Properties

Label 126.3.o.a.13.2
Level $126$
Weight $3$
Character 126.13
Analytic conductor $3.433$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(13,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 13.2
Character \(\chi\) \(=\) 126.13
Dual form 126.3.o.a.97.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-2.47578 + 1.69425i) q^{3} +(-1.00000 + 1.73205i) q^{4} +(2.08306 + 1.20266i) q^{5} +(3.82567 + 1.83418i) q^{6} +(-3.20945 - 6.22089i) q^{7} +2.82843 q^{8} +(3.25900 - 8.38921i) q^{9} -3.40163i q^{10} +(-6.79936 - 11.7768i) q^{11} +(-0.458753 - 5.98244i) q^{12} +(-11.7604 - 6.78989i) q^{13} +(-5.34958 + 8.32959i) q^{14} +(-7.19482 + 0.551722i) q^{15} +(-2.00000 - 3.46410i) q^{16} +19.8181i q^{17} +(-12.5791 + 1.94062i) q^{18} -34.4974i q^{19} +(-4.16613 + 2.40532i) q^{20} +(18.4857 + 9.96394i) q^{21} +(-9.61574 + 16.6550i) q^{22} +(4.33552 - 7.50935i) q^{23} +(-7.00257 + 4.79208i) q^{24} +(-9.60723 - 16.6402i) q^{25} +19.2047i q^{26} +(6.14489 + 26.2915i) q^{27} +(13.9843 + 0.661961i) q^{28} +(12.9761 + 22.4752i) q^{29} +(5.76323 + 8.42170i) q^{30} +(-21.6671 - 12.5095i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(36.7867 + 17.6370i) q^{33} +(24.2721 - 14.0135i) q^{34} +(0.796113 - 16.8184i) q^{35} +(11.2715 + 14.0340i) q^{36} +39.6839 q^{37} +(-42.2505 + 24.3933i) q^{38} +(40.6201 - 3.11488i) q^{39} +(5.89179 + 3.40163i) q^{40} +(-41.8941 - 24.1876i) q^{41} +(-0.868048 - 29.6858i) q^{42} +(13.1169 + 22.7192i) q^{43} +27.1974 q^{44} +(16.8781 - 13.5558i) q^{45} -12.2627 q^{46} +(-14.5673 + 8.41045i) q^{47} +(10.8206 + 5.18785i) q^{48} +(-28.3989 + 39.9312i) q^{49} +(-13.5867 + 23.5328i) q^{50} +(-33.5768 - 49.0652i) q^{51} +(23.5209 - 13.5798i) q^{52} +35.6774 q^{53} +(27.8552 - 26.1168i) q^{54} -32.7092i q^{55} +(-9.07769 - 17.5953i) q^{56} +(58.4473 + 85.4080i) q^{57} +(18.3509 - 31.7848i) q^{58} +(63.9153 + 36.9015i) q^{59} +(6.23921 - 13.0135i) q^{60} +(-78.5405 + 45.3454i) q^{61} +35.3823i q^{62} +(-62.6480 + 6.65086i) q^{63} +8.00000 q^{64} +(-16.3318 - 28.2875i) q^{65} +(-4.41125 - 57.5256i) q^{66} +(-10.3681 + 17.9581i) q^{67} +(-34.3259 - 19.8181i) q^{68} +(1.98893 + 25.9370i) q^{69} +(-21.1612 + 10.9174i) q^{70} -38.1972 q^{71} +(9.21785 - 23.7283i) q^{72} +12.0702i q^{73} +(-28.0607 - 48.6026i) q^{74} +(51.9782 + 24.9205i) q^{75} +(59.7512 + 34.4974i) q^{76} +(-51.4402 + 80.0951i) q^{77} +(-32.5377 - 47.5467i) q^{78} +(-65.4244 - 113.318i) q^{79} -9.62126i q^{80} +(-59.7578 - 54.6809i) q^{81} +68.4128i q^{82} +(-27.6580 + 15.9683i) q^{83} +(-35.7437 + 22.0542i) q^{84} +(-23.8343 + 41.2823i) q^{85} +(18.5501 - 32.1298i) q^{86} +(-70.2047 - 33.6590i) q^{87} +(-19.2315 - 33.3099i) q^{88} -118.790i q^{89} +(-28.5370 - 11.0859i) q^{90} +(-4.49464 + 94.9521i) q^{91} +(8.67105 + 15.0187i) q^{92} +(74.8374 - 5.73877i) q^{93} +(20.6013 + 11.8942i) q^{94} +(41.4885 - 71.8602i) q^{95} +(-1.29755 - 16.9209i) q^{96} +(99.4807 - 57.4352i) q^{97} +(68.9866 + 6.54575i) q^{98} +(-120.957 + 18.6605i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{4} - 2 q^{7} + 24 q^{9} - 12 q^{11} - 12 q^{14} + 48 q^{15} - 64 q^{16} - 54 q^{21} + 12 q^{23} + 80 q^{25} + 8 q^{28} - 48 q^{29} - 168 q^{30} + 348 q^{35} - 72 q^{36} - 88 q^{37} + 252 q^{39}+ \cdots - 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) −2.47578 + 1.69425i −0.825261 + 0.564752i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 2.08306 + 1.20266i 0.416613 + 0.240532i 0.693627 0.720334i \(-0.256012\pi\)
−0.277014 + 0.960866i \(0.589345\pi\)
\(6\) 3.82567 + 1.83418i 0.637612 + 0.305697i
\(7\) −3.20945 6.22089i −0.458493 0.888698i
\(8\) 2.82843 0.353553
\(9\) 3.25900 8.38921i 0.362111 0.932135i
\(10\) 3.40163i 0.340163i
\(11\) −6.79936 11.7768i −0.618123 1.07062i −0.989828 0.142270i \(-0.954560\pi\)
0.371705 0.928351i \(-0.378773\pi\)
\(12\) −0.458753 5.98244i −0.0382294 0.498536i
\(13\) −11.7604 6.78989i −0.904648 0.522299i −0.0259430 0.999663i \(-0.508259\pi\)
−0.878705 + 0.477364i \(0.841592\pi\)
\(14\) −5.34958 + 8.32959i −0.382113 + 0.594970i
\(15\) −7.19482 + 0.551722i −0.479655 + 0.0367815i
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 19.8181i 1.16577i 0.812555 + 0.582884i \(0.198076\pi\)
−0.812555 + 0.582884i \(0.801924\pi\)
\(18\) −12.5791 + 1.94062i −0.698839 + 0.107812i
\(19\) 34.4974i 1.81565i −0.419348 0.907826i \(-0.637741\pi\)
