Properties

Label 378.3.o.a.181.11
Level $378$
Weight $3$
Character 378.181
Analytic conductor $10.300$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(181,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.181"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 181.11
Character \(\chi\) \(=\) 378.181
Dual form 378.3.o.a.307.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(-2.08306 + 1.20266i) q^{5} +(-3.20945 + 6.22089i) q^{7} -2.82843 q^{8} +3.40163i q^{10} +(6.79936 - 11.7768i) q^{11} +(-11.7604 + 6.78989i) q^{13} +(5.34958 + 8.32959i) q^{14} +(-2.00000 + 3.46410i) q^{16} +19.8181i q^{17} +34.4974i q^{19} +(4.16613 + 2.40532i) q^{20} +(-9.61574 - 16.6550i) q^{22} +(-4.33552 - 7.50935i) q^{23} +(-9.60723 + 16.6402i) q^{25} +19.2047i q^{26} +(13.9843 - 0.661961i) q^{28} +(-12.9761 + 22.4752i) q^{29} +(-21.6671 + 12.5095i) q^{31} +(2.82843 + 4.89898i) q^{32} +(24.2721 + 14.0135i) q^{34} +(-0.796113 - 16.8184i) q^{35} +39.6839 q^{37} +(42.2505 + 24.3933i) q^{38} +(5.89179 - 3.40163i) q^{40} +(41.8941 - 24.1876i) q^{41} +(13.1169 - 22.7192i) q^{43} -27.1974 q^{44} -12.2627 q^{46} +(14.5673 + 8.41045i) q^{47} +(-28.3989 - 39.9312i) q^{49} +(13.5867 + 23.5328i) q^{50} +(23.5209 + 13.5798i) q^{52} -35.6774 q^{53} +32.7092i q^{55} +(9.07769 - 17.5953i) q^{56} +(18.3509 + 31.7848i) q^{58} +(-63.9153 + 36.9015i) q^{59} +(-78.5405 - 45.3454i) q^{61} +35.3823i q^{62} +8.00000 q^{64} +(16.3318 - 28.2875i) q^{65} +(-10.3681 - 17.9581i) q^{67} +(34.3259 - 19.8181i) q^{68} +(-21.1612 - 10.9174i) q^{70} +38.1972 q^{71} -12.0702i q^{73} +(28.0607 - 48.6026i) q^{74} +(59.7512 - 34.4974i) q^{76} +(51.4402 + 80.0951i) q^{77} +(-65.4244 + 113.318i) q^{79} -9.62126i q^{80} -68.4128i q^{82} +(27.6580 + 15.9683i) q^{83} +(-23.8343 - 41.2823i) q^{85} +(-18.5501 - 32.1298i) q^{86} +(-19.2315 + 33.3099i) q^{88} -118.790i q^{89} +(-4.49464 - 94.9521i) q^{91} +(-8.67105 + 15.0187i) q^{92} +(20.6013 - 11.8942i) q^{94} +(-41.4885 - 71.8602i) q^{95} +(99.4807 + 57.4352i) q^{97} +(-68.9866 + 6.54575i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 12 q^{11} + 12 q^{14} - 64 q^{16} - 12 q^{23} + 80 q^{25} + 8 q^{28} + 48 q^{29} - 348 q^{35} - 88 q^{37} + 32 q^{43} - 48 q^{44} + 48 q^{46} + 50 q^{49} - 48 q^{50} + 864 q^{53}+ \cdots - 624 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.353553 0.612372i
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.250000 0.433013i
\(5\) −2.08306 + 1.20266i −0.416613 + 0.240532i −0.693627 0.720334i \(-0.743988\pi\)
0.277014 + 0.960866i \(0.410655\pi\)
\(6\) 0 0
\(7\) −3.20945 + 6.22089i −0.458493 + 0.888698i
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 3.40163i 0.340163i
\(11\) 6.79936 11.7768i 0.618123 1.07062i −0.371705 0.928351i \(-0.621227\pi\)
0.989828 0.142270i \(-0.0454401\pi\)
\(12\) 0 0
\(13\) −11.7604 + 6.78989i −0.904648 + 0.522299i −0.878705 0.477364i \(-0.841592\pi\)
−0.0259430 + 0.999663i \(0.508259\pi\)
\(14\) 5.34958 + 8.32959i 0.382113 + 0.594970i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 19.8181i 1.16577i 0.812555 + 0.582884i \(0.198076\pi\)
−0.812555 + 0.582884i \(0.801924\pi\)
\(18\) 0 0
\(19\) 34.4974i 1.81565i 0.419348 + 0.907826i \(0.362259\pi\)
−0.419348 + 0.907826i \(0.637741\pi\)
\(20\) 4.16613 + 2.40532i 0.208306 + 0.120266i
\(21\) 0 0
\(22\) −9.61574 16.6550i −0.437079 0.757043i
\(23\) −4.33552 7.50935i −0.188501 0.326493i 0.756250 0.654283i \(-0.227030\pi\)
−0.944751 + 0.327790i \(0.893696\pi\)
\(24\) 0 0
\(25\) −9.60723 + 16.6402i −0.384289 + 0.665608i
\(26\) 19.2047i 0.738642i
\(27\) 0 0
\(28\) 13.9843 0.661961i 0.499441 0.0236415i
\(29\) −12.9761 + 22.4752i −0.447451 + 0.775008i −0.998219 0.0596503i \(-0.981001\pi\)
0.550768 + 0.834658i \(0.314335\pi\)
\(30\) 0 0
\(31\) −21.6671 + 12.5095i −0.698939 + 0.403533i −0.806952 0.590617i \(-0.798885\pi\)
0.108013 + 0.994149i \(0.465551\pi\)
\(32\) 2.82843 + 4.89898i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 24.2721 + 14.0135i 0.713884 + 0.412161i
\(35\) −0.796113 16.8184i −0.0227461 0.480525i
\(36\) 0 0
\(37\) 39.6839 1.07254 0.536268 0.844047i \(-0.319833\pi\)
0.536268 + 0.844047i \(0.319833\pi\)
\(38\) 42.2505 + 24.3933i 1.11185 + 0.641930i
\(39\) 0 0
\(40\) 5.89179 3.40163i 0.147295 0.0850407i
\(41\) 41.8941 24.1876i 1.02181 0.589941i 0.107180 0.994240i \(-0.465818\pi\)
0.914627 + 0.404299i \(0.132484\pi\)
\(42\) 0 0
\(43\) 13.1169 22.7192i 0.305045 0.528353i −0.672226 0.740346i \(-0.734662\pi\)
0.977271 + 0.211992i \(0.0679952\pi\)
\(44\) −27.1974 −0.618123
\(45\) 0 0
\(46\) −12.2627 −0.266581
\(47\) 14.5673 + 8.41045i 0.309943 + 0.178946i 0.646901 0.762574i \(-0.276065\pi\)
−0.336958 + 0.941520i \(0.609398\pi\)
\(48\) 0 0
\(49\) −28.3989 39.9312i −0.579569 0.814923i
\(50\) 13.5867 + 23.5328i 0.271733 + 0.470656i
\(51\) 0 0
\(52\) 23.5209 + 13.5798i 0.452324 + 0.261150i
\(53\) −35.6774 −0.673159 −0.336579 0.941655i \(-0.609270\pi\)
−0.336579 + 0.941655i \(0.609270\pi\)
\(54\) 0 0
\(55\) 32.7092i 0.594712i
\(56\) 9.07769 17.5953i 0.162102 0.314202i
\(57\) 0 0
\(58\) 18.3509 + 31.7848i 0.316396 + 0.548013i
\(59\) −63.9153 + 36.9015i −1.08331 + 0.625449i −0.931787 0.363005i \(-0.881751\pi\)
−0.151522 + 0.988454i \(0.548418\pi\)
\(60\) 0 0
\(61\) −78.5405 45.3454i −1.28755 0.743367i −0.309332 0.950954i \(-0.600106\pi\)
−0.978217 + 0.207587i \(0.933439\pi\)
\(62\) 35.3823i 0.570682i
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 16.3318 28.2875i 0.251259 0.435193i
\(66\) 0 0
\(67\) −10.3681 17.9581i −0.154748 0.268031i 0.778219 0.627992i \(-0.216123\pi\)
−0.932967 + 0.359962i \(0.882790\pi\)
\(68\) 34.3259 19.8181i 0.504792 0.291442i
\(69\) 0 0
\(70\) −21.1612 10.9174i −0.302302 0.155962i
\(71\) 38.1972 0.537989 0.268995 0.963142i \(-0.413309\pi\)
0.268995 + 0.963142i \(0.413309\pi\)
\(72\) 0 0
\(73\) 12.0702i 0.165345i −0.996577 0.0826726i \(-0.973654\pi\)
0.996577 0.0826726i \(-0.0263456\pi\)
