 0.707273 + 0.706941i \(0.249925\pi\)
−0.707273 + 0.706941i \(0.750075\pi\)
\(504\) 0 0
\(505\) 415.677 0.823124
\(506\) −83.3785 + 144.416i −0.164780 + 0.285407i
\(507\) 0 0
\(508\) −12.0291 20.8350i −0.0236793 0.0410137i
\(509\) 454.930 262.654i 0.893772 0.516019i 0.0185973 0.999827i \(-0.494080\pi\)
0.875174 + 0.483808i \(0.160747\pi\)
\(510\) 0 0
\(511\) −71.0924 45.6582i −0.139124 0.0893508i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 302.250i 0.588035i
\(515\) 56.1656 97.2816i 0.109059 0.188896i
\(516\) 0 0
\(517\) −198.097 + 114.371i −0.383166 + 0.221221i
\(518\) 180.119 + 349.125i 0.347720 + 0.673987i
\(519\) 0 0
\(520\) −46.1934 + 80.0092i −0.0888334 + 0.153864i
\(521\) 58.8034i 0.112866i 0.998406 + 0.0564332i \(0.0179728\pi\)
−0.998406 + 0.0564332i \(0.982027\pi\)
\(522\) 0 0
\(523\) 49.8806i 0.0953740i 0.998862 + 0.0476870i \(0.0151850\pi\)
−0.998862 + 0.0476870i \(0.984815\pi\)
\(524\) −145.303 83.8906i −0.277295 0.160097i
\(525\) 0 0
\(526\) 109.785 + 190.153i 0.208717 + 0.361509i
\(527\) −247.914 429.400i −0.470426 0.814801i
\(528\) 0 0
\(529\) 226.906 393.014i 0.428935 0.742937i
\(530\) 121.361i 0.228984i
\(531\) 0 0
\(532\) 22.8359 482.423i 0.0429247 0.906810i
\(533\) −328.462 + 568.912i −0.616251 + 1.06738i
\(534\) 0 0
\(535\) 144.790 83.5948i 0.270636 0.156252i
\(536\) 29.3254 + 50.7931i 0.0547116 + 0.0947632i
\(537\) 0 0
\(538\) 157.250 + 90.7884i 0.292287 + 0.168752i
\(539\) −663.357 62.9423i −1.23072 0.116776i
\(540\) 0 0
\(541\) 943.506 1.74400 0.872002 0.489503i \(-0.162822\pi\)
0.872002 + 0.489503i \(0.162822\pi\)
\(542\) −637.988 368.342i −1.17710 0.679598i
\(543\) 0 0
\(544\) 97.0883 56.0539i 0.178471 0.103040i
\(545\) 283.061 163.425i 0.519377 0.299863i
\(546\) 0 0
\(547\) −115.302 + 199.709i −0.210790 + 0.365100i −0.951962 0.306216i \(-0.900937\pi\)
0.741172 + 0.671315i \(0.234270\pi\)
\(548\) 399.877 0.729703
\(549\) 0 0
\(550\) 369.523 0.671859
\(551\) 775.336 + 447.641i 1.40714 + 0.812415i
\(552\) 0 0
\(553\) −419.952 813.995i −0.759407 1.47196i
\(554\) −271.476 470.211i −0.490030 0.848756i
\(555\) 0 0
\(556\) 255.333 + 147.417i 0.459232 + 0.265138i
\(557\) 484.872 0.870506 0.435253 0.900308i \(-0.356659\pi\)
0.435253 + 0.900308i \(0.356659\pi\)
\(558\) 0 0
\(559\) 356.250i 0.637298i
\(560\) −56.6683 36.3946i −0.101193 0.0649903i
\(561\) 0 0
\(562\) −64.3178 111.402i −0.114444 0.198224i
\(563\) −565.382 + 326.423i −1.00423 + 0.579793i −0.909497 0.415710i \(-0.863533\pi\)
−0.0947335 + 0.995503i \(0.530200\pi\)
\(564\) 0 0
\(565\) 8.56474 + 4.94486i 0.0151588 + 0.00875196i
\(566\) 140.836i 0.248827i
\(567\) 0 0
\(568\) −108.038 −0.190208
\(569\) 203.792 352.977i 0.358157 0.620347i −0.629496 0.777004i \(-0.716738\pi\)
0.987653 + 0.156657i \(0.0500718\pi\)