0.419348 0.907826i \(-0.362259\pi\)
\(20\) −4.16613 + 2.40532i −0.208306 + 0.120266i
\(21\) 18.4857 + 9.96394i 0.880270 + 0.474474i
\(22\) −9.61574 + 16.6550i −0.437079 + 0.757043i
\(23\) 4.33552 7.50935i 0.188501 0.326493i −0.756250 0.654283i \(-0.772970\pi\)
0.944751 + 0.327790i \(0.106304\pi\)
\(24\) −7.00257 + 4.79208i −0.291774 + 0.199670i
\(25\) −9.60723 16.6402i −0.384289 0.665608i
\(26\) 19.2047i 0.738642i
\(27\) 6.14489 + 26.2915i 0.227588 + 0.973757i
\(28\) 13.9843 + 0.661961i 0.499441 + 0.0236415i
\(29\) 12.9761 + 22.4752i 0.447451 + 0.775008i 0.998219 0.0596503i \(-0.0189985\pi\)
−0.550768 + 0.834658i \(0.685665\pi\)
\(30\) 5.76323 + 8.42170i 0.192108 + 0.280723i
\(31\) −21.6671 12.5095i −0.698939 0.403533i 0.108013 0.994149i \(-0.465551\pi\)
−0.806952 + 0.590617i \(0.798885\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 36.7867 + 17.6370i 1.11475 + 0.534455i
\(34\) 24.2721 14.0135i 0.713884 0.412161i
\(35\) 0.796113 16.8184i 0.0227461 0.480525i
\(36\) 11.2715 + 14.0340i 0.313098 + 0.389832i
\(37\) 39.6839 1.07254 0.536268 0.844047i \(-0.319833\pi\)
0.536268 + 0.844047i \(0.319833\pi\)
\(38\) −42.2505 + 24.3933i −1.11185 + 0.641930i
\(39\) 40.6201 3.11488i 1.04154 0.0798687i
\(40\) 5.89179 + 3.40163i 0.147295 + 0.0850407i
\(41\) −41.8941 24.1876i −1.02181 0.589941i −0.107180 0.994240i \(-0.534182\pi\)
−0.914627 + 0.404299i \(0.867516\pi\)
\(42\) −0.868048 29.6858i −0.0206678 0.706805i
\(43\) 13.1169 + 22.7192i 0.305045 + 0.528353i 0.977271 0.211992i \(-0.0679952\pi\)
−0.672226 + 0.740346i \(0.734662\pi\)
\(44\) 27.1974 0.618123
\(45\) 16.8781 13.5558i 0.375068 0.301240i
\(46\) −12.2627 −0.266581
\(47\) −14.5673 + 8.41045i −0.309943 + 0.178946i −0.646901 0.762574i \(-0.723935\pi\)
0.336958 + 0.941520i \(0.390602\pi\)
\(48\) 10.8206 + 5.18785i 0.225430 + 0.108080i
\(49\) −28.3989 + 39.9312i −0.579569 + 0.814923i
\(50\) −13.5867 + 23.5328i −0.271733 + 0.470656i
\(51\) −33.5768 49.0652i −0.658369 0.962063i
\(52\) 23.5209 13.5798i 0.452324 0.261150i
\(53\) 35.6774 0.673159 0.336579 0.941655i \(-0.390730\pi\)
0.336579 + 0.941655i \(0.390730\pi\)
\(54\) 27.8552 26.1168i 0.515838 0.483644i
\(55\) 32.7092i 0.594712i
\(56\) −9.07769 17.5953i −0.162102 0.314202i
\(57\) 58.4473 + 85.4080i 1.02539 + 1.49839i
\(58\) 18.3509 31.7848i 0.316396 0.548013i
\(59\) 63.9153 + 36.9015i 1.08331 + 0.625449i 0.931787 0.363005i \(-0.118249\pi\)
0.151522 + 0.988454i \(0.451582\pi\)
\(60\) 6.23921 13.0135i 0.103987 0.216892i
\(61\) −78.5405 + 45.3454i −1.28755 + 0.743367i −0.978217 0.207587i \(-0.933439\pi\)
−0.309332 + 0.950954i \(0.600106\pi\)
\(62\) 35.3823i 0.570682i
\(63\) −62.6480 + 6.65086i −0.994412 + 0.105569i
\(64\) 8.00000 0.125000
\(65\) −16.3318 28.2875i −0.251259 0.435193i
\(66\) −4.41125 57.5256i −0.0668371 0.871599i
\(67\) −10.3681 + 17.9581i −0.154748 + 0.268031i −0.932967 0.359962i \(-0.882790\pi\)
0.778219 + 0.627992i \(0.216123\pi\)
\(68\) −34.3259 19.8181i −0.504792 0.291442i
\(69\) 1.98893 + 25.9370i 0.0288251 + 0.375898i
\(70\) −21.1612 + 10.9174i −0.302302 + 0.155962i
\(71\) −38.1972 −0.537989 −0.268995 0.963142i \(-0.586691\pi\)
−0.268995 + 0.963142i \(0.586691\pi\)
\(72\) 9.21785 23.7283i 0.128026 0.329559i
\(73\) 12.0702i 0.165345i 0.996577 + 0.0826726i \(0.0263456\pi\)
−0.996577 + 0.0826726i \(0.973654\pi\)
\(74\) −28.0607 48.6026i −0.379199 0.656792i
\(75\) 51.9782 + 24.9205i 0.693042 + 0.332273i
\(76\) 59.7512 + 34.4974i 0.786200 + 0.453913i
\(77\) −51.4402 + 80.0951i −0.668054 + 1.04020i
\(78\) −32.5377 47.5467i −0.417149 0.609573i
\(79\) −65.4244 113.318i −0.828157 1.43441i −0.899483 0.436956i \(-0.856056\pi\)
0.0713263 0.997453i \(-0.477277\pi\)
\(80\) 9.62126i 0.120266i
\(81\) −59.7578 54.6809i −0.737751 0.675073i
\(82\) 68.4128i 0.834302i
\(83\) −27.6580 + 15.9683i −0.333229 + 0.192390i −0.657274 0.753652i \(-0.728290\pi\)
0.324045 + 0.946042i \(0.394957\pi\)
\(84\) −35.7437 + 22.0542i −0.425521 + 0.262550i
\(85\) −23.8343 + 41.2823i −0.280404 + 0.485674i
\(86\) 18.5501 32.1298i 0.215699 0.373602i
\(87\) −70.2047 33.6590i −0.806951 0.386885i
\(88\) −19.2315 33.3099i −0.218540 0.378522i
\(89\) 118.790i 1.33472i −0.744737 0.667358i \(-0.767425\pi\)
0.744737 0.667358i \(-0.232575\pi\)
\(90\) −28.5370 11.0859i −0.317078 0.123177i
\(91\) −4.49464 + 94.9521i −0.0493917 + 1.04343i