\(74\) 28.0607 48.6026i 0.379199 0.656792i
\(75\) 0 0
\(76\) 59.7512 34.4974i 0.786200 0.453913i
\(77\) 51.4402 + 80.0951i 0.668054 + 1.04020i
\(78\) 0 0
\(79\) −65.4244 + 113.318i −0.828157 + 1.43441i 0.0713263 + 0.997453i \(0.477277\pi\)
−0.899483 + 0.436956i \(0.856056\pi\)
\(80\) 9.62126i 0.120266i
\(81\) 0 0
\(82\) 68.4128i 0.834302i
\(83\) 27.6580 + 15.9683i 0.333229 + 0.192390i 0.657274 0.753652i \(-0.271710\pi\)
−0.324045 + 0.946042i \(0.605043\pi\)
\(84\) 0 0
\(85\) −23.8343 41.2823i −0.280404 0.485674i
\(86\) −18.5501 32.1298i −0.215699 0.373602i
\(87\) 0 0
\(88\) −19.2315 + 33.3099i −0.218540 + 0.378522i
\(89\) 118.790i 1.33472i −0.744737 0.667358i \(-0.767425\pi\)
0.744737 0.667358i \(-0.232575\pi\)
\(90\) 0 0
\(91\) −4.49464 94.9521i −0.0493917 1.04343i
\(92\) −8.67105 + 15.0187i −0.0942505 + 0.163247i
\(93\) 0 0
\(94\) 20.6013 11.8942i 0.219163 0.126534i
\(95\) −41.4885 71.8602i −0.436721 0.756423i
\(96\) 0 0
\(97\) 99.4807 + 57.4352i 1.02557 + 0.592116i 0.915714 0.401831i \(-0.131626\pi\)
0.109861 + 0.993947i \(0.464960\pi\)
\(98\) −68.9866 + 6.54575i −0.703945 + 0.0667934i
\(99\) 0 0
\(100\) 38.4289 0.384289
\(101\) −149.663 86.4081i −1.48181 0.855526i −0.482027 0.876156i \(-0.660099\pi\)
−0.999787 + 0.0206305i \(0.993433\pi\)
\(102\) 0 0
\(103\) −40.4444 + 23.3506i −0.392664 + 0.226705i −0.683314 0.730125i \(-0.739462\pi\)
0.290650 + 0.956830i \(0.406129\pi\)
\(104\) 33.2635 19.2047i 0.319842 0.184661i
\(105\) 0 0
\(106\) −25.2277 + 43.6957i −0.237998 + 0.412224i
\(107\) 69.5084 0.649611 0.324806 0.945781i \(-0.394701\pi\)
0.324806 + 0.945781i \(0.394701\pi\)
\(108\) 0 0
\(109\) 135.887 1.24667 0.623334 0.781956i \(-0.285778\pi\)
0.623334 + 0.781956i \(0.285778\pi\)
\(110\) 40.0604 + 23.1289i 0.364186 + 0.210263i
\(111\) 0 0
\(112\) −15.1309 23.5596i −0.135097 0.210354i
\(113\) 2.05580 + 3.56076i 0.0181930 + 0.0315111i 0.874979 0.484162i \(-0.160875\pi\)
−0.856786 + 0.515673i \(0.827542\pi\)
\(114\) 0 0
\(115\) 18.0623 + 10.4283i 0.157064 + 0.0906809i
\(116\) 51.9043 0.447451
\(117\) 0 0
\(118\) 104.373i 0.884519i
\(119\) −123.286 63.6050i −1.03602 0.534496i
\(120\) 0 0
\(121\) −31.9625 55.3606i −0.264153 0.457526i
\(122\) −111.073 + 64.1280i −0.910435 + 0.525640i
\(123\) 0 0
\(124\) 43.3342 + 25.0190i 0.349470 + 0.201766i
\(125\) 106.350i 0.850798i
\(126\) 0 0
\(127\) 12.0291 0.0947171 0.0473585 0.998878i \(-0.484920\pi\)
0.0473585 + 0.998878i \(0.484920\pi\)
\(128\) 5.65685 9.79796i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −23.0967 40.0046i −0.177667 0.307728i
\(131\) −72.6514 + 41.9453i −0.554591 + 0.320193i −0.750971 0.660335i \(-0.770414\pi\)
0.196381 + 0.980528i \(0.437081\pi\)
\(132\) 0 0
\(133\) −214.604 110.718i −1.61357 0.832462i
\(134\) −29.3254 −0.218846
\(135\) 0 0
\(136\) 56.0539i 0.412161i
\(137\) −99.9694 + 173.152i −0.729703 + 1.26388i 0.227305 + 0.973824i \(0.427008\pi\)
−0.957009 + 0.290060i \(0.906325\pi\)
\(138\) 0 0
\(139\) 127.666 73.7083i 0.918464 0.530275i 0.0353192 0.999376i \(-0.488755\pi\)
0.883145 + 0.469101i \(0.155422\pi\)
\(140\) −28.3342 + 18.1973i −0.202387 + 0.129981i
\(141\) 0 0
\(142\) 27.0095 46.7819i 0.190208 0.329450i
\(143\) 184.667i 1.29138i
\(144\) 0 0
\(145\) 62.4231i 0.430504i
\(146\) −14.7829 8.53492i −0.101253 0.0584584i
\(147\) 0 0
\(148\) −39.6839 68.7345i −0.268134 0.464422i
\(149\) −105.785 183.225i −0.709967 1.22970i −0.964869 0.262731i \(-0.915377\pi\)
0.254902 0.966967i \(-0.417957\pi\)
\(150\) 0 0
\(151\) −9.48372 + 16.4263i −0.0628061 + 0.108783i −0.895719 0.444621i \(-0.853338\pi\)
0.832913 + 0.553405i \(0.186672\pi\)
\(152\) 97.5733i 0.641930i
\(153\) 0 0
\(154\) 134.470 6.36525i 0.873181 0.0413328i
\(155\) 30.0893 52.1163i 0.194125 0.336234i
\(156\) 0 0
\(157\) 6.98156 4.03081i 0.0444685 0.0256739i −0.477601 0.878577i \(-0.658494\pi\)
0.522069 + 0.852903i \(0.325160\pi\)
\(158\) 92.5240 + 160.256i 0.585595 + 1.01428i
\(159\) 0 0
\(160\) −11.7836 6.80326i −0.0736474 0.0425204i
\(161\) 60.6294 2.86995i 0.376580 0.0178258i
\(162\) 0 0
\(163\) 49.1196 0.301347 0.150673 0.988584i \(-0.451856\pi\)
0.150673 + 0.988584i \(0.451856\pi\)
\(164\) −83.7882 48.3751i −0.510904 0.294970i
\(165\) 0 0
\(166\) 39.1143 22.5826i 0.235628 0.136040i
\(167\) 168.024 97.0088i 1.00613 0.580891i 0.0960758 0.995374i \(-0.469371\pi\)
0.910057 + 0.414483i \(0.136038\pi\)
\(168\) 0 0
\(169\) 7.70514 13.3457i 0.0455926 0.0789686i
\(170\) −67.4137 −0.396551
\(171\) 0 0
\(172\) −52.4677 −0.305045
\(173\) −65.2186 37.6540i −0.376986 0.217653i 0.299520 0.954090i \(-0.403173\pi\)
−0.676506 + 0.736437i \(0.736507\pi\)
\(174\) 0 0
\(175\) −72.6830 113.171i −0.415331 0.646694i
\(176\) 27.1974 + 47.1073i 0.154531 + 0.267655i
\(177\) 0 0
\(178\) −145.487 83.9970i −0.817343 0.471893i
\(179\) 97.4357 0.544334 0.272167 0.962250i \(-0.412260\pi\)
0.272167 + 0.962250i \(0.412260\pi\)
\(180\) 0 0
\(181\) 83.1541i 0.459415i 0.973260 + 0.229707i \(0.0737769\pi\)
−0.973260 + 0.229707i \(0.926223\pi\)
\(182\) −119.470 61.6365i −0.656430 0.338662i
\(183\) 0 0
\(184\) 12.2627 + 21.2396i 0.0666452 + 0.115433i
\(185\) −82.6640 + 47.7261i −0.446833 + 0.257979i
\(186\) 0 0
\(187\) 233.394 + 134.750i 1.24810 + 0.720588i
\(188\) 33.6418i 0.178946i
\(189\) 0 0
\(190\) −117.347 −0.617617
\(191\) −109.890 + 190.335i −0.575341 + 0.996520i 0.420664 + 0.907217i \(0.361797\pi\)
−0.996005 + 0.0893029i \(0.971536\pi\)
\(192\) 0 0
\(193\) 57.6084 + 99.7807i 0.298489 + 0.516998i 0.975790 0.218707i \(-0.0701840\pi\)
−0.677301 + 0.735706i \(0.736851\pi\)
\(194\) 140.687 81.2257i 0.725190 0.418689i
\(195\) 0 0
\(196\) −40.7640 + 89.1195i −0.207980 + 0.454692i
\(197\) −44.1864 −0.224297 −0.112148 0.993691i \(-0.535773\pi\)
−0.112148 + 0.993691i \(0.535773\pi\)
\(198\) 0 0
\(199\) 14.5566i 0.0731488i −0.999331 0.0365744i \(-0.988355\pi\)
0.999331 0.0365744i \(-0.0116446\pi\)
\(200\) 27.1733 47.0656i 0.135867 0.235328i
\(201\) 0 0