\(570\) 0 0
\(571\) 174.770 + 302.710i 0.306076 + 0.530140i 0.977500 0.210934i \(-0.0676504\pi\)
−0.671424 + 0.741073i \(0.734317\pi\)
\(572\) −319.853 + 184.667i −0.559184 + 0.322845i
\(573\) 0 0
\(574\) −402.945 258.787i −0.701995 0.450848i
\(575\) 166.609 0.289756
\(576\) 0 0
\(577\) 695.947i 1.20615i −0.797686 0.603073i \(-0.793943\pi\)
0.797686 0.603073i \(-0.206057\pi\)
\(578\) −73.3662 + 127.074i −0.126931 + 0.219851i
\(579\) 0 0
\(580\) 108.120 62.4231i 0.186414 0.107626i
\(581\) 198.674 102.499i 0.341953 0.176418i
\(582\) 0 0
\(583\) −242.583 + 420.167i −0.416095 + 0.720698i
\(584\) 34.1397i 0.0584584i
\(585\) 0 0
\(586\) 805.453i 1.37449i
\(587\) −45.3007 26.1544i −0.0771732 0.0445560i 0.460917 0.887443i \(-0.347521\pi\)
−0.538090 + 0.842887i \(0.680854\pi\)
\(588\) 0 0
\(589\) −431.546 747.459i −0.732675 1.26903i
\(590\) −125.525 217.416i −0.212755 0.368502i
\(591\) 0 0
\(592\) −79.3677 + 137.469i −0.134067 + 0.232211i
\(593\) 21.8727i 0.0368848i −0.999830 0.0184424i \(-0.994129\pi\)
0.999830 0.0184424i \(-0.00587072\pi\)
\(594\) 0 0
\(595\) 333.308 + 15.7774i 0.560181 + 0.0265166i
\(596\) −211.570 + 366.450i −0.354983 + 0.614849i
\(597\) 0 0
\(598\) −144.215 + 83.2624i −0.241162 + 0.139235i
\(599\) 350.512 + 607.105i 0.585162 + 1.01353i 0.994855 + 0.101307i \(0.0323025\pi\)
−0.409693 + 0.912224i \(0.634364\pi\)
\(600\) 0 0
\(601\) 34.2071 + 19.7495i 0.0569170 + 0.0328611i 0.528188 0.849127i \(-0.322871\pi\)
−0.471271 + 0.881988i \(0.656205\pi\)
\(602\) 259.411 + 12.2795i 0.430916 + 0.0203978i
\(603\) 0 0
\(604\) 37.9349 0.0628061
\(605\) −133.160 76.8798i −0.220099 0.127074i
\(606\) 0 0
\(607\) 323.783 186.936i 0.533415 0.307968i −0.208991 0.977918i \(-0.567018\pi\)
0.742406 + 0.669950i \(0.233685\pi\)
\(608\) 169.002 97.5733i 0.277964 0.160482i
\(609\) 0 0
\(610\) 154.248 267.166i 0.252866 0.437976i
\(611\) −228.424 −0.373853
\(612\) 0 0
\(613\) −672.296 −1.09673 −0.548366 0.836239i \(-0.684750\pi\)
−0.548366 + 0.836239i \(0.684750\pi\)
\(614\) −288.832 166.757i −0.470410 0.271591i
\(615\) 0 0
\(616\) −123.445 239.274i −0.200398 0.388431i
\(617\) 231.200 + 400.450i 0.374716 + 0.649028i 0.990285 0.139056i \(-0.0444067\pi\)
−0.615568 + 0.788084i \(0.711073\pi\)
\(618\) 0 0
\(619\) −692.305 399.702i −1.11842 0.645723i −0.177426 0.984134i \(-0.556777\pi\)
−0.940998 + 0.338411i \(0.890110\pi\)
\(620\) −120.357 −0.194125
\(621\) 0 0
\(622\) 857.501i 1.37862i
\(623\) −699.660 449.348i −1.12305 0.721266i
\(624\) 0 0
\(625\) −112.278 194.472i −0.179646 0.311155i
\(626\) −30.3410 + 17.5174i −0.0484680 + 0.0279830i
\(627\) 0 0
\(628\) 13.9631 + 8.06161i 0.0222343 + 0.0128370i
\(629\) 786.457i 1.25033i
\(630\) 0 0
\(631\) −410.154 −0.650006 −0.325003 0.945713i \(-0.605365\pi\)