\(92\) 8.67105 + 15.0187i 0.0942505 + 0.163247i
\(93\) 74.8374 5.73877i 0.804703 0.0617072i
\(94\) 20.6013 + 11.8942i 0.219163 + 0.126534i
\(95\) 41.4885 71.8602i 0.436721 0.756423i
\(96\) −1.29755 16.9209i −0.0135161 0.176259i
\(97\) 99.4807 57.4352i 1.02557 0.592116i 0.109861 0.993947i \(-0.464960\pi\)
0.915714 + 0.401831i \(0.131626\pi\)
\(98\) 68.9866 + 6.54575i 0.703945 + 0.0667934i
\(99\) −120.957 + 18.6605i −1.22179 + 0.188490i
\(100\) 38.4289 0.384289
\(101\) 149.663 86.4081i 1.48181 0.855526i 0.482027 0.876156i \(-0.339901\pi\)
0.999787 + 0.0206305i \(0.00656734\pi\)
\(102\) −36.3500 + 75.8174i −0.356372 + 0.743308i
\(103\) −40.4444 23.3506i −0.392664 0.226705i 0.290650 0.956830i \(-0.406129\pi\)
−0.683314 + 0.730125i \(0.739462\pi\)
\(104\) −33.2635 19.2047i −0.319842 0.184661i
\(105\) 26.5236 + 42.9875i 0.252606 + 0.409404i
\(106\) −25.2277 43.6957i −0.237998 0.412224i
\(107\) −69.5084 −0.649611 −0.324806 0.945781i \(-0.605299\pi\)
−0.324806 + 0.945781i \(0.605299\pi\)
\(108\) −51.6830 15.6482i −0.478546 0.144891i
\(109\) 135.887 1.24667 0.623334 0.781956i \(-0.285778\pi\)
0.623334 + 0.781956i \(0.285778\pi\)
\(110\) −40.0604 + 23.1289i −0.364186 + 0.210263i
\(111\) −98.2486 + 67.2346i −0.885123 + 0.605717i
\(112\) −15.1309 + 23.5596i −0.135097 + 0.210354i
\(113\) −2.05580 + 3.56076i −0.0181930 + 0.0315111i −0.874979 0.484162i \(-0.839125\pi\)
0.856786 + 0.515673i \(0.172458\pi\)
\(114\) 63.2745 131.976i 0.555039 1.15768i
\(115\) 18.0623 10.4283i 0.157064 0.0906809i
\(116\) −51.9043 −0.447451
\(117\) −95.2891 + 76.5325i −0.814437 + 0.654124i
\(118\) 104.373i 0.884519i
\(119\) 123.286 63.6050i 1.03602 0.534496i
\(120\) −20.3500 + 1.56051i −0.169584 + 0.0130042i
\(121\) −31.9625 + 55.3606i −0.264153 + 0.457526i
\(122\) 111.073 + 64.1280i 0.910435 + 0.525640i
\(123\) 144.701 11.0961i 1.17643 0.0902123i
\(124\) 43.3342 25.0190i 0.349470 0.201766i
\(125\) 106.350i 0.850798i
\(126\) 52.4444 + 72.0249i 0.416225 + 0.571626i
\(127\) 12.0291 0.0947171 0.0473585 0.998878i \(-0.484920\pi\)
0.0473585 + 0.998878i \(0.484920\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) −70.9668 34.0244i −0.550130 0.263755i
\(130\) −23.0967 + 40.0046i −0.177667 + 0.307728i
\(131\) 72.6514 + 41.9453i 0.554591 + 0.320193i 0.750971 0.660335i \(-0.229586\pi\)
−0.196381 + 0.980528i \(0.562919\pi\)
\(132\) −67.3349 + 46.0794i −0.510113 + 0.349086i
\(133\) −214.604 + 110.718i −1.61357 + 0.832462i
\(134\) 29.3254 0.218846
\(135\) −18.8194 + 62.1570i −0.139403 + 0.460422i
\(136\) 56.0539i 0.412161i
\(137\) 99.9694 + 173.152i 0.729703 + 1.26388i 0.957009 + 0.290060i \(0.0936751\pi\)
−0.227305 + 0.973824i \(0.572992\pi\)
\(138\) 30.3598 20.7762i 0.219999 0.150552i
\(139\) 127.666 + 73.7083i 0.918464 + 0.530275i 0.883145 0.469101i \(-0.155422\pi\)
0.0353192 + 0.999376i \(0.488755\pi\)
\(140\) 28.3342 + 18.1973i 0.202387 + 0.129981i
\(141\) 21.8161 45.5032i 0.154724 0.322718i
\(142\) 27.0095 + 46.7819i 0.190208 + 0.329450i
\(143\) 184.667i 1.29138i
\(144\) −35.5791 + 5.48892i −0.247077 + 0.0381175i
\(145\) 62.4231i 0.430504i
\(146\) 14.7829 8.53492i 0.101253 0.0584584i
\(147\) 2.65581 146.976i 0.0180667 0.999837i
\(148\) −39.6839 + 68.7345i −0.268134 + 0.464422i
\(149\) 105.785 183.225i 0.709967 1.22970i −0.254902 0.966967i \(-0.582043\pi\)
0.964869 0.262731i \(-0.0846233\pi\)
\(150\) −6.23292 81.2814i −0.0415528 0.541876i
\(151\) −9.48372 16.4263i −0.0628061 0.108783i 0.832913 0.553405i \(-0.186672\pi\)
−0.895719 + 0.444621i \(0.853338\pi\)
\(152\) 97.5733i 0.641930i
\(153\) 166.258 + 64.5871i 1.08665 + 0.422138i
\(154\) 134.470 + 6.36525i 0.873181 + 0.0413328i
\(155\) −30.0893 52.1163i −0.194125 0.336234i
\(156\) −35.2249 + 73.4709i −0.225801 + 0.470967i
\(157\) 6.98156 + 4.03081i 0.0444685 + 0.0256739i 0.522069 0.852903i \(-0.325160\pi\)
−0.477601 + 0.878577i \(0.658494\pi\)
\(158\) −92.5240 + 160.256i −0.585595 + 1.01428i
\(159\) −88.3296 + 60.4466i −0.555532 + 0.380168i
\(160\) −11.7836 + 6.80326i −0.0736474 + 0.0425204i
\(161\) −60.6294 2.86995i −0.376580 0.0178258i
\(162\) −24.7150 + 111.853i −0.152562 + 0.690453i
\(163\) 49.1196 0.301347 0.150673 0.988584i \(-0.451856\pi\)
0.150673 + 0.988584i \(0.451856\pi\)
\(164\) 83.7882 48.3751i 0.510904 0.294970i
\(165\) 55.4177 + 80.9808i 0.335865 + 0.490793i
\(166\) 39.1143 + 22.5826i 0.235628 + 0.136040i