\(202\) −211.656 + 122.200i −1.04780 + 0.604948i
\(203\) −98.1698 152.856i −0.483595 0.752984i
\(204\) 0 0
\(205\) −58.1787 + 100.769i −0.283799 + 0.491554i
\(206\) 66.0455i 0.320609i
\(207\) 0 0
\(208\) 54.3191i 0.261150i
\(209\) 406.270 + 234.560i 1.94387 + 1.12230i
\(210\) 0 0
\(211\) 175.108 + 303.296i 0.829896 + 1.43742i 0.898119 + 0.439752i \(0.144934\pi\)
−0.0682235 + 0.997670i \(0.521733\pi\)
\(212\) 35.6774 + 61.7951i 0.168290 + 0.291486i
\(213\) 0 0
\(214\) 49.1499 85.1300i 0.229672 0.397804i
\(215\) 63.1007i 0.293492i
\(216\) 0 0
\(217\) −8.28082 174.937i −0.0381604 0.806163i
\(218\) 96.0864 166.427i 0.440763 0.763425i
\(219\) 0 0
\(220\) 56.6540 32.7092i 0.257518 0.148678i
\(221\) −134.562 233.069i −0.608880 1.05461i
\(222\) 0 0
\(223\) 277.642 + 160.297i 1.24503 + 0.718820i 0.970114 0.242648i \(-0.0780161\pi\)
0.274918 + 0.961468i \(0.411349\pi\)
\(224\) −39.5537 + 1.87231i −0.176579 + 0.00835852i
\(225\) 0 0
\(226\) 5.81469 0.0257287
\(227\) 242.920 + 140.250i 1.07013 + 0.617841i 0.928218 0.372037i \(-0.121341\pi\)
0.141915 + 0.989879i \(0.454674\pi\)
\(228\) 0 0
\(229\) 31.1962 18.0111i 0.136228 0.0786512i −0.430337 0.902668i \(-0.641605\pi\)
0.566565 + 0.824017i \(0.308272\pi\)
\(230\) 25.5440 14.7478i 0.111061 0.0641211i
\(231\) 0 0
\(232\) 36.7019 63.5695i 0.158198 0.274007i
\(233\) 418.773 1.79731 0.898654 0.438658i \(-0.144546\pi\)
0.898654 + 0.438658i \(0.144546\pi\)
\(234\) 0 0
\(235\) −40.4596 −0.172168
\(236\) 127.831 + 73.8030i 0.541655 + 0.312725i
\(237\) 0 0
\(238\) −165.076 + 106.018i −0.693598 + 0.445455i
\(239\) 25.6058 + 44.3506i 0.107137 + 0.185567i 0.914609 0.404338i \(-0.132498\pi\)
−0.807472 + 0.589906i \(0.799165\pi\)
\(240\) 0 0
\(241\) −227.784 131.511i −0.945161 0.545689i −0.0535868 0.998563i \(-0.517065\pi\)
−0.891574 + 0.452874i \(0.850399\pi\)
\(242\) −90.4035 −0.373568
\(243\) 0 0
\(244\) 181.381i 0.743367i
\(245\) 107.180 + 49.0252i 0.437471 + 0.200103i
\(246\) 0 0
\(247\) −234.233 405.704i −0.948313 1.64253i
\(248\) 61.2839 35.3823i 0.247112 0.142670i
\(249\) 0 0
\(250\) −130.251 75.2006i −0.521005 0.300802i
\(251\) 244.001i 0.972115i 0.873927 + 0.486058i \(0.161565\pi\)
−0.873927 + 0.486058i \(0.838435\pi\)
\(252\) 0 0
\(253\) −117.915 −0.466067
\(254\) 8.50584 14.7325i 0.0334875 0.0580021i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 185.090 106.862i 0.720193 0.415804i −0.0946307 0.995512i \(-0.530167\pi\)
0.814824 + 0.579709i \(0.196834\pi\)
\(258\) 0 0
\(259\) −127.363 + 246.869i −0.491750 + 0.953162i
\(260\) −65.3273 −0.251259
\(261\) 0 0
\(262\) 118.639i 0.452821i
\(263\) −77.6298 + 134.459i −0.295170 + 0.511250i −0.975025 0.222097i \(-0.928710\pi\)
0.679854 + 0.733347i \(0.262043\pi\)
\(264\) 0 0
\(265\) 74.3184 42.9077i 0.280447 0.161916i
\(266\) −287.349 + 184.546i −1.08026 + 0.693783i
\(267\) 0 0
\(268\) −20.7362 + 35.9161i −0.0773739 + 0.134015i
\(269\) 128.394i 0.477302i −0.971105 0.238651i \(-0.923295\pi\)
0.971105 0.238651i \(-0.0767052\pi\)
\(270\) 0 0
\(271\) 520.915i 1.92219i 0.276210 + 0.961097i \(0.410921\pi\)
−0.276210 + 0.961097i \(0.589079\pi\)
\(272\) −68.6518 39.6361i −0.252396 0.145721i
\(273\) 0 0
\(274\) 141.378 + 244.874i 0.515978 + 0.893700i
\(275\) 130.646 + 226.285i 0.475076 + 0.822856i
\(276\) 0 0
\(277\) 191.963 332.489i 0.693007 1.20032i −0.277841 0.960627i \(-0.589619\pi\)
0.970848 0.239696i \(-0.0770477\pi\)
\(278\) 208.478i 0.749923i
\(279\) 0 0
\(280\) 2.25175 + 47.5695i 0.00804195 + 0.169891i
\(281\) 45.4795 78.7728i 0.161849 0.280330i −0.773683 0.633573i \(-0.781588\pi\)
0.935532 + 0.353243i \(0.114921\pi\)
\(282\) 0 0
\(283\) −86.2442 + 49.7931i −0.304750 + 0.175947i −0.644575 0.764541i \(-0.722966\pi\)
0.339825 + 0.940489i \(0.389632\pi\)
\(284\) −38.1972 66.1595i −0.134497 0.232956i
\(285\) 0 0
\(286\) 226.170 + 130.580i 0.790806 + 0.456572i
\(287\) 16.0112 + 338.247i 0.0557883 + 1.17856i
\(288\) 0 0
\(289\) −103.755 −0.359015
\(290\) −76.4524 44.1398i −0.263629 0.152206i
\(291\) 0 0
\(292\) −20.9062 + 12.0702i −0.0715966 + 0.0413363i
\(293\) 493.237 284.771i 1.68340 0.971914i 0.724033 0.689765i \(-0.242286\pi\)
0.959371 0.282149i \(-0.0910472\pi\)
\(294\) 0 0
\(295\) 88.7597 153.736i 0.300880 0.521140i
\(296\) −112.243 −0.379199
\(297\) 0 0
\(298\) −299.205 −1.00404
\(299\) 101.975 + 58.8754i 0.341054 + 0.196908i
\(300\) 0 0
\(301\) 99.2354 + 154.515i 0.329686 + 0.513339i
\(302\) 13.4120 + 23.2303i 0.0444106 + 0.0769215i
\(303\) 0 0
\(304\) −119.502 68.9947i −0.393100 0.226956i
\(305\) 218.140 0.715213
\(306\) 0 0
\(307\) 235.830i 0.768176i 0.923296 + 0.384088i \(0.125484\pi\)
−0.923296 + 0.384088i \(0.874516\pi\)
\(308\) 87.2887 169.192i 0.283405 0.549325i
\(309\) 0 0
\(310\) −42.5527 73.7035i −0.137267 0.237753i
\(311\) −525.110 + 303.172i −1.68846 + 0.974831i −0.732756 + 0.680492i \(0.761766\pi\)
−0.955701 + 0.294339i \(0.904900\pi\)
\(312\) 0 0
\(313\) 21.4543 + 12.3867i 0.0685442 + 0.0395740i 0.533880 0.845560i \(-0.320733\pi\)
−0.465336 + 0.885134i \(0.654067\pi\)
\(314\) 11.4008i 0.0363084i
\(315\) 0 0
\(316\) 261.697 0.828157
\(317\) −219.173 + 379.619i −0.691398 + 1.19754i 0.279982 + 0.960005i \(0.409672\pi\)
−0.971380 + 0.237531i \(0.923662\pi\)
\(318\) 0 0
\(319\) 176.458 + 305.634i 0.553160 + 0.958101i
\(320\) −16.6645 + 9.62126i −0.0520766 + 0.0300664i
\(321\) 0 0
\(322\) 39.3565 76.2850i 0.122225 0.236910i
\(323\) −683.671 −2.11663
\(324\) 0 0
\(325\) 260.928i 0.802855i
\(326\) 34.7328 60.1589i 0.106542 0.184537i
\(327\) 0 0
\(328\) −118.494 + 68.4128i −0.361263 + 0.208576i
\(329\) −99.0736 + 63.6288i −0.301135 + 0.193401i
\(330\) 0 0
\(331\) 301.074 521.476i 0.909590 1.57546i 0.0949566 0.995481i \(-0.469729\pi\)
0.814634 0.579976i \(-0.196938\pi\)
\(332\) 63.8733i 0.192390i
\(333\) 0 0
\(334\) 274.382i 0.821504i
\(335\) 43.1948 + 24.9385i 0.128940 + 0.0744434i
\(336\) 0 0
\(337\) −58.8515 101.934i −0.174634 0.302474i 0.765401 0.643554i \(-0.222541\pi\)