−0.325003 + 0.945713i \(0.605365\pi\)
\(632\) 185.048 320.513i 0.292798 0.507140i
\(633\) 0 0
\(634\) 309.958 + 536.863i 0.488892 + 0.846786i
\(635\) 25.0573 14.4668i 0.0394603 0.0227824i
\(636\) 0 0
\(637\) −542.257 385.651i −0.851267 0.605417i
\(638\) 499.098 0.782286
\(639\) 0 0
\(640\) 27.2130i 0.0425204i
\(641\) −543.226 + 940.895i −0.847466 + 1.46785i 0.0359962 + 0.999352i \(0.488540\pi\)
−0.883462 + 0.468502i \(0.844794\pi\)
\(642\) 0 0
\(643\) 612.173 353.438i 0.952057 0.549671i 0.0583379 0.998297i \(-0.481420\pi\)
0.893719 + 0.448626i \(0.148087\pi\)
\(644\) −55.6585 107.883i −0.0864263 0.167521i
\(645\) 0 0
\(646\) −483.428 + 837.322i −0.748341 + 1.29616i
\(647\) 422.816i 0.653502i −0.945110 0.326751i \(-0.894046\pi\)
0.945110 0.326751i \(-0.105954\pi\)
\(648\) 0 0
\(649\) 1003.63i 1.54642i
\(650\) 319.570 + 184.504i 0.491647 + 0.283852i
\(651\) 0 0
\(652\) −49.1196 85.0776i −0.0753367 0.130487i
\(653\) −394.425 683.164i −0.604019 1.04619i −0.992206 0.124611i \(-0.960232\pi\)
0.388186 0.921581i \(-0.373102\pi\)
\(654\) 0 0
\(655\) 100.892 174.749i 0.154033 0.266793i
\(656\) 193.501i 0.294970i
\(657\) 0 0
\(658\) 7.87348 166.332i 0.0119658 0.252784i
\(659\) 548.183 949.480i 0.831840 1.44079i −0.0647375 0.997902i \(-0.520621\pi\)
0.896578 0.442887i \(-0.146046\pi\)
\(660\) 0 0
\(661\) 213.700 123.380i 0.323298 0.186656i −0.329563 0.944133i \(-0.606902\pi\)
0.652862 + 0.757477i \(0.273568\pi\)
\(662\) −425.784 737.479i −0.643178 1.11402i
\(663\) 0 0
\(664\) 78.2286 + 45.1653i 0.117814 + 0.0680200i
\(665\) 580.190 + 27.4638i 0.872466 + 0.0412989i
\(666\) 0 0
\(667\) 225.032 0.337380
\(668\) 336.048 + 194.018i 0.503066 + 0.290446i
\(669\) 0 0
\(670\) −61.0867 + 35.2684i −0.0911742 + 0.0526394i
\(671\) 1068.05 616.639i 1.59173 0.918985i
\(672\) 0 0
\(673\) 155.614 269.532i 0.231225 0.400493i −0.726944 0.686697i \(-0.759060\pi\)
0.958169 + 0.286204i \(0.0923935\pi\)
\(674\) −166.457 −0.246969
\(675\) 0 0
\(676\) −30.8206 −0.0455926
\(677\) −467.683 270.017i −0.690817 0.398843i 0.113101 0.993583i \(-0.463922\pi\)
−0.803918 + 0.594740i \(0.797255\pi\)
\(678\) 0 0
\(679\) 714.596 368.671i 1.05242 0.542961i
\(680\) 67.4137 + 116.764i 0.0991378 + 0.171712i
\(681\) 0 0
\(682\) −416.691 240.577i −0.610984 0.352752i
\(683\) 694.411 1.01671 0.508353 0.861149i \(-0.330254\pi\)
0.508353 + 0.861149i \(0.330254\pi\)
\(684\) 0 0
\(685\) 480.916i 0.702067i
\(686\) 299.511 381.564i 0.436605 0.556216i
\(687\) 0 0
\(688\) 52.4677 + 90.8767i 0.0762612 + 0.132088i
\(689\) −419.582 + 242.246i −0.608972 + 0.351590i
\(690\) 0 0
\(691\) 803.725 + 464.031i 1.16313 + 0.671535i 0.952053 0.305933i \(-0.0989685\pi\)
0.211080 + 0.977469i \(0.432302\pi\)
\(692\) 150.616i 0.217653i
\(693\) 0 0
\(694\) 387.198 0.557923