\(167\) −168.024 97.0088i −1.00613 0.580891i −0.0960758 0.995374i \(-0.530629\pi\)
−0.910057 + 0.414483i \(0.863962\pi\)
\(168\) 52.2854 + 28.1823i 0.311222 + 0.167752i
\(169\) 7.70514 + 13.3457i 0.0455926 + 0.0789686i
\(170\) 67.4137 0.396551
\(171\) −289.406 112.427i −1.69243 0.657468i
\(172\) −52.4677 −0.305045
\(173\) 65.2186 37.6540i 0.376986 0.217653i −0.299520 0.954090i \(-0.596827\pi\)
0.676506 + 0.736437i \(0.263493\pi\)
\(174\) 8.41854 + 109.783i 0.0483824 + 0.630939i
\(175\) −72.6830 + 113.171i −0.415331 + 0.646694i
\(176\) −27.1974 + 47.1073i −0.154531 + 0.267655i
\(177\) −220.761 + 16.9287i −1.24724 + 0.0956421i
\(178\) −145.487 + 83.9970i −0.817343 + 0.471893i
\(179\) −97.4357 −0.544334 −0.272167 0.962250i \(-0.587740\pi\)
−0.272167 + 0.962250i \(0.587740\pi\)
\(180\) 6.60129 + 42.7895i 0.0366738 + 0.237719i
\(181\) 83.1541i 0.459415i −0.973260 0.229707i \(-0.926223\pi\)
0.973260 0.229707i \(-0.0737769\pi\)
\(182\) 119.470 61.6365i 0.656430 0.338662i
\(183\) 117.623 245.333i 0.642746 1.34062i
\(184\) 12.2627 21.2396i 0.0666452 0.115433i
\(185\) 82.6640 + 47.7261i 0.446833 + 0.257979i
\(186\) −59.9466 87.5988i −0.322293 0.470961i
\(187\) 233.394 134.750i 1.24810 0.720588i
\(188\) 33.6418i 0.178946i
\(189\) 143.834 122.608i 0.761029 0.648718i
\(190\) −117.347 −0.617617
\(191\) 109.890 + 190.335i 0.575341 + 0.996520i 0.996005 + 0.0893029i \(0.0284639\pi\)
−0.420664 + 0.907217i \(0.638203\pi\)
\(192\) −19.8063 + 13.5540i −0.103158 + 0.0705939i
\(193\) 57.6084 99.7807i 0.298489 0.516998i −0.677301 0.735706i \(-0.736851\pi\)
0.975790 + 0.218707i \(0.0701840\pi\)
\(194\) −140.687 81.2257i −0.725190 0.418689i
\(195\) 88.3603 + 42.3635i 0.453130 + 0.217249i
\(196\) −40.7640 89.1195i −0.207980 0.454692i
\(197\) 44.1864 0.224297 0.112148 0.993691i \(-0.464227\pi\)
0.112148 + 0.993691i \(0.464227\pi\)
\(198\) 108.384 + 134.947i 0.547395 + 0.681551i
\(199\) 14.5566i 0.0731488i 0.999331 + 0.0365744i \(0.0116446\pi\)
−0.999331 + 0.0365744i \(0.988355\pi\)
\(200\) −27.1733 47.0656i −0.135867 0.235328i
\(201\) −4.75639 62.0265i −0.0236636 0.308589i
\(202\) −211.656 122.200i −1.04780 0.604948i
\(203\) 98.1698 152.856i 0.483595 0.752984i
\(204\) 118.560 9.09158i 0.581178 0.0445666i
\(205\) −58.1787 100.769i −0.283799 0.491554i
\(206\) 66.0455i 0.320609i
\(207\) −48.8680 60.8446i −0.236077 0.293935i
\(208\) 54.3191i 0.261150i
\(209\) −406.270 + 234.560i −1.94387 + 1.12230i
\(210\) 33.8936 62.8814i 0.161398 0.299435i
\(211\) 175.108 303.296i 0.829896 1.43742i −0.0682235 0.997670i \(-0.521733\pi\)
0.898119 0.439752i \(-0.144934\pi\)
\(212\) −35.6774 + 61.7951i −0.168290 + 0.291486i
\(213\) 94.5680 64.7158i 0.443981 0.303830i
\(214\) 49.1499 + 85.1300i 0.229672 + 0.397804i
\(215\) 63.1007i 0.293492i
\(216\) 17.3804 + 74.3635i 0.0804646 + 0.344275i
\(217\) −8.28082 + 174.937i −0.0381604 + 0.806163i
\(218\) −96.0864 166.427i −0.440763 0.763425i
\(219\) −20.4500 29.8832i −0.0933790 0.136453i
\(220\) 56.6540 + 32.7092i 0.257518 + 0.148678i
\(221\) 134.562 233.069i 0.608880 1.05461i
\(222\) 151.817 + 72.7875i 0.683863 + 0.327872i
\(223\) 277.642 160.297i 1.24503 0.718820i 0.274918 0.961468i \(-0.411349\pi\)
0.970114 + 0.242648i \(0.0780161\pi\)
\(224\) 39.5537 + 1.87231i 0.176579 + 0.00835852i
\(225\) −170.908 + 26.3666i −0.759592 + 0.117185i
\(226\) 5.81469 0.0257287
\(227\) −242.920 + 140.250i −1.07013 + 0.617841i −0.928218 0.372037i \(-0.878659\pi\)
−0.141915 + 0.989879i \(0.545326\pi\)
\(228\) −206.378 + 15.8258i −0.905168 + 0.0694112i
\(229\) 31.1962 + 18.0111i 0.136228 + 0.0786512i 0.566565 0.824017i \(-0.308272\pi\)
−0.430337 + 0.902668i \(0.641605\pi\)
\(230\) −25.5440 14.7478i −0.111061 0.0641211i
\(231\) −8.34693 285.451i −0.0361339 1.23572i
\(232\) 36.7019 + 63.5695i 0.158198 + 0.274007i
\(233\) −418.773 −1.79731 −0.898654 0.438658i \(-0.855454\pi\)
−0.898654 + 0.438658i \(0.855454\pi\)
\(234\) 161.112 + 62.5882i 0.688514 + 0.267471i
\(235\) −40.4596 −0.172168
\(236\) −127.831 + 73.8030i −0.541655 + 0.312725i
\(237\) 353.967 + 169.706i 1.49353 + 0.716059i
\(238\) −165.076 106.018i −0.693598 0.445455i
\(239\) −25.6058 + 44.3506i −0.107137 + 0.185567i −0.914609 0.404338i \(-0.867502\pi\)
0.807472 + 0.589906i \(0.200835\pi\)
\(240\) 16.3009 + 23.8202i 0.0679203 + 0.0992506i
\(241\) −227.784 + 131.511i −0.945161 + 0.545689i −0.891574 0.452874i \(-0.850399\pi\)