−0.940034 + 0.341080i \(0.889207\pi\)
\(338\) −10.8967 18.8737i −0.0322388 0.0558393i
\(339\) 0 0
\(340\) −47.6687 + 82.5646i −0.140202 + 0.242837i
\(341\) 340.227i 0.997732i
\(342\) 0 0
\(343\) 339.552 48.5091i 0.989949 0.141426i
\(344\) −37.1003 + 64.2596i −0.107850 + 0.186801i
\(345\) 0 0
\(346\) −92.2331 + 53.2508i −0.266570 + 0.153904i
\(347\) 136.895 + 237.110i 0.394511 + 0.683313i 0.993039 0.117789i \(-0.0375807\pi\)
−0.598528 + 0.801102i \(0.704247\pi\)
\(348\) 0 0
\(349\) 184.692 + 106.632i 0.529203 + 0.305535i 0.740692 0.671845i \(-0.234498\pi\)
−0.211489 + 0.977380i \(0.567831\pi\)
\(350\) −190.001 + 8.99385i −0.542859 + 0.0256967i
\(351\) 0 0
\(352\) 76.9259 0.218540
\(353\) −497.182 287.048i −1.40845 0.813168i −0.413210 0.910636i \(-0.635592\pi\)
−0.995239 + 0.0974679i \(0.968926\pi\)
\(354\) 0 0
\(355\) −79.5673 + 45.9382i −0.224133 + 0.129403i
\(356\) −205.750 + 118.790i −0.577949 + 0.333679i
\(357\) 0 0
\(358\) 68.8975 119.334i 0.192451 0.333335i
\(359\) −34.8283 −0.0970149 −0.0485074 0.998823i \(-0.515446\pi\)
−0.0485074 + 0.998823i \(0.515446\pi\)
\(360\) 0 0
\(361\) −829.069 −2.29659
\(362\) 101.843 + 58.7988i 0.281333 + 0.162428i
\(363\) 0 0
\(364\) −159.967 + 102.737i −0.439470 + 0.282245i
\(365\) 14.5163 + 25.1430i 0.0397708 + 0.0688850i
\(366\) 0 0
\(367\) −12.0980 6.98480i −0.0329646 0.0190321i 0.483427 0.875385i \(-0.339392\pi\)
−0.516392 + 0.856352i \(0.672725\pi\)
\(368\) 34.6842 0.0942505
\(369\) 0 0
\(370\) 134.990i 0.364837i
\(371\) 114.505 221.945i 0.308638 0.598235i
\(372\) 0 0
\(373\) 285.616 + 494.702i 0.765727 + 1.32628i 0.939861 + 0.341556i \(0.110954\pi\)
−0.174135 + 0.984722i \(0.555713\pi\)
\(374\) 330.069 190.565i 0.882537 0.509533i
\(375\) 0 0
\(376\) −41.2026 23.7883i −0.109581 0.0632669i
\(377\) 352.424i 0.934813i
\(378\) 0 0
\(379\) −387.493 −1.02241 −0.511205 0.859459i \(-0.670801\pi\)
−0.511205 + 0.859459i \(0.670801\pi\)
\(380\) −82.9770 + 143.720i −0.218361 + 0.378212i
\(381\) 0 0
\(382\) 155.408 + 269.175i 0.406827 + 0.704646i
\(383\) −499.981 + 288.664i −1.30543 + 0.753693i −0.981331 0.192329i \(-0.938396\pi\)
−0.324104 + 0.946022i \(0.605063\pi\)
\(384\) 0 0
\(385\) −203.480 104.978i −0.528520 0.272671i
\(386\) 162.941 0.422127
\(387\) 0 0
\(388\) 229.741i 0.592116i
\(389\) 166.634 288.618i 0.428364 0.741948i −0.568364 0.822777i \(-0.692423\pi\)
0.996728 + 0.0808291i \(0.0257568\pi\)
\(390\) 0 0
\(391\) 148.821 85.9217i 0.380616 0.219748i
\(392\) 80.3242 + 112.943i 0.204909 + 0.288119i
\(393\) 0 0
\(394\) −31.2445 + 54.1171i −0.0793009 + 0.137353i
\(395\) 314.732i 0.796791i
\(396\) 0 0
\(397\) 279.218i 0.703321i 0.936128 + 0.351661i \(0.114383\pi\)
−0.936128 + 0.351661i \(0.885617\pi\)
\(398\) −17.8281 10.2931i −0.0447943 0.0258620i
\(399\) 0 0
\(400\) −38.4289 66.5608i −0.0960723 0.166402i
\(401\) −110.631 191.619i −0.275888 0.477852i 0.694471 0.719521i \(-0.255639\pi\)
−0.970359 + 0.241669i \(0.922305\pi\)
\(402\) 0 0
\(403\) 169.876 294.235i 0.421530 0.730111i
\(404\) 345.632i 0.855526i
\(405\) 0 0
\(406\) −256.626 + 12.1476i −0.632084 + 0.0299202i
\(407\) 269.825 467.350i 0.662960 1.14828i
\(408\) 0 0
\(409\) −261.910 + 151.214i −0.640366 + 0.369715i −0.784755 0.619806i \(-0.787211\pi\)
0.144390 + 0.989521i \(0.453878\pi\)
\(410\) 82.2771 + 142.508i 0.200676 + 0.347581i
\(411\) 0 0
\(412\) 80.8889 + 46.7012i 0.196332 + 0.113352i
\(413\) −24.4274 516.043i −0.0591461 1.24950i
\(414\) 0 0
\(415\) −76.8178 −0.185103
\(416\) −66.5270 38.4094i −0.159921 0.0923303i
\(417\) 0 0
\(418\) 574.552 331.718i 1.37453 0.793583i
\(419\) 437.785 252.755i 1.04483 0.603234i 0.123634 0.992328i \(-0.460545\pi\)
0.921198 + 0.389093i \(0.127212\pi\)
\(420\) 0 0
\(421\) 22.8490 39.5757i 0.0542733 0.0940040i −0.837612 0.546265i \(-0.816049\pi\)
0.891886 + 0.452261i \(0.149382\pi\)
\(422\) 495.280 1.17365
\(423\) 0 0
\(424\) 100.911 0.237998
\(425\) −329.777 190.397i −0.775945 0.447992i
\(426\) 0 0
\(427\) 534.160 343.058i 1.25096 0.803414i
\(428\) −69.5084 120.392i −0.162403 0.281290i
\(429\) 0 0
\(430\) 77.2822 + 44.6189i 0.179726 + 0.103765i
\(431\) −252.544 −0.585948 −0.292974 0.956120i \(-0.594645\pi\)
−0.292974 + 0.956120i \(0.594645\pi\)
\(432\) 0 0
\(433\) 830.225i 1.91738i −0.284454 0.958690i \(-0.591812\pi\)
0.284454 0.958690i \(-0.408188\pi\)
\(434\) −220.109 113.558i −0.507164 0.261653i
\(435\) 0 0
\(436\) −135.887 235.363i −0.311667 0.539823i
\(437\) 259.053 149.564i 0.592798 0.342252i
\(438\) 0 0
\(439\) 193.141 + 111.510i 0.439956 + 0.254009i 0.703579 0.710617i \(-0.251584\pi\)
−0.263623 + 0.964626i \(0.584917\pi\)
\(440\) 92.5155i 0.210263i
\(441\) 0 0
\(442\) −380.600 −0.861086
\(443\) 102.606 177.719i 0.231616 0.401171i −0.726668 0.686989i \(-0.758932\pi\)
0.958284 + 0.285818i \(0.0922654\pi\)
\(444\) 0 0
\(445\) 142.863 + 247.447i 0.321041 + 0.556060i
\(446\) 392.645 226.694i 0.880371 0.508282i
\(447\) 0 0
\(448\) −25.6756 + 49.7671i −0.0573116 + 0.111087i
\(449\) 441.157 0.982532 0.491266 0.871010i \(-0.336534\pi\)
0.491266 + 0.871010i \(0.336534\pi\)
\(450\) 0 0
\(451\) 657.839i 1.45862i
\(452\) 4.11161 7.12151i 0.00909648 0.0157556i
\(453\) 0 0
\(454\) 343.541 198.343i 0.756698 0.436880i
\(455\) 123.557 + 192.386i 0.271555 + 0.422826i
\(456\) 0 0
\(457\) −337.214 + 584.071i −0.737886 + 1.27806i 0.215560 + 0.976491i \(0.430842\pi\)
−0.953446 + 0.301565i \(0.902491\pi\)
\(458\) 50.9432i 0.111230i
\(459\) 0 0
\(460\) 41.7132i 0.0906809i
\(461\) −82.1484 47.4284i −0.178196 0.102882i 0.408249 0.912871i \(-0.366140\pi\)
−0.586445 + 0.809989i \(0.699473\pi\)
\(462\) 0 0
\(463\) 195.201 + 338.099i 0.421601 + 0.730235i 0.996096 0.0882733i \(-0.0281349\pi\)
−0.574495 + 0.818508i \(0.694802\pi\)
\(464\) −51.9043 89.9009i −0.111863 0.193752i
\(465\) 0 0
\(466\) 296.117 512.890i 0.635445 1.10062i
\(467\) 135.589i 0.290341i 0.989407 + 0.145170i \(0.0463731\pi\)
−0.989407 + 0.145170i \(0.953627\pi\)
\(468\) 0 0