\(695\) −177.292 + 307.078i −0.255096 + 0.441839i
\(696\) 0 0
\(697\) 479.351 + 830.260i 0.687734 + 1.19119i
\(698\) −261.194 + 150.800i −0.374203 + 0.216046i
\(699\) 0 0
\(700\) −145.366 + 226.343i −0.207666 + 0.323347i
\(701\) −717.659 −1.02376 −0.511882 0.859056i \(-0.671052\pi\)
−0.511882 + 0.859056i \(0.671052\pi\)
\(702\) 0 0
\(703\) 1368.99i 1.94735i
\(704\) 54.3948 94.2146i 0.0772654 0.133828i
\(705\) 0 0
\(706\) 703.122 405.948i 0.995923 0.574997i
\(707\) −1075.07 + 554.645i −1.52061 + 0.784504i
\(708\) 0 0
\(709\) −273.064 + 472.960i −0.385139 + 0.667081i −0.991789 0.127889i \(-0.959180\pi\)
0.606649 + 0.794970i \(0.292513\pi\)
\(710\) 129.933i 0.183004i
\(711\) 0 0
\(712\) 335.988i 0.471893i
\(713\) −187.877 108.471i −0.263502 0.152133i
\(714\) 0 0
\(715\) −222.092 384.674i −0.310618 0.538006i
\(716\) −97.4357 168.764i −0.136083 0.235703i
\(717\) 0 0
\(718\) −24.6274 + 42.6558i −0.0342999 + 0.0594092i
\(719\) 23.4875i 0.0326669i 0.999867 + 0.0163335i \(0.00519934\pi\)
−0.999867 + 0.0163335i \(0.994801\pi\)
\(720\) 0 0
\(721\) −15.4572 + 326.543i −0.0214385 + 0.452903i
\(722\) −586.240 + 1015.40i −0.811967 + 1.40637i
\(723\) 0 0
\(724\) −144.027 + 83.1541i −0.198932 + 0.114854i
\(725\) −249.328 431.849i −0.343901 0.595654i
\(726\) 0 0
\(727\) 656.448 + 379.000i 0.902955 + 0.521321i 0.878158 0.478371i \(-0.158773\pi\)
0.0247971 + 0.999693i \(0.492106\pi\)
\(728\) 12.7128 268.565i 0.0174626 0.368908i
\(729\) 0 0
\(730\) 41.0584 0.0562443
\(731\) −450.250 259.952i −0.615937 0.355612i
\(732\) 0 0
\(733\) −436.380 + 251.944i −0.595334 + 0.343716i −0.767204 0.641404i \(-0.778352\pi\)
0.171870 + 0.985120i \(0.445019\pi\)
\(734\) 17.1092 9.87800i 0.0233095 0.0134578i
\(735\) 0 0
\(736\) 24.5254 42.4793i 0.0333226 0.0577164i
\(737\) −281.986 −0.382613
\(738\) 0 0
\(739\) −735.218 −0.994882 −0.497441 0.867498i \(-0.665727\pi\)
−0.497441 + 0.867498i \(0.665727\pi\)
\(740\) −165.328 95.4522i −0.223416 0.128989i
\(741\) 0 0
\(742\) −161.934 313.878i −0.218240 0.423016i
\(743\) −121.895 211.129i −0.164058 0.284157i 0.772262 0.635304i \(-0.219125\pi\)
−0.936320 + 0.351147i \(0.885792\pi\)
\(744\) 0 0
\(745\) −440.714 254.446i −0.591562 0.341539i
\(746\) 807.844 1.08290
\(747\) 0 0
\(748\) 539.000i 0.720588i
\(749\) −262.931 + 409.398i −0.351043 + 0.546593i
\(750\) 0 0
\(751\) −69.2575 119.958i −0.0922204 0.159730i 0.816225 0.577735i \(-0.196063\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(752\) 58.2693 33.6418i 0.0774858 0.0447364i
\(753\) 0 0
\(754\) 431.630 + 249.202i 0.572454 + 0.330506i
\(755\) 45.6227i 0.0604274i
\(756\) 0 0
\(757\) 448.741 0.592788 0.296394 0.955066i \(-0.404216\pi\)
0.296394 + 0.955066i \(0.404216\pi\)
\(758\) −273.999 + 474.581i −0.361477 + 0.626096i
\(759\) 0 0
\(760\) 117.347 + 203.251i 0.154404 + 0.267436i