−0.0535868 + 0.998563i \(0.517065\pi\)
\(242\) 90.4035 0.373568
\(243\) 240.591 + 34.1331i 0.990086 + 0.140465i
\(244\) 181.381i 0.743367i
\(245\) −107.180 + 49.0252i −0.437471 + 0.200103i
\(246\) −115.909 169.375i −0.471173 0.688517i
\(247\) −234.233 + 405.704i −0.948313 + 1.64253i
\(248\) −61.2839 35.3823i −0.247112 0.142670i
\(249\) 41.4207 86.3938i 0.166348 0.346963i
\(250\) −130.251 + 75.2006i −0.521005 + 0.300802i
\(251\) 244.001i 0.972115i 0.873927 + 0.486058i \(0.161565\pi\)
−0.873927 + 0.486058i \(0.838435\pi\)
\(252\) 51.1283 115.160i 0.202890 0.456985i
\(253\) −117.915 −0.466067
\(254\) −8.50584 14.7325i −0.0334875 0.0580021i
\(255\) −10.9341 142.587i −0.0428787 0.559166i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −185.090 106.862i −0.720193 0.415804i 0.0946307 0.995512i \(-0.469833\pi\)
−0.814824 + 0.579709i \(0.803166\pi\)
\(258\) 8.50992 + 110.975i 0.0329842 + 0.430136i
\(259\) −127.363 246.869i −0.491750 0.953162i
\(260\) 65.3273 0.251259
\(261\) 230.839 35.6123i 0.884439 0.136446i
\(262\) 118.639i 0.452821i
\(263\) 77.6298 + 134.459i 0.295170 + 0.511250i 0.975025 0.222097i \(-0.0712902\pi\)
−0.679854 + 0.733347i \(0.737957\pi\)
\(264\) 104.048 + 49.8851i 0.394123 + 0.188959i
\(265\) 74.3184 + 42.9077i 0.280447 + 0.161916i
\(266\) 287.349 + 184.546i 1.08026 + 0.693783i
\(267\) 201.260 + 294.097i 0.753783 + 1.10149i
\(268\) −20.7362 35.9161i −0.0773739 0.134015i
\(269\) 128.394i 0.477302i −0.971105 0.238651i \(-0.923295\pi\)
0.971105 0.238651i \(-0.0767052\pi\)
\(270\) 89.4338 20.9026i 0.331236 0.0774171i
\(271\) 520.915i 1.92219i −0.276210 0.961097i \(-0.589079\pi\)
0.276210 0.961097i \(-0.410921\pi\)
\(272\) 68.6518 39.6361i 0.252396 0.145721i
\(273\) −149.745 242.696i −0.548518 0.888996i
\(274\) 141.378 244.874i 0.515978 0.893700i
\(275\) −130.646 + 226.285i −0.475076 + 0.822856i
\(276\) −46.9131 22.4921i −0.169975 0.0814930i
\(277\) 191.963 + 332.489i 0.693007 + 1.20032i 0.970848 + 0.239696i \(0.0770477\pi\)
−0.277841 + 0.960627i \(0.589619\pi\)
\(278\) 208.478i 0.749923i
\(279\) −175.558 + 141.002i −0.629241 + 0.505382i
\(280\) 2.25175 47.5695i 0.00804195 0.169891i
\(281\) −45.4795 78.7728i −0.161849 0.280330i 0.773683 0.633573i \(-0.218412\pi\)
−0.935532 + 0.353243i \(0.885079\pi\)
\(282\) −71.1561 + 5.45648i −0.252327 + 0.0193492i
\(283\) −86.2442 49.7931i −0.304750 0.175947i 0.339825 0.940489i \(-0.389632\pi\)
−0.644575 + 0.764541i \(0.722966\pi\)
\(284\) 38.1972 66.1595i 0.134497 0.232956i
\(285\) 19.0330 + 248.202i 0.0667823 + 0.870886i
\(286\) 226.170 130.580i 0.790806 0.456572i
\(287\) −16.0112 + 338.247i −0.0557883 + 1.17856i
\(288\) 31.8807 + 39.6941i 0.110697 + 0.137827i
\(289\) −103.755 −0.359015
\(290\) 76.4524 44.1398i 0.263629 0.152206i
\(291\) −148.983 + 310.743i −0.511968 + 1.06784i
\(292\) −20.9062 12.0702i −0.0715966 0.0413363i
\(293\) −493.237 284.771i −1.68340 0.971914i −0.959371 0.282149i \(-0.908953\pi\)
−0.724033 0.689765i \(-0.757714\pi\)
\(294\) −181.886 + 100.675i −0.618660 + 0.342432i
\(295\) 88.7597 + 153.736i 0.300880 + 0.521140i
\(296\) 112.243 0.379199
\(297\) 267.849 251.132i 0.901847 0.845563i
\(298\) −299.205 −1.00404
\(299\) −101.975 + 58.8754i −0.341054 + 0.196908i
\(300\) −95.1417 + 65.1084i −0.317139 + 0.217028i
\(301\) 99.2354 154.515i 0.329686 0.513339i
\(302\) −13.4120 + 23.2303i −0.0444106 + 0.0769215i
\(303\) −224.136 + 467.495i −0.739724 + 1.54289i
\(304\) −119.502 + 68.9947i −0.393100 + 0.226956i
\(305\) −218.140 −0.715213
\(306\) −38.4594 249.294i −0.125684 0.814685i
\(307\) 235.830i 0.768176i −0.923296 0.384088i \(-0.874516\pi\)
0.923296 0.384088i \(-0.125484\pi\)
\(308\) −87.2887 169.192i −0.283405 0.549325i
\(309\) 139.694 10.7121i 0.452083 0.0346672i
\(310\) −42.5527 + 73.7035i −0.137267 + 0.237753i
\(311\) 525.110 + 303.172i 1.68846 + 0.974831i 0.955701 + 0.294339i \(0.0950996\pi\)
0.732756 + 0.680492i \(0.238234\pi\)
\(312\) 114.891 8.81021i 0.368240 0.0282378i
\(313\) 21.4543 12.3867i 0.0685442 0.0395740i −0.465336 0.885134i \(-0.654067\pi\)
0.533880 + 0.845560i \(0.320733\pi\)
\(314\) 11.4008i 0.0363084i
\(315\) −138.498 61.4899i −0.439677 0.195206i
\(316\) 261.697 0.828157
\(317\) 219.173 + 379.619i 0.691398 + 1.19754i 0.971380 + 0.237531i \(0.0763383\pi\)
−0.279982 + 0.960005i \(0.590328\pi\)