\(469\) 144.991 6.86328i 0.309149 0.0146339i
\(470\) −28.6092 + 49.5527i −0.0608707 + 0.105431i
\(471\) 0 0
\(472\) 180.780 104.373i 0.383008 0.221130i
\(473\) −178.373 308.952i −0.377111 0.653175i
\(474\) 0 0
\(475\) −574.043 331.424i −1.20851 0.697735i
\(476\) 13.1188 + 277.143i 0.0275605 + 0.582232i
\(477\) 0 0
\(478\) 72.4242 0.151515
\(479\) −176.072 101.655i −0.367583 0.212224i 0.304819 0.952410i \(-0.401404\pi\)
−0.672402 + 0.740186i \(0.734737\pi\)
\(480\) 0 0
\(481\) −466.699 + 269.449i −0.970269 + 0.560185i
\(482\) −322.135 + 185.985i −0.668330 + 0.385860i
\(483\) 0 0
\(484\) −63.9249 + 110.721i −0.132076 + 0.228763i
\(485\) −276.300 −0.569690
\(486\) 0 0
\(487\) −237.902 −0.488504 −0.244252 0.969712i \(-0.578542\pi\)
−0.244252 + 0.969712i \(0.578542\pi\)
\(488\) 222.146 + 128.256i 0.455217 + 0.262820i
\(489\) 0 0
\(490\) 135.831 96.6025i 0.277207 0.197148i
\(491\) 283.247 + 490.597i 0.576877 + 0.999180i 0.995835 + 0.0911744i \(0.0290621\pi\)
−0.418958 + 0.908006i \(0.637605\pi\)
\(492\) 0 0
\(493\) −445.415 257.161i −0.903480 0.521624i
\(494\) −662.512 −1.34112
\(495\) 0 0
\(496\) 100.076i 0.201766i
\(497\) −122.592 + 237.621i −0.246664 + 0.478110i
\(498\) 0 0
\(499\) −118.082 204.523i −0.236636 0.409866i 0.723111 0.690732i \(-0.242712\pi\)
−0.959747 + 0.280866i \(0.909378\pi\)
\(500\) −184.203 + 106.350i −0.368406 + 0.212699i
\(501\) 0 0
\(502\) 298.839 + 172.535i 0.595297 + 0.343695i
\(503\) 711.182i 1.41388i −0.707273 0.706941i \(-0.750075\pi\)
0.707273 0.706941i \(-0.249925\pi\)
\(504\) 0 0
\(505\) 415.677 0.823124
\(506\) −83.3785 + 144.416i −0.164780 + 0.285407i
\(507\) 0 0
\(508\) −12.0291 20.8350i −0.0236793 0.0410137i
\(509\) −454.930 + 262.654i −0.893772 + 0.516019i −0.875174 0.483808i \(-0.839253\pi\)
−0.0185973 + 0.999827i \(0.505920\pi\)
\(510\) 0 0
\(511\) 75.0874 + 38.7387i 0.146942 + 0.0758096i
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) 302.250i 0.588035i
\(515\) 56.1656 97.2816i 0.109059 0.188896i
\(516\) 0 0
\(517\) 198.097 114.371i 0.383166 0.221221i
\(518\) 212.292 + 330.550i 0.409830 + 0.638128i
\(519\) 0 0
\(520\) −46.1934 + 80.0092i −0.0888334 + 0.153864i
\(521\) 58.8034i 0.112866i −0.998406 0.0564332i \(-0.982027\pi\)
0.998406 0.0564332i \(-0.0179728\pi\)
\(522\) 0 0
\(523\) 49.8806i 0.0953740i −0.998862 0.0476870i \(-0.984815\pi\)
0.998862 0.0476870i \(-0.0151850\pi\)
\(524\) 145.303 + 83.8906i 0.277295 + 0.160097i
\(525\) 0 0
\(526\) 109.785 + 190.153i 0.208717 + 0.361509i
\(527\) −247.914 429.400i −0.470426 0.814801i
\(528\) 0 0
\(529\) 226.906 393.014i 0.428935 0.742937i
\(530\) 121.361i 0.228984i
\(531\) 0 0
\(532\) 22.8359 + 482.423i 0.0429247 + 0.906810i
\(533\) −328.462 + 568.912i −0.616251 + 1.06738i
\(534\) 0 0
\(535\) −144.790 + 83.5948i −0.270636 + 0.156252i
\(536\) 29.3254 + 50.7931i 0.0547116 + 0.0947632i
\(537\) 0 0
\(538\) −157.250 90.7884i −0.292287 0.168752i
\(539\) −663.357 + 62.9423i −1.23072 + 0.116776i
\(540\) 0 0
\(541\) 943.506 1.74400 0.872002 0.489503i \(-0.162822\pi\)
0.872002 + 0.489503i \(0.162822\pi\)
\(542\) 637.988 + 368.342i 1.17710 + 0.679598i
\(543\) 0 0
\(544\) −97.0883 + 56.0539i −0.178471 + 0.103040i
\(545\) −283.061 + 163.425i −0.519377 + 0.299863i
\(546\) 0 0
\(547\) −115.302 + 199.709i −0.210790 + 0.365100i −0.951962 0.306216i \(-0.900937\pi\)
0.741172 + 0.671315i \(0.234270\pi\)
\(548\) 399.877 0.729703
\(549\) 0 0
\(550\) 369.523 0.671859
\(551\) −775.336 447.641i −1.40714 0.812415i
\(552\) 0 0
\(553\) −494.964 770.687i −0.895053 1.39365i
\(554\) −271.476 470.211i −0.490030 0.848756i
\(555\) 0 0
\(556\) −255.333 147.417i −0.459232 0.265138i
\(557\) 484.872 0.870506 0.435253 0.900308i \(-0.356659\pi\)
0.435253 + 0.900308i \(0.356659\pi\)
\(558\) 0 0
\(559\) 356.250i 0.637298i
\(560\) 59.8528 + 30.8789i 0.106880 + 0.0551410i
\(561\) 0 0
\(562\) −64.3178 111.402i −0.114444 0.198224i
\(563\) 565.382 326.423i 1.00423 0.579793i 0.0947335 0.995503i \(-0.469800\pi\)
0.909497 + 0.415710i \(0.136467\pi\)
\(564\) 0 0
\(565\) −8.56474 4.94486i −0.0151588 0.00875196i
\(566\) 140.836i 0.248827i
\(567\) 0 0
\(568\) −108.038 −0.190208
\(569\) 203.792 352.977i 0.358157 0.620347i −0.629496 0.777004i \(-0.716738\pi\)
0.987653 + 0.156657i \(0.0500718\pi\)
\(570\) 0 0
\(571\) 174.770 + 302.710i 0.306076 + 0.530140i 0.977500 0.210934i \(-0.0676504\pi\)
−0.671424 + 0.741073i \(0.734317\pi\)
\(572\) 319.853 184.667i 0.559184 0.322845i
\(573\) 0 0
\(574\) 425.588 + 219.567i 0.741443 + 0.382521i
\(575\) 166.609 0.289756
\(576\) 0 0
\(577\) 695.947i 1.20615i 0.797686 + 0.603073i \(0.206057\pi\)
−0.797686 + 0.603073i \(0.793943\pi\)
\(578\) −73.3662 + 127.074i −0.126931 + 0.219851i
\(579\) 0 0
\(580\) −108.120 + 62.4231i −0.186414 + 0.107626i
\(581\) −188.104 + 120.808i −0.323759 + 0.207930i
\(582\) 0 0
\(583\) −242.583 + 420.167i −0.416095 + 0.720698i
\(584\) 34.1397i 0.0584584i
\(585\) 0 0
\(586\) 805.453i 1.37449i
\(587\) 45.3007 + 26.1544i 0.0771732 + 0.0445560i 0.538090 0.842887i \(-0.319146\pi\)
−0.460917 + 0.887443i \(0.652479\pi\)
\(588\) 0 0
\(589\) −431.546 747.459i −0.732675 1.26903i
\(590\) −125.525 217.416i −0.212755 0.368502i
\(591\) 0 0
\(592\) −79.3677 + 137.469i −0.134067 + 0.232211i
\(593\) 21.8727i 0.0368848i 0.999830 + 0.0184424i \(0.00587072\pi\)
−0.999830 + 0.0184424i \(0.994129\pi\)
\(594\) 0 0
\(595\) 333.308 15.7774i 0.560181 0.0265166i
\(596\) −211.570 + 366.450i −0.354983 + 0.614849i
\(597\) 0 0
\(598\) 144.215 83.2624i 0.241162 0.139235i
\(599\) 350.512 + 607.105i 0.585162 + 1.01353i 0.994855 + 0.101307i \(0.0323025\pi\)
−0.409693 + 0.912224i \(0.634364\pi\)
\(600\) 0 0
\(601\) −34.2071 19.7495i −0.0569170 0.0328611i 0.471271 0.881988i \(-0.343795\pi\)
−0.528188 + 0.849127i \(0.677129\pi\)
\(602\) 259.411 12.2795i 0.430916 0.0203978i
\(603\) 0 0
\(604\) 37.9349 0.0628061
\(605\) 133.160 + 76.8798i 0.220099 + 0.127074i
\(606\) 0 0