\(761\) 334.945 193.380i 0.440137 0.254113i −0.263519 0.964654i \(-0.584883\pi\)
0.703656 + 0.710541i \(0.251550\pi\)
\(762\) 0 0
\(763\) −514.022 + 800.360i −0.673685 + 1.04896i
\(764\) 439.560 0.575341
\(765\) 0 0
\(766\) 816.466i 1.06588i
\(767\) 501.114 867.955i 0.653343 1.13162i
\(768\) 0 0
\(769\) −531.659 + 306.953i −0.691364 + 0.399159i −0.804123 0.594463i \(-0.797365\pi\)
0.112759 + 0.993622i \(0.464031\pi\)
\(770\) 287.764 148.462i 0.373720 0.192808i
\(771\) 0 0
\(772\) 115.217 199.561i 0.149245 0.258499i
\(773\) 244.996i 0.316942i −0.987364 0.158471i \(-0.949344\pi\)
0.987364 0.158471i \(-0.0506564\pi\)
\(774\) 0 0
\(775\) 480.727i 0.620293i
\(776\) 281.374 + 162.451i 0.362595 + 0.209344i
\(777\) 0 0
\(778\) −235.655 408.167i −0.302899 0.524637i
\(779\) 834.407 + 1445.24i 1.07113 + 1.85525i
\(780\) 0 0
\(781\) 259.717 449.842i 0.332544 0.575982i
\(782\) 243.023i 0.310771i
\(783\) 0 0
\(784\) 195.124 + 18.5142i 0.248882 + 0.0236150i
\(785\) −9.69536 + 16.7929i −0.0123508 + 0.0213922i
\(786\) 0 0
\(787\) −1224.89 + 707.189i −1.55640 + 0.898589i −0.558805 + 0.829299i \(0.688740\pi\)
−0.997597 + 0.0692898i \(0.977927\pi\)
\(788\) 44.1864 + 76.5332i 0.0560742 + 0.0971233i
\(789\) 0 0
\(790\) 385.467 + 222.549i 0.487933 + 0.281708i
\(791\) −28.7491 1.36086i −0.0363452 0.00172043i
\(792\) 0 0
\(793\) 1231.56 1.55304
\(794\) −341.971 197.437i −0.430694 0.248662i
\(795\) 0 0
\(796\) 25.2128 14.5566i 0.0316743 0.0182872i
\(797\) 10.1025 5.83266i 0.0126756 0.00731827i −0.493649 0.869661i \(-0.664337\pi\)
0.506324 + 0.862343i \(0.331004\pi\)
\(798\) 0 0
\(799\) −166.679 + 288.696i −0.208609 + 0.361322i
\(800\) −108.693 −0.135867
\(801\) 0 0
\(802\) −312.912 −0.390164
\(803\) 142.149 + 82.0696i 0.177022 + 0.102204i
\(804\) 0 0
\(805\) 129.747 66.9382i 0.161176 0.0831530i
\(806\) −240.242 416.111i −0.298066 0.516266i
\(807\) 0 0
\(808\) −423.312 244.399i −0.523900 0.302474i
\(809\) −315.185 −0.389599 −0.194799 0.980843i \(-0.562406\pi\)
−0.194799 + 0.980843i \(0.562406\pi\)
\(810\) 0 0
\(811\) 1499.13i 1.84849i 0.381800 + 0.924245i \(0.375304\pi\)
−0.381800 + 0.924245i \(0.624696\pi\)
\(812\) −196.340 + 305.712i −0.241798 + 0.376492i
\(813\) 0 0
\(814\) −381.590 660.933i −0.468783 0.811957i
\(815\) 102.319 59.0740i 0.125545 0.0724834i
\(816\) 0 0
\(817\) −783.752 452.500i −0.959305 0.553855i
\(818\) 427.696i 0.522856i
\(819\) 0 0
\(820\) 232.715 0.283799
\(821\) 638.518 1105.95i 0.777732 1.34707i −0.155515 0.987834i \(-0.549704\pi\)
0.933246 0.359237i \(-0.116963\pi\)
\(822\) 0 0
\(823\) −456.846 791.280i −0.555098 0.961458i −0.997896 0.0648368i \(-0.979347\pi\)
0.442798 0.896622i \(-0.353986\pi\)
\(824\) −114.394 + 66.0455i −0.138828 + 0.0801523i
\(825\) 0 0