\(318\) 136.490 + 65.4389i 0.429214 + 0.205783i
\(319\) 176.458 305.634i 0.553160 0.958101i
\(320\) 16.6645 + 9.62126i 0.0520766 + 0.0300664i
\(321\) 172.088 117.765i 0.536099 0.366869i
\(322\) 39.3565 + 76.2850i 0.122225 + 0.236910i
\(323\) 683.671 2.11663
\(324\) 154.468 48.8227i 0.476753 0.150687i
\(325\) 260.928i 0.802855i
\(326\) −34.7328 60.1589i −0.106542 0.184537i
\(327\) −336.426 + 230.227i −1.02883 + 0.704057i
\(328\) −118.494 68.4128i −0.361263 0.208576i
\(329\) 99.0736 + 63.6288i 0.301135 + 0.193401i
\(330\) 59.9946 125.135i 0.181802 0.379196i
\(331\) 301.074 + 521.476i 0.909590 + 1.57546i 0.814634 + 0.579976i \(0.196938\pi\)
0.0949566 + 0.995481i \(0.469729\pi\)
\(332\) 63.8733i 0.192390i
\(333\) 129.330 332.916i 0.388378 0.999749i
\(334\) 274.382i 0.821504i
\(335\) −43.1948 + 24.9385i −0.128940 + 0.0744434i
\(336\) −2.45521 83.9641i −0.00730718 0.249893i
\(337\) −58.8515 + 101.934i −0.174634 + 0.302474i −0.940034 0.341080i \(-0.889207\pi\)
0.765401 + 0.643554i \(0.222541\pi\)
\(338\) 10.8967 18.8737i 0.0322388 0.0558393i
\(339\) −0.943105 12.2987i −0.00278202 0.0362794i
\(340\) −47.6687 82.5646i −0.140202 0.242837i
\(341\) 340.227i 0.997732i
\(342\) 66.9465 + 433.946i 0.195750 + 1.26885i
\(343\) 339.552 + 48.5091i 0.989949 + 0.141426i
\(344\) 37.1003 + 64.2596i 0.107850 + 0.186801i
\(345\) −27.0502 + 56.4204i −0.0784065 + 0.163537i
\(346\) −92.2331 53.2508i −0.266570 0.153904i
\(347\) −136.895 + 237.110i −0.394511 + 0.683313i −0.993039 0.117789i \(-0.962419\pi\)
0.598528 + 0.801102i \(0.295753\pi\)
\(348\) 128.504 87.9391i 0.369264 0.252699i
\(349\) 184.692 106.632i 0.529203 0.305535i −0.211489 0.977380i \(-0.567831\pi\)
0.740692 + 0.671845i \(0.234498\pi\)
\(350\) 190.001 + 8.99385i 0.542859 + 0.0256967i
\(351\) 106.249 350.922i 0.302705 0.999777i
\(352\) 76.9259 0.218540
\(353\) 497.182 287.048i 1.40845 0.813168i 0.413210 0.910636i \(-0.364408\pi\)
0.995239 + 0.0974679i \(0.0310743\pi\)
\(354\) 176.835 + 258.405i 0.499533 + 0.729959i
\(355\) −79.5673 45.9382i −0.224133 0.129403i
\(356\) 205.750 + 118.790i 0.577949 + 0.333679i
\(357\) −197.466 + 366.350i −0.553126 + 1.02619i
\(358\) 68.8975 + 119.334i 0.192451 + 0.333335i
\(359\) 34.8283 0.0970149 0.0485074 0.998823i \(-0.484554\pi\)
0.0485074 + 0.998823i \(0.484554\pi\)
\(360\) 47.7384 38.3416i 0.132607 0.106504i
\(361\) −829.069 −2.29659
\(362\) −101.843 + 58.7988i −0.281333 + 0.162428i
\(363\) −14.6629 191.213i −0.0403936 0.526759i
\(364\) −159.967 102.737i −0.439470 0.282245i
\(365\) −14.5163 + 25.1430i −0.0397708 + 0.0688850i
\(366\) −383.642 + 29.4189i −1.04820 + 0.0803795i
\(367\) −12.0980 + 6.98480i −0.0329646 + 0.0190321i −0.516392 0.856352i \(-0.672725\pi\)
0.483427 + 0.875385i \(0.339392\pi\)
\(368\) −34.6842 −0.0942505
\(369\) −339.448 + 272.631i −0.919912 + 0.738838i
\(370\) 134.990i 0.364837i
\(371\) −114.505 221.945i −0.308638 0.598235i
\(372\) −64.8976 + 135.361i −0.174456 + 0.363874i
\(373\) 285.616 494.702i 0.765727 1.32628i −0.174135 0.984722i \(-0.555713\pi\)
0.939861 0.341556i \(-0.110954\pi\)
\(374\) −330.069 190.565i −0.882537 0.509533i
\(375\) 180.184 + 263.299i 0.480489 + 0.702130i
\(376\) −41.2026 + 23.7883i −0.109581 + 0.0632669i
\(377\) 352.424i 0.934813i
\(378\) −251.869 89.4638i −0.666321 0.236677i
\(379\) −387.493 −1.02241 −0.511205 0.859459i \(-0.670801\pi\)
−0.511205 + 0.859459i \(0.670801\pi\)
\(380\) 82.9770 + 143.720i 0.218361 + 0.378212i
\(381\) −29.7814 + 20.3803i −0.0781663 + 0.0534916i
\(382\) 155.408 269.175i 0.406827 0.704646i
\(383\) 499.981 + 288.664i 1.30543 + 0.753693i 0.981331 0.192329i \(-0.0616039\pi\)
0.324104 + 0.946022i \(0.394937\pi\)
\(384\) 30.6054 + 14.6735i 0.0797015 + 0.0382122i
\(385\) −203.480 + 104.978i −0.528520 + 0.272671i
\(386\) −162.941 −0.422127
\(387\) 233.344 35.9989i 0.602957 0.0930203i
\(388\) 229.741i 0.592116i
\(389\) −166.634 288.618i −0.428364 0.741948i 0.568364 0.822777i \(-0.307577\pi\)
−0.996728 + 0.0808291i \(0.974243\pi\)
\(390\) −10.5957 138.174i −0.0271684 0.354293i
\(391\) 148.821 + 85.9217i 0.380616 + 0.219748i
\(392\) −80.3242 + 112.943i −0.204909 + 0.288119i
\(393\) −250.935 + 19.2425i −0.638512 + 0.0489631i
\(394\) −31.2445 54.1171i −0.0793009 0.137353i
\(395\) 314.732i 0.796791i
\(396\) 88.6364 228.165i 0.223829 0.576174i
\(397\) 279.218i 0.703321i −0.936128 0.351661i \(-0.885617\pi\)