\(607\) −323.783 + 186.936i −0.533415 + 0.307968i −0.742406 0.669950i \(-0.766315\pi\)
0.208991 + 0.977918i \(0.432982\pi\)
\(608\) −169.002 + 97.5733i −0.277964 + 0.160482i
\(609\) 0 0
\(610\) 154.248 267.166i 0.252866 0.437976i
\(611\) −228.424 −0.373853
\(612\) 0 0
\(613\) −672.296 −1.09673 −0.548366 0.836239i \(-0.684750\pi\)
−0.548366 + 0.836239i \(0.684750\pi\)
\(614\) 288.832 + 166.757i 0.470410 + 0.271591i
\(615\) 0 0
\(616\) −145.495 226.543i −0.236193 0.367765i
\(617\) 231.200 + 400.450i 0.374716 + 0.649028i 0.990285 0.139056i \(-0.0444067\pi\)
−0.615568 + 0.788084i \(0.711073\pi\)
\(618\) 0 0
\(619\) 692.305 + 399.702i 1.11842 + 0.645723i 0.940998 0.338411i \(-0.109890\pi\)
0.177426 + 0.984134i \(0.443223\pi\)
\(620\) −120.357 −0.194125
\(621\) 0 0
\(622\) 857.501i 1.37862i
\(623\) 738.977 + 381.249i 1.18616 + 0.611957i
\(624\) 0 0
\(625\) −112.278 194.472i −0.179646 0.311155i
\(626\) 30.3410 17.5174i 0.0484680 0.0279830i
\(627\) 0 0
\(628\) −13.9631 8.06161i −0.0222343 0.0128370i
\(629\) 786.457i 1.25033i
\(630\) 0 0
\(631\) −410.154 −0.650006 −0.325003 0.945713i \(-0.605365\pi\)
−0.325003 + 0.945713i \(0.605365\pi\)
\(632\) 185.048 320.513i 0.292798 0.507140i
\(633\) 0 0
\(634\) 309.958 + 536.863i 0.488892 + 0.846786i
\(635\) −25.0573 + 14.4668i −0.0394603 + 0.0227824i
\(636\) 0 0
\(637\) 605.112 + 276.783i 0.949940 + 0.434510i
\(638\) 499.098 0.782286
\(639\) 0 0
\(640\) 27.2130i 0.0425204i
\(641\) −543.226 + 940.895i −0.847466 + 1.46785i 0.0359962 + 0.999352i \(0.488540\pi\)
−0.883462 + 0.468502i \(0.844794\pi\)
\(642\) 0 0
\(643\) −612.173 + 353.438i −0.952057 + 0.549671i −0.893719 0.448626i \(-0.851913\pi\)
−0.0583379 + 0.998297i \(0.518580\pi\)
\(644\) −65.6003 102.143i −0.101864 0.158608i
\(645\) 0 0
\(646\) −483.428 + 837.322i −0.748341 + 1.29616i
\(647\) 422.816i 0.653502i 0.945110 + 0.326751i \(0.105954\pi\)
−0.945110 + 0.326751i \(0.894046\pi\)
\(648\) 0 0
\(649\) 1003.63i 1.54642i
\(650\) −319.570 184.504i −0.491647 0.283852i
\(651\) 0 0
\(652\) −49.1196 85.0776i −0.0753367 0.130487i
\(653\) −394.425 683.164i −0.604019 1.04619i −0.992206 0.124611i \(-0.960232\pi\)
0.388186 0.921581i \(-0.373102\pi\)
\(654\) 0 0
\(655\) 100.892 174.749i 0.154033 0.266793i
\(656\) 193.501i 0.294970i
\(657\) 0 0
\(658\) 7.87348 + 166.332i 0.0119658 + 0.252784i
\(659\) 548.183 949.480i 0.831840 1.44079i −0.0647375 0.997902i \(-0.520621\pi\)
0.896578 0.442887i \(-0.146046\pi\)
\(660\) 0 0
\(661\) −213.700 + 123.380i −0.323298 + 0.186656i −0.652862 0.757477i \(-0.726432\pi\)
0.329563 + 0.944133i \(0.393098\pi\)
\(662\) −425.784 737.479i −0.643178 1.11402i
\(663\) 0 0
\(664\) −78.2286 45.1653i −0.117814 0.0680200i
\(665\) 580.190 27.4638i 0.872466 0.0412989i
\(666\) 0 0
\(667\) 225.032 0.337380
\(668\) −336.048 194.018i −0.503066 0.290446i
\(669\) 0 0
\(670\) 61.0867 35.2684i 0.0911742 0.0526394i
\(671\) −1068.05 + 616.639i −1.59173 + 0.918985i
\(672\) 0 0
\(673\) 155.614 269.532i 0.231225 0.400493i −0.726944 0.686697i \(-0.759060\pi\)
0.958169 + 0.286204i \(0.0923935\pi\)
\(674\) −166.457 −0.246969
\(675\) 0 0
\(676\) −30.8206 −0.0455926
\(677\) 467.683 + 270.017i 0.690817 + 0.398843i 0.803918 0.594740i \(-0.202745\pi\)
−0.113101 + 0.993583i \(0.536078\pi\)
\(678\) 0 0
\(679\) −676.576 + 434.523i −0.996430 + 0.639945i
\(680\) 67.4137 + 116.764i 0.0991378 + 0.171712i
\(681\) 0 0
\(682\) 416.691 + 240.577i 0.610984 + 0.352752i
\(683\) 694.411 1.01671 0.508353 0.861149i \(-0.330254\pi\)
0.508353 + 0.861149i \(0.330254\pi\)
\(684\) 0 0
\(685\) 480.916i 0.702067i
\(686\) 180.689 450.166i 0.263394 0.656219i
\(687\) 0 0
\(688\) 52.4677 + 90.8767i 0.0762612 + 0.132088i
\(689\) 419.582 242.246i 0.608972 0.351590i
\(690\) 0 0
\(691\) −803.725 464.031i −1.16313 0.671535i −0.211080 0.977469i \(-0.567698\pi\)
−0.952053 + 0.305933i \(0.901032\pi\)
\(692\) 150.616i 0.217653i
\(693\) 0 0
\(694\) 387.198 0.557923
\(695\) −177.292 + 307.078i −0.255096 + 0.441839i
\(696\) 0 0
\(697\) 479.351 + 830.260i 0.687734 + 1.19119i
\(698\) 261.194 150.800i 0.374203 0.216046i
\(699\) 0 0
\(700\) −123.336 + 239.062i −0.176194 + 0.341517i
\(701\) −717.659 −1.02376 −0.511882 0.859056i \(-0.671052\pi\)
−0.511882 + 0.859056i \(0.671052\pi\)
\(702\) 0 0
\(703\) 1368.99i 1.94735i
\(704\) 54.3948 94.2146i 0.0772654 0.133828i
\(705\) 0 0
\(706\) −703.122 + 405.948i −0.995923 + 0.574997i
\(707\) 1017.87 653.716i 1.43971 0.924634i
\(708\) 0 0
\(709\) −273.064 + 472.960i −0.385139 + 0.667081i −0.991789 0.127889i \(-0.959180\pi\)
0.606649 + 0.794970i \(0.292513\pi\)
\(710\) 129.933i 0.183004i
\(711\) 0 0
\(712\) 335.988i 0.471893i
\(713\) 187.877 + 108.471i 0.263502 + 0.152133i
\(714\) 0 0
\(715\) −222.092 384.674i −0.310618 0.538006i
\(716\) −97.4357 168.764i −0.136083 0.235703i
\(717\) 0 0
\(718\) −24.6274 + 42.6558i −0.0342999 + 0.0594092i
\(719\) 23.4875i 0.0326669i −0.999867 0.0163335i \(-0.994801\pi\)
0.999867 0.0163335i \(-0.00519934\pi\)
\(720\) 0 0
\(721\) −15.4572 326.543i −0.0214385 0.452903i
\(722\) −586.240 + 1015.40i −0.811967 + 1.40637i
\(723\) 0 0
\(724\) 144.027 83.1541i 0.198932 0.114854i
\(725\) −249.328 431.849i −0.343901 0.595654i
\(726\) 0 0
\(727\) −656.448 379.000i −0.902955 0.521321i −0.0247971 0.999693i \(-0.507894\pi\)
−0.878158 + 0.478371i \(0.841227\pi\)
\(728\) 12.7128 + 268.565i 0.0174626 + 0.368908i
\(729\) 0 0
\(730\) 41.0584 0.0562443
\(731\) 450.250 + 259.952i 0.615937 + 0.355612i
\(732\) 0 0
\(733\) 436.380 251.944i 0.595334 0.343716i −0.171870 0.985120i \(-0.554981\pi\)
0.767204 + 0.641404i \(0.221648\pi\)
\(734\) −17.1092 + 9.87800i −0.0233095 + 0.0134578i
\(735\) 0 0
\(736\) 24.5254 42.4793i 0.0333226 0.0577164i
\(737\) −281.986 −0.382613
\(738\) 0 0
\(739\) −735.218 −0.994882 −0.497441 0.867498i \(-0.665727\pi\)
−0.497441 + 0.867498i \(0.665727\pi\)
\(740\) 165.328 + 95.4522i 0.223416 + 0.128989i
\(741\) 0 0
\(742\) −190.859 297.178i −0.257223 0.400510i