\(826\) 614.748 + 394.815i 0.744247 + 0.477984i
\(827\) −1239.04 −1.49823 −0.749116 0.662438i \(-0.769522\pi\)
−0.749116 + 0.662438i \(0.769522\pi\)
\(828\) 0 0
\(829\) 555.123i 0.669629i −0.942284 0.334815i \(-0.891326\pi\)
0.942284 0.334815i \(-0.108674\pi\)
\(830\) −54.3184 + 94.0822i −0.0654438 + 0.113352i
\(831\) 0 0
\(832\) 94.0834 54.3191i 0.113081 0.0652874i
\(833\) −883.088 + 403.932i −1.06013 + 0.484912i
\(834\) 0 0
\(835\) −233.337 + 404.151i −0.279445 + 0.484013i
\(836\) 938.240i 1.12230i
\(837\) 0 0
\(838\) 714.900i 0.853102i
\(839\) 955.955 + 551.921i 1.13940 + 0.657832i 0.946281 0.323344i \(-0.104807\pi\)
0.193117 + 0.981176i \(0.438140\pi\)
\(840\) 0 0
\(841\) 83.7427 + 145.047i 0.0995752 + 0.172469i
\(842\) −32.3134 55.9685i −0.0383770 0.0664709i
\(843\) 0 0
\(844\) 350.216 606.592i 0.414948 0.718711i
\(845\) 37.0666i 0.0438658i
\(846\) 0 0
\(847\) 446.974 + 21.1579i 0.527714 + 0.0249798i
\(848\) 71.3548 123.590i 0.0841449 0.145743i
\(849\) 0 0
\(850\) 466.375 269.262i 0.548676 0.316778i
\(851\) −172.050 298.000i −0.202174 0.350176i
\(852\) 0 0
\(853\) −38.6408 22.3093i −0.0452999 0.0261539i 0.477179 0.878806i \(-0.341659\pi\)
−0.522479 + 0.852652i \(0.674993\pi\)
\(854\) −42.4503 + 896.788i −0.0497076 + 1.05010i
\(855\) 0 0
\(856\) −196.599 −0.229672
\(857\) −680.850 393.089i −0.794458 0.458680i 0.0470717 0.998892i \(-0.485011\pi\)
−0.841530 + 0.540211i \(0.818344\pi\)
\(858\) 0 0
\(859\) −286.832 + 165.602i −0.333914 + 0.192785i −0.657577 0.753387i \(-0.728419\pi\)
0.323664 + 0.946172i \(0.395085\pi\)
\(860\) −109.294 + 63.1007i −0.127086 + 0.0733729i
\(861\) 0 0
\(862\) −178.575 + 309.301i −0.207164 + 0.358818i
\(863\) −183.153 −0.212228 −0.106114 0.994354i \(-0.533841\pi\)
−0.106114 + 0.994354i \(0.533841\pi\)
\(864\) 0 0
\(865\) 181.139 0.209410
\(866\) 1016.81 + 587.058i 1.17415 + 0.677896i
\(867\) 0 0
\(868\) 311.281 160.595i 0.358619 0.185017i
\(869\) 889.687 + 1540.98i 1.02381 + 1.77328i
\(870\) 0 0
\(871\) −243.867 140.796i −0.279985 0.161649i
\(872\) −384.346 −0.440763
\(873\) 0 0
\(874\) 423.031i 0.484018i
\(875\) −626.390 402.291i −0.715874 0.459762i
\(876\) 0 0
\(877\) −560.581 970.954i −0.639203 1.10713i −0.985608 0.169047i \(-0.945931\pi\)
0.346405 0.938085i \(-0.387402\pi\)
\(878\) −273.142 + 157.699i −0.311096 + 0.179611i
\(879\) 0 0
\(880\) 113.308 + 65.4184i 0.128759 + 0.0743391i
\(881\) 1389.25i 1.57690i −0.615098 0.788450i \(-0.710884\pi\)
0.615098 0.788450i \(-0.289116\pi\)
\(882\) 0 0
\(883\) 1358.53 1.53854 0.769268 0.638926i \(-0.220621\pi\)
0.769268 + 0.638926i \(0.220621\pi\)
\(884\) −269.125 + 466.138i −0.304440 + 0.527305i
\(885\) 0 0
\(886\) −145.107 251.332i −0.163777 0.283671i
\(887\) −908.326 + 524.422i −1.02404 + 0.591231i −0.915272 0.402836i \(-0.868025\pi\)