0.936128 0.351661i \(-0.114383\pi\)
\(398\) 17.8281 10.2931i 0.0447943 0.0258620i
\(399\) 343.730 637.707i 0.861478 1.59826i
\(400\) −38.4289 + 66.5608i −0.0960723 + 0.166402i
\(401\) 110.631 191.619i 0.275888 0.477852i −0.694471 0.719521i \(-0.744361\pi\)
0.970359 + 0.241669i \(0.0776948\pi\)
\(402\) −72.6033 + 49.6847i −0.180605 + 0.123594i
\(403\) 169.876 + 294.235i 0.421530 + 0.730111i
\(404\) 345.632i 0.855526i
\(405\) −58.7169 185.772i −0.144980 0.458696i
\(406\) −256.626 12.1476i −0.632084 0.0299202i
\(407\) −269.825 467.350i −0.662960 1.14828i
\(408\) −94.9696 138.777i −0.232769 0.340141i
\(409\) −261.910 151.214i −0.640366 0.369715i 0.144390 0.989521i \(-0.453878\pi\)
−0.784755 + 0.619806i \(0.787211\pi\)
\(410\) −82.2771 + 142.508i −0.200676 + 0.347581i
\(411\) −540.866 259.313i −1.31598 0.630932i
\(412\) 80.8889 46.7012i 0.196332 0.113352i
\(413\) 24.4274 516.043i 0.0591461 1.24950i
\(414\) −39.9642 + 102.875i −0.0965319 + 0.248489i
\(415\) −76.8178 −0.185103
\(416\) 66.5270 38.4094i 0.159921 0.0923303i
\(417\) −440.955 + 33.8139i −1.05745 + 0.0810884i
\(418\) 574.552 + 331.718i 1.37453 + 0.793583i
\(419\) −437.785 252.755i −1.04483 0.603234i −0.123634 0.992328i \(-0.539455\pi\)
−0.921198 + 0.389093i \(0.872788\pi\)
\(420\) −100.980 + 2.95278i −0.240429 + 0.00703043i
\(421\) 22.8490 + 39.5757i 0.0542733 + 0.0940040i 0.891886 0.452261i \(-0.149382\pi\)
−0.837612 + 0.546265i \(0.816049\pi\)
\(422\) −495.280 −1.17365
\(423\) 23.0821 + 149.618i 0.0545677 + 0.353707i
\(424\) 100.911 0.237998
\(425\) 329.777 190.397i 0.775945 0.447992i
\(426\) −146.130 70.0607i −0.343028 0.164462i
\(427\) 534.160 + 343.058i 1.25096 + 0.803414i
\(428\) 69.5084 120.392i 0.162403 0.281290i
\(429\) −312.874 457.196i −0.729309 1.06573i
\(430\) 77.2822 44.6189i 0.179726 0.103765i
\(431\) 252.544 0.585948 0.292974 0.956120i \(-0.405355\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(432\) 78.7865 73.8694i 0.182376 0.170994i
\(433\) 830.225i 1.91738i 0.284454 + 0.958690i \(0.408188\pi\)
−0.284454 + 0.958690i \(0.591812\pi\)
\(434\) 220.109 113.558i 0.507164 0.261653i
\(435\) −105.761 154.546i −0.243128 0.355278i
\(436\) −135.887 + 235.363i −0.311667 + 0.539823i
\(437\) −259.053 149.564i −0.592798 0.342252i
\(438\) −22.1390 + 46.1767i −0.0505456 + 0.105426i
\(439\) 193.141 111.510i 0.439956 0.254009i −0.263623 0.964626i \(-0.584917\pi\)
0.703579 + 0.710617i \(0.251584\pi\)
\(440\) 92.5155i 0.210263i
\(441\) 242.440 + 368.380i 0.549750 + 0.835329i
\(442\) −380.600 −0.861086
\(443\) −102.606 177.719i −0.231616 0.401171i 0.726668 0.686989i \(-0.241068\pi\)
−0.958284 + 0.285818i \(0.907735\pi\)
\(444\) −18.2051 237.406i −0.0410024 0.534699i
\(445\) 142.863 247.447i 0.321041 0.556060i
\(446\) −392.645 226.694i −0.880371 0.508282i
\(447\) 48.5291 + 632.852i 0.108566 + 1.41578i
\(448\) −25.6756 49.7671i −0.0573116 0.111087i
\(449\) −441.157 −0.982532 −0.491266 0.871010i \(-0.663466\pi\)
−0.491266 + 0.871010i \(0.663466\pi\)
\(450\) 153.143 + 190.675i 0.340317 + 0.423722i
\(451\) 657.839i 1.45862i
\(452\) −4.11161 7.12151i −0.00909648 0.0157556i
\(453\) 51.3100 + 24.6001i 0.113267 + 0.0543048i
\(454\) 343.541 + 198.343i 0.756698 + 0.436880i
\(455\) −123.557 + 192.386i −0.271555 + 0.422826i
\(456\) 165.314 + 241.570i 0.362531 + 0.529759i
\(457\) −337.214 584.071i −0.737886 1.27806i −0.953446 0.301565i \(-0.902491\pi\)
0.215560 0.976491i \(-0.430842\pi\)
\(458\) 50.9432i 0.111230i
\(459\) −521.046 + 121.780i −1.13518 + 0.265315i
\(460\) 41.7132i 0.0906809i
\(461\) 82.1484 47.4284i 0.178196 0.102882i −0.408249 0.912871i \(-0.633860\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(462\) −343.702 + 212.067i −0.743945 + 0.459020i
\(463\) 195.201 338.099i 0.421601 0.730235i −0.574495 0.818508i \(-0.694802\pi\)
0.996096 + 0.0882733i \(0.0281349\pi\)
\(464\) 51.9043 89.9009i 0.111863 0.193752i
\(465\) 162.793 + 78.0495i 0.350092 + 0.167848i
\(466\) 296.117 + 512.890i 0.635445 + 1.10062i
\(467\) 135.589i 0.290341i 0.989407 + 0.145170i \(0.0463731\pi\)
−0.989407 + 0.145170i \(0.953627\pi\)
\(468\) −37.2691 241.578i −0.0796349 0.516192i
\(469\) 144.991 + 6.86328i 0.309149 + 0.0146339i
\(470\) 28.6092 + 49.5527i 0.0608707 + 0.105431i
\(471\) −24.1140 + 1.84914i −0.0511975 + 0.00392599i
\(472\) 180.780 + 104.373i 0.383008 + 0.221130i
\(473\) 178.373 308.952i 0.377111 0.653175i