\(743\) −121.895 211.129i −0.164058 0.284157i 0.772262 0.635304i \(-0.219125\pi\)
−0.936320 + 0.351147i \(0.885792\pi\)
\(744\) 0 0
\(745\) 440.714 + 254.446i 0.591562 + 0.341539i
\(746\) 807.844 1.08290
\(747\) 0 0
\(748\) 539.000i 0.720588i
\(749\) −223.084 + 432.404i −0.297842 + 0.577308i
\(750\) 0 0
\(751\) −69.2575 119.958i −0.0922204 0.159730i 0.816225 0.577735i \(-0.196063\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(752\) −58.2693 + 33.6418i −0.0774858 + 0.0447364i
\(753\) 0 0
\(754\) −431.630 249.202i −0.572454 0.330506i
\(755\) 45.6227i 0.0604274i
\(756\) 0 0
\(757\) 448.741 0.592788 0.296394 0.955066i \(-0.404216\pi\)
0.296394 + 0.955066i \(0.404216\pi\)
\(758\) −273.999 + 474.581i −0.361477 + 0.626096i
\(759\) 0 0
\(760\) 117.347 + 203.251i 0.154404 + 0.267436i
\(761\) −334.945 + 193.380i −0.440137 + 0.254113i −0.703656 0.710541i \(-0.748450\pi\)
0.263519 + 0.964654i \(0.415117\pi\)
\(762\) 0 0
\(763\) −436.121 + 845.336i −0.571588 + 1.10791i
\(764\) 439.560 0.575341
\(765\) 0 0
\(766\) 816.466i 1.06588i
\(767\) 501.114 867.955i 0.653343 1.13162i
\(768\) 0 0
\(769\) 531.659 306.953i 0.691364 0.399159i −0.112759 0.993622i \(-0.535969\pi\)
0.804123 + 0.594463i \(0.202635\pi\)
\(770\) −272.454 + 174.980i −0.353836 + 0.227247i
\(771\) 0 0
\(772\) 115.217 199.561i 0.149245 0.258499i
\(773\) 244.996i 0.316942i 0.987364 + 0.158471i \(0.0506564\pi\)
−0.987364 + 0.158471i \(0.949344\pi\)
\(774\) 0 0
\(775\) 480.727i 0.620293i
\(776\) −281.374 162.451i −0.362595 0.209344i
\(777\) 0 0
\(778\) −235.655 408.167i −0.302899 0.524637i
\(779\) 834.407 + 1445.24i 1.07113 + 1.85525i
\(780\) 0 0
\(781\) 259.717 449.842i 0.332544 0.575982i
\(782\) 243.023i 0.310771i
\(783\) 0 0
\(784\) 195.124 18.5142i 0.248882 0.0236150i
\(785\) −9.69536 + 16.7929i −0.0123508 + 0.0213922i
\(786\) 0 0
\(787\) 1224.89 707.189i 1.55640 0.898589i 0.558805 0.829299i \(-0.311260\pi\)
0.997597 0.0692898i \(-0.0220733\pi\)
\(788\) 44.1864 + 76.5332i 0.0560742 + 0.0971233i
\(789\) 0 0
\(790\) −385.467 222.549i −0.487933 0.281708i
\(791\) −28.7491 + 1.36086i −0.0363452 + 0.00172043i
\(792\) 0 0
\(793\) 1231.56 1.55304
\(794\) 341.971 + 197.437i 0.430694 + 0.248662i
\(795\) 0 0
\(796\) −25.2128 + 14.5566i −0.0316743 + 0.0182872i
\(797\) −10.1025 + 5.83266i −0.0126756 + 0.00731827i −0.506324 0.862343i \(-0.668996\pi\)
0.493649 + 0.869661i \(0.335663\pi\)
\(798\) 0 0
\(799\) −166.679 + 288.696i −0.208609 + 0.361322i
\(800\) −108.693 −0.135867
\(801\) 0 0
\(802\) −312.912 −0.390164
\(803\) −142.149 82.0696i −0.177022 0.102204i
\(804\) 0 0
\(805\) −122.843 + 78.8947i −0.152601 + 0.0980059i
\(806\) −240.242 416.111i −0.298066 0.516266i
\(807\) 0 0
\(808\) 423.312 + 244.399i 0.523900 + 0.302474i
\(809\) −315.185 −0.389599 −0.194799 0.980843i \(-0.562406\pi\)
−0.194799 + 0.980843i \(0.562406\pi\)
\(810\) 0 0
\(811\) 1499.13i 1.84849i −0.381800 0.924245i \(-0.624696\pi\)
0.381800 0.924245i \(-0.375304\pi\)
\(812\) −166.584 + 322.891i −0.205153 + 0.397649i
\(813\) 0 0
\(814\) −381.590 660.933i −0.468783 0.811957i
\(815\) −102.319 + 59.0740i −0.125545 + 0.0724834i
\(816\) 0 0
\(817\) 783.752 + 452.500i 0.959305 + 0.553855i
\(818\) 427.696i 0.522856i
\(819\) 0 0
\(820\) 232.715 0.283799
\(821\) 638.518 1105.95i 0.777732 1.34707i −0.155515 0.987834i \(-0.549704\pi\)
0.933246 0.359237i \(-0.116963\pi\)
\(822\) 0 0
\(823\) −456.846 791.280i −0.555098 0.961458i −0.997896 0.0648368i \(-0.979347\pi\)
0.442798 0.896622i \(-0.353986\pi\)
\(824\) 114.394 66.0455i 0.138828 0.0801523i
\(825\) 0 0
\(826\) −649.294 334.980i −0.786070 0.405545i
\(827\) −1239.04 −1.49823 −0.749116 0.662438i \(-0.769522\pi\)
−0.749116 + 0.662438i \(0.769522\pi\)
\(828\) 0 0
\(829\) 555.123i 0.669629i 0.942284 + 0.334815i \(0.108674\pi\)
−0.942284 + 0.334815i \(0.891326\pi\)
\(830\) −54.3184 + 94.0822i −0.0654438 + 0.113352i
\(831\) 0 0
\(832\) −94.0834 + 54.3191i −0.113081 + 0.0652874i
\(833\) 791.359 562.811i 0.950011 0.675643i
\(834\) 0 0
\(835\) −233.337 + 404.151i −0.279445 + 0.484013i
\(836\) 938.240i 1.12230i
\(837\) 0 0
\(838\) 714.900i 0.853102i
\(839\) −955.955 551.921i −1.13940 0.657832i −0.193117 0.981176i \(-0.561860\pi\)
−0.946281 + 0.323344i \(0.895193\pi\)
\(840\) 0 0
\(841\) 83.7427 + 145.047i 0.0995752 + 0.172469i
\(842\) −32.3134 55.9685i −0.0383770 0.0664709i
\(843\) 0 0
\(844\) 350.216 606.592i 0.414948 0.718711i
\(845\) 37.0666i 0.0438658i
\(846\) 0 0
\(847\) 446.974 21.1579i 0.527714 0.0249798i
\(848\) 71.3548 123.590i 0.0841449 0.145743i
\(849\) 0 0
\(850\) −466.375 + 269.262i −0.548676 + 0.316778i
\(851\) −172.050 298.000i −0.202174 0.350176i
\(852\) 0 0
\(853\) 38.6408 + 22.3093i 0.0452999 + 0.0261539i 0.522479 0.852652i \(-0.325007\pi\)
−0.477179 + 0.878806i \(0.658341\pi\)
\(854\) −42.4503 896.788i −0.0497076 1.05010i
\(855\) 0 0
\(856\) −196.599 −0.229672
\(857\) 680.850 + 393.089i 0.794458 + 0.458680i 0.841530 0.540211i \(-0.181656\pi\)
−0.0470717 + 0.998892i \(0.514989\pi\)
\(858\) 0 0
\(859\) 286.832 165.602i 0.333914 0.192785i −0.323664 0.946172i \(-0.604915\pi\)
0.657577 + 0.753387i \(0.271581\pi\)
\(860\) 109.294 63.1007i 0.127086 0.0733729i
\(861\) 0 0
\(862\) −178.575 + 309.301i −0.207164 + 0.358818i
\(863\) −183.153 −0.212228 −0.106114 0.994354i \(-0.533841\pi\)
−0.106114 + 0.994354i \(0.533841\pi\)
\(864\) 0 0
\(865\) 181.139 0.209410
\(866\) −1016.81 587.058i −1.17415 0.677896i
\(867\) 0 0
\(868\) −294.720 + 189.280i −0.339539 + 0.218065i
\(869\) 889.687 + 1540.98i 1.02381 + 1.77328i
\(870\) 0 0
\(871\) 243.867 + 140.796i 0.279985 + 0.161649i
\(872\) −384.346 −0.440763
\(873\) 0 0
\(874\) 423.031i 0.484018i
\(875\) 661.590 + 341.324i 0.756102 + 0.390084i
\(876\) 0 0
\(877\) −560.581 970.954i −0.639203 1.10713i −0.985608 0.169047i \(-0.945931\pi\)
0.346405 0.938085i \(-0.387402\pi\)
\(878\) 273.142 157.699i 0.311096 0.179611i
\(879\) 0 0
\(880\) −113.308 65.4184i −0.128759 0.0743391i