−0.108770 + 0.994067i \(0.534691\pi\)
\(888\) 0 0
\(889\) −45.5026 + 70.8501i −0.0511841 + 0.0796964i
\(890\) 404.078 0.454021
\(891\) 0 0
\(892\) 641.187i 0.718820i
\(893\) −290.138 + 502.535i −0.324903 + 0.562749i
\(894\) 0 0
\(895\) 202.965 117.182i 0.226776 0.130929i
\(896\) 36.3108 + 70.3813i 0.0405254 + 0.0785506i
\(897\) 0 0
\(898\) 311.945 540.305i 0.347378 0.601676i
\(899\) 649.298i 0.722245i
\(900\) 0 0
\(901\) 707.057i 0.784747i
\(902\) 805.686 + 465.163i 0.893221 + 0.515702i
\(903\) 0 0
\(904\) −5.81469 10.0713i −0.00643218 0.0111409i
\(905\) −100.006 173.215i −0.110504 0.191398i
\(906\) 0 0
\(907\) −325.502 + 563.785i −0.358877 + 0.621593i −0.987774 0.155896i \(-0.950174\pi\)
0.628896 + 0.777489i \(0.283507\pi\)
\(908\) 561.000i 0.617841i
\(909\) 0 0
\(910\) 322.992 + 15.2891i 0.354936 + 0.0168012i
\(911\) 371.140 642.834i 0.407399 0.705636i −0.587198 0.809443i \(-0.699769\pi\)
0.994597 + 0.103807i \(0.0331025\pi\)
\(912\) 0 0
\(913\) −376.113 + 217.149i −0.411953 + 0.237841i
\(914\) 476.892 + 826.002i 0.521764 + 0.903722i
\(915\) 0 0
\(916\) 62.3924 + 36.0223i 0.0681140 + 0.0393256i
\(917\) −27.7662 + 586.577i −0.0302793 + 0.639670i
\(918\) 0 0
\(919\) 630.519 0.686093 0.343046 0.939319i \(-0.388541\pi\)
0.343046 + 0.939319i \(0.388541\pi\)
\(920\) 51.0880 + 29.4957i 0.0555305 + 0.0320605i
\(921\) 0 0
\(922\) 116.175 67.0739i 0.126004 0.0727483i
\(923\) 449.216 259.355i 0.486691 0.280991i
\(924\) 0 0
\(925\) −381.252 + 660.348i −0.412164 + 0.713890i
\(926\) 552.113 0.596234
\(927\) 0 0
\(928\) −146.808 −0.158198
\(929\) −164.909 95.2100i −0.177512 0.102487i 0.408611 0.912709i \(-0.366013\pi\)
−0.586123 + 0.810222i \(0.699347\pi\)
\(930\) 0 0
\(931\) −1537.20 + 703.126i −1.65112 + 0.755237i
\(932\) −418.773 725.336i −0.449327 0.778257i
\(933\) 0 0
\(934\) −166.062 95.8760i −0.177797 0.102651i
\(935\) −648.233 −0.693297
\(936\) 0 0
\(937\) 173.230i 0.184877i 0.995718 + 0.0924384i \(0.0294661\pi\)
−0.995718 + 0.0924384i \(0.970534\pi\)
\(938\) 110.930 172.724i 0.118262 0.184141i
\(939\) 0 0
\(940\) 40.4596 + 70.0780i 0.0430421 + 0.0745511i
\(941\) 1132.98 654.124i 1.20401 0.695137i 0.242568 0.970134i \(-0.422010\pi\)
0.961445 + 0.274997i \(0.0886770\pi\)
\(942\) 0 0
\(943\) 363.266 + 209.732i 0.385223 + 0.222409i
\(944\) 295.212i 0.312725i
\(945\) 0 0
\(946\) −504.516 −0.533315
\(947\) −101.101 + 175.112i −0.106759 + 0.184912i −0.914456 0.404686i \(-0.867381\pi\)
0.807696 + 0.589599i \(0.200714\pi\)
\(948\) 0 0
\(949\) 81.9553 + 141.951i 0.0863597 + 0.149579i
\(950\) 811.820 468.705i 0.854547 0.493373i
\(951\) 0 0
\(952\) −330.152 212.037i −0.346799 0.222727i
\(953\) 123.695 0.129796 0.0648978 0.997892i \(-0.479328\pi\)
0.0648978 + 0.997892i \(0.479328\pi\)
\(954\) 0 0