\(881\) 1389.25i 1.57690i 0.615098 + 0.788450i \(0.289116\pi\)
−0.615098 + 0.788450i \(0.710884\pi\)
\(882\) 0 0
\(883\) 1358.53 1.53854 0.769268 0.638926i \(-0.220621\pi\)
0.769268 + 0.638926i \(0.220621\pi\)
\(884\) −269.125 + 466.138i −0.304440 + 0.527305i
\(885\) 0 0
\(886\) −145.107 251.332i −0.163777 0.283671i
\(887\) 908.326 524.422i 1.02404 0.591231i 0.108770 0.994067i \(-0.465309\pi\)
0.915272 + 0.402836i \(0.131975\pi\)
\(888\) 0 0
\(889\) −38.6067 + 74.8315i −0.0434271 + 0.0841749i
\(890\) 404.078 0.454021
\(891\) 0 0
\(892\) 641.187i 0.718820i
\(893\) −290.138 + 502.535i −0.324903 + 0.562749i
\(894\) 0 0
\(895\) −202.965 + 117.182i −0.226776 + 0.130929i
\(896\) 42.7966 + 66.6367i 0.0477641 + 0.0743713i
\(897\) 0 0
\(898\) 311.945 540.305i 0.347378 0.601676i
\(899\) 649.298i 0.722245i
\(900\) 0 0
\(901\) 707.057i 0.784747i
\(902\) −805.686 465.163i −0.893221 0.515702i
\(903\) 0 0
\(904\) −5.81469 10.0713i −0.00643218 0.0111409i
\(905\) −100.006 173.215i −0.110504 0.191398i
\(906\) 0 0
\(907\) −325.502 + 563.785i −0.358877 + 0.621593i −0.987774 0.155896i \(-0.950174\pi\)
0.628896 + 0.777489i \(0.283507\pi\)
\(908\) 561.000i 0.617841i
\(909\) 0 0
\(910\) 322.992 15.2891i 0.354936 0.0168012i
\(911\) 371.140 642.834i 0.407399 0.705636i −0.587198 0.809443i \(-0.699769\pi\)
0.994597 + 0.103807i \(0.0331025\pi\)
\(912\) 0 0
\(913\) 376.113 217.149i 0.411953 0.237841i
\(914\) 476.892 + 826.002i 0.521764 + 0.903722i
\(915\) 0 0
\(916\) −62.3924 36.0223i −0.0681140 0.0393256i
\(917\) −27.7662 586.577i −0.0302793 0.639670i
\(918\) 0 0
\(919\) 630.519 0.686093 0.343046 0.939319i \(-0.388541\pi\)
0.343046 + 0.939319i \(0.388541\pi\)
\(920\) −51.0880 29.4957i −0.0555305 0.0320605i
\(921\) 0 0
\(922\) −116.175 + 67.0739i −0.126004 + 0.0727483i
\(923\) −449.216 + 259.355i −0.486691 + 0.280991i
\(924\) 0 0
\(925\) −381.252 + 660.348i −0.412164 + 0.713890i
\(926\) 552.113 0.596234
\(927\) 0 0
\(928\) −146.808 −0.158198
\(929\) 164.909 + 95.2100i 0.177512 + 0.102487i 0.586123 0.810222i \(-0.300653\pi\)
−0.408611 + 0.912709i \(0.633987\pi\)
\(930\) 0 0
\(931\) 1377.52 979.687i 1.47962 1.05230i
\(932\) −418.773 725.336i −0.449327 0.778257i
\(933\) 0 0
\(934\) 166.062 + 95.8760i 0.177797 + 0.102651i
\(935\) −648.233 −0.693297
\(936\) 0 0
\(937\) 173.230i 0.184877i −0.995718 0.0924384i \(-0.970534\pi\)
0.995718 0.0924384i \(-0.0294661\pi\)
\(938\) 94.1184 182.430i 0.100339 0.194488i
\(939\) 0 0
\(940\) 40.4596 + 70.0780i 0.0430421 + 0.0745511i
\(941\) −1132.98 + 654.124i −1.20401 + 0.695137i −0.961445 0.274997i \(-0.911323\pi\)
−0.242568 + 0.970134i \(0.577990\pi\)
\(942\) 0 0
\(943\) −363.266 209.732i −0.385223 0.222409i
\(944\) 295.212i 0.312725i
\(945\) 0 0
\(946\) −504.516 −0.533315
\(947\) −101.101 + 175.112i −0.106759 + 0.184912i −0.914456 0.404686i \(-0.867381\pi\)
0.807696 + 0.589599i \(0.200714\pi\)
\(948\) 0 0
\(949\) 81.9553 + 141.951i 0.0863597 + 0.149579i
\(950\) −811.820 + 468.705i −0.854547 + 0.493373i
\(951\) 0 0
\(952\) 348.705 + 179.902i 0.366287 + 0.188973i
\(953\) 123.695 0.129796 0.0648978 0.997892i \(-0.479328\pi\)
0.0648978 + 0.997892i \(0.479328\pi\)
\(954\) 0 0
\(955\) 528.641i 0.553550i
\(956\) 51.2117 88.7012i 0.0535687 0.0927837i
\(957\) 0 0
\(958\) −249.004 + 143.762i −0.259920 + 0.150065i
\(959\) −756.313 1177.62i −0.788647 1.22797i
\(960\) 0 0
\(961\) −167.524 + 290.160i −0.174322 + 0.301935i
\(962\) 762.117i 0.792221i
\(963\) 0 0
\(964\) 526.044i 0.545689i
\(965\) −240.004 138.566i −0.248709 0.143592i
\(966\) 0 0
\(967\) 640.089 + 1108.67i 0.661933 + 1.14650i 0.980107 + 0.198469i \(0.0635971\pi\)
−0.318174 + 0.948032i \(0.603070\pi\)
\(968\) 90.4035 + 156.584i 0.0933921 + 0.161760i
\(969\) 0 0
\(970\) −195.373 + 338.396i −0.201416 + 0.348862i
\(971\) 1011.08i 1.04127i −0.853778 0.520637i \(-0.825695\pi\)
0.853778 0.520637i \(-0.174305\pi\)
\(972\) 0 0
\(973\) 48.7920 + 1030.76i 0.0501460 + 1.05936i
\(974\) −168.222 + 291.369i −0.172712 + 0.299147i
\(975\) 0 0
\(976\) 314.162 181.381i 0.321887 0.185842i
\(977\) −359.962 623.473i −0.368436 0.638150i 0.620885 0.783902i \(-0.286773\pi\)
−0.989321 + 0.145751i \(0.953440\pi\)
\(978\) 0 0
\(979\) −1398.97 807.693i −1.42897 0.825019i
\(980\) −22.2662 234.667i −0.0227206 0.239456i
\(981\) 0 0
\(982\) 801.142 0.815827
\(983\) 203.077 + 117.247i 0.206589 + 0.119274i 0.599725 0.800206i \(-0.295276\pi\)
−0.393136 + 0.919480i \(0.628610\pi\)
\(984\) 0 0
\(985\) 92.0432 53.1412i 0.0934449 0.0539504i
\(986\) −629.913 + 363.680i −0.638857 + 0.368844i
\(987\) 0 0
\(988\) −468.467 + 811.408i −0.474156 + 0.821263i
\(989\) −227.475 −0.230005
\(990\) 0 0
\(991\) 57.3158 0.0578363 0.0289181 0.999582i \(-0.490794\pi\)
0.0289181 + 0.999582i \(0.490794\pi\)
\(992\) −122.568 70.7645i −0.123556 0.0713352i
\(993\) 0 0
\(994\) 204.339 + 318.167i 0.205572 + 0.320088i
\(995\) 17.5066 + 30.3223i 0.0175946 + 0.0304747i
\(996\) 0 0
\(997\) 763.810 + 440.986i 0.766108 + 0.442313i 0.831484 0.555548i \(-0.187491\pi\)
−0.0653764 + 0.997861i \(0.520825\pi\)
\(998\) −333.985 −0.334654
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.o.a.181.11 32
3.2 odd 2 126.3.o.a.97.2 yes 32
7.6 odd 2 inner 378.3.o.a.181.14 32
9.2 odd 6 1134.3.c.e.811.14 16
9.4 even 3 inner 378.3.o.a.307.14 32
9.5 odd 6 126.3.o.a.13.7 yes 32
9.7 even 3 1134.3.c.d.811.3 16
21.20 even 2 126.3.o.a.97.7 yes 32
63.13 odd 6 inner 378.3.o.a.307.11 32
63.20 even 6 1134.3.c.e.811.11 16
63.34 odd 6 1134.3.c.d.811.6 16
63.41 even 6 126.3.o.a.13.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.2 32 63.41 even 6
126.3.o.a.13.7 yes 32 9.5 odd 6
126.3.o.a.97.2 yes 32 3.2 odd 2
126.3.o.a.97.7 yes 32 21.20 even 2
378.3.o.a.181.11 32 1.1 even 1 trivial
378.3.o.a.181.14 32 7.6 odd 2 inner
378.3.o.a.307.11 32 63.13 odd 6 inner
378.3.o.a.307.14 32 9.4 even 3 inner
1134.3.c.d.811.3 16 9.7 even 3
1134.3.c.d.811.6 16 63.34 odd 6
1134.3.c.e.811.11 16 63.20 even 6
1134.3.c.e.811.14 16 9.2 odd 6