\(955\) 528.641i 0.553550i
\(956\) 51.2117 88.7012i 0.0535687 0.0927837i
\(957\) 0 0
\(958\) 249.004 143.762i 0.259920 0.150065i
\(959\) −641.693 1243.80i −0.669127 1.29697i
\(960\) 0 0
\(961\) −167.524 + 290.160i −0.174322 + 0.301935i
\(962\) 762.117i 0.792221i
\(963\) 0 0
\(964\) 526.044i 0.545689i
\(965\) 240.004 + 138.566i 0.248709 + 0.143592i
\(966\) 0 0
\(967\) 640.089 + 1108.67i 0.661933 + 1.14650i 0.980107 + 0.198469i \(0.0635971\pi\)
−0.318174 + 0.948032i \(0.603070\pi\)
\(968\) 90.4035 + 156.584i 0.0933921 + 0.161760i
\(969\) 0 0
\(970\) −195.373 + 338.396i −0.201416 + 0.348862i
\(971\) 1011.08i 1.04127i 0.853778 + 0.520637i \(0.174305\pi\)
−0.853778 + 0.520637i \(0.825695\pi\)
\(972\) 0 0
\(973\) 48.7920 1030.76i 0.0501460 1.05936i
\(974\) −168.222 + 291.369i −0.172712 + 0.299147i
\(975\) 0 0
\(976\) −314.162 + 181.381i −0.321887 + 0.185842i
\(977\) −359.962 623.473i −0.368436 0.638150i 0.620885 0.783902i \(-0.286773\pi\)
−0.989321 + 0.145751i \(0.953440\pi\)
\(978\) 0 0
\(979\) 1398.97 + 807.693i 1.42897 + 0.825019i
\(980\) −22.2662 + 234.667i −0.0227206 + 0.239456i
\(981\) 0 0
\(982\) 801.142 0.815827
\(983\) −203.077 117.247i −0.206589 0.119274i 0.393136 0.919480i \(-0.371390\pi\)
−0.599725 + 0.800206i \(0.704724\pi\)
\(984\) 0 0
\(985\) −92.0432 + 53.1412i −0.0934449 + 0.0539504i
\(986\) 629.913 363.680i 0.638857 0.368844i
\(987\) 0 0
\(988\) −468.467 + 811.408i −0.474156 + 0.821263i
\(989\) −227.475 −0.230005
\(990\) 0 0
\(991\) 57.3158 0.0578363 0.0289181 0.999582i \(-0.490794\pi\)
0.0289181 + 0.999582i \(0.490794\pi\)
\(992\) 122.568 + 70.7645i 0.123556 + 0.0713352i
\(993\) 0 0
\(994\) 173.371 + 336.046i 0.174418 + 0.338075i
\(995\) 17.5066 + 30.3223i 0.0175946 + 0.0304747i
\(996\) 0 0
\(997\) −763.810 440.986i −0.766108 0.442313i 0.0653764 0.997861i \(-0.479175\pi\)
−0.831484 + 0.555548i \(0.812509\pi\)
\(998\) −333.985 −0.334654
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.181.14 32
3.2 odd 2 126.3.o.a.97.7 yes 32
7.6 odd 2 inner 378.3.o.a.181.11 32
9.2 odd 6 1134.3.c.e.811.11 16
9.4 even 3 inner 378.3.o.a.307.11 32
9.5 odd 6 126.3.o.a.13.2 32
9.7 even 3 1134.3.c.d.811.6 16
21.20 even 2 126.3.o.a.97.2 yes 32
63.13 odd 6 inner 378.3.o.a.307.14 32
63.20 even 6 1134.3.c.e.811.14 16
63.34 odd 6 1134.3.c.d.811.3 16
63.41 even 6 126.3.o.a.13.7 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.2 32 9.5 odd 6
126.3.o.a.13.7 yes 32 63.41 even 6
126.3.o.a.97.2 yes 32 21.20 even 2
126.3.o.a.97.7 yes 32 3.2 odd 2
378.3.o.a.181.11 32 7.6 odd 2 inner
378.3.o.a.181.14 32 1.1 even 1 trivial
378.3.o.a.307.11 32 9.4 even 3 inner
378.3.o.a.307.14 32 63.13 odd 6 inner
1134.3.c.d.811.3 16 63.34 odd 6
1134.3.c.d.811.6 16 9.7 even 3
1134.3.c.e.811.11 16 9.2 odd 6
1134.3.c.e.811.14 16 63.20 even 6