\(474\) −42.4456 553.519i −0.0895477 1.16776i
\(475\) −574.043 + 331.424i −1.20851 + 0.697735i
\(476\) −13.1188 + 277.143i −0.0275605 + 0.582232i
\(477\) 116.273 299.306i 0.243758 0.627475i
\(478\) 72.4242 0.151515
\(479\) 176.072 101.655i 0.367583 0.212224i −0.304819 0.952410i \(-0.598596\pi\)
0.672402 + 0.740186i \(0.265263\pi\)
\(480\) 17.6472 36.8078i 0.0367649 0.0766829i
\(481\) −466.699 269.449i −0.970269 0.560185i
\(482\) 322.135 + 185.985i 0.668330 + 0.385860i
\(483\) 154.968 95.6163i 0.320844 0.197963i
\(484\) −63.9249 110.721i −0.132076 0.228763i
\(485\) 276.300 0.569690
\(486\) −128.319 318.798i −0.264031 0.655963i
\(487\) −237.902 −0.488504 −0.244252 0.969712i \(-0.578542\pi\)
−0.244252 + 0.969712i \(0.578542\pi\)
\(488\) −222.146 + 128.256i −0.455217 + 0.262820i
\(489\) −121.609 + 83.2210i −0.248690 + 0.170186i
\(490\) 135.831 + 96.6025i 0.277207 + 0.197148i
\(491\) −283.247 + 490.597i −0.576877 + 0.999180i 0.418958 + 0.908006i \(0.362395\pi\)
−0.995835 + 0.0911744i \(0.970938\pi\)
\(492\) −125.482 + 261.725i −0.255044 + 0.531961i
\(493\) −445.415 + 257.161i −0.903480 + 0.521624i
\(494\) 662.512 1.34112
\(495\) −274.404 106.599i −0.554352 0.215352i
\(496\) 100.076i 0.201766i
\(497\) 122.592 + 237.621i 0.246664 + 0.478110i
\(498\) −135.099 + 10.3598i −0.271284 + 0.0208029i
\(499\) −118.082 + 204.523i −0.236636 + 0.409866i −0.959747 0.280866i \(-0.909378\pi\)
0.723111 + 0.690732i \(0.242712\pi\)
\(500\) 184.203 + 106.350i 0.368406 + 0.212699i
\(501\) 580.349 44.5030i 1.15838 0.0888284i
\(502\) 298.839 172.535i 0.595297 0.343695i
\(503\) 711.182i 1.41388i −0.707273 0.706941i \(-0.750075\pi\)
0.707273 0.706941i \(-0.249925\pi\)
\(504\) −177.195 + 18.8115i −0.351578 + 0.0373244i
\(505\) 415.677 0.823124
\(506\) 83.3785 + 144.416i 0.164780 + 0.285407i
\(507\) −41.6873 19.9866i −0.0822234 0.0394213i
\(508\) −12.0291 + 20.8350i −0.0236793 + 0.0410137i
\(509\) 454.930 + 262.654i 0.893772 + 0.516019i 0.875174 0.483808i \(-0.160747\pi\)
0.0185973 + 0.999827i \(0.494080\pi\)
\(510\) −166.902 + 114.216i −0.327258 + 0.223953i
\(511\) 75.0874 38.7387i 0.146942 0.0758096i
\(512\) 22.6274 0.0441942
\(513\) 906.986 211.982i 1.76800 0.413221i
\(514\) 302.250i 0.588035i
\(515\) −56.1656 97.2816i −0.109059 0.188896i
\(516\) 129.899 88.8937i 0.251742 0.172275i
\(517\) 198.097 + 114.371i 0.383166 + 0.221221i
\(518\) −212.292 + 330.550i −0.409830 + 0.638128i
\(519\) −97.6717 + 203.720i −0.188192 + 0.392524i
\(520\) −46.1934 80.0092i −0.0888334 0.153864i
\(521\) 58.8034i 0.112866i −0.998406 0.0564332i \(-0.982027\pi\)
0.998406 0.0564332i \(-0.0179728\pi\)
\(522\) −206.844 257.537i −0.396252 0.493365i
\(523\) 49.8806i 0.0953740i 0.998862 + 0.0476870i \(0.0151850\pi\)
−0.998862 + 0.0476870i \(0.984815\pi\)
\(524\) −145.303 + 83.8906i −0.277295 + 0.160097i
\(525\) −11.7939 403.331i −0.0224646 0.768250i
\(526\) 109.785 190.153i 0.208717 0.361509i
\(527\) 247.914 429.400i 0.470426 0.814801i
\(528\) −12.4769 162.707i −0.0236305 0.308157i
\(529\) 226.906 + 393.014i 0.428935 + 0.742937i
\(530\) 121.361i 0.228984i
\(531\) 517.874 415.937i 0.975282 0.783309i
\(532\) 22.8359 482.423i 0.0429247 0.906810i
\(533\) 328.462 + 568.912i 0.616251 + 1.06738i
\(534\) 217.882 454.450i 0.408019 0.851031i
\(535\) −144.790 83.5948i −0.270636 0.156252i
\(536\) −29.3254 + 50.7931i −0.0547116 + 0.0947632i
\(537\) 241.230 165.081i 0.449217 0.307413i
\(538\) −157.250 + 90.7884i −0.292287 + 0.168752i
\(539\) 663.357 + 62.9423i 1.23072 + 0.116776i
\(540\) −88.8396 94.7532i −0.164518 0.175469i
\(541\) 943.506 1.74400 0.872002 0.489503i \(-0.162822\pi\)
0.872002 + 0.489503i \(0.162822\pi\)
\(542\) −637.988 + 368.342i −1.17710 + 0.679598i
\(543\) 140.884 + 205.871i 0.259455 + 0.379137i
\(544\) −97.0883 56.0539i −0.178471 0.103040i
\(545\) 283.061 + 163.425i 0.519377 + 0.299863i
\(546\) −191.355 + 355.012i −0.350466 + 0.650205i
\(547\) −115.302 199.709i −0.210790 0.365100i 0.741172 0.671315i \(-0.234270\pi\)
−0.951962 + 0.306216i \(0.900937\pi\)
\(548\) −399.877 −0.729703
\(549\) 124.448 + 806.674i 0.226682 + 1.46935i
\(550\) 369.523 0.671859
\(551\) 775.336 447.641i 1.40714 0.812415i
\(552\) 5.62555 + 73.3609i 0.0101912 + 0.132900i
\(553\) −494.964 + 770.687i −0.895053 + 1.39365i
\(554\) 271.476 470.211i 0.490030 0.848756i
\(555\) −285.518 + 21.8945i −0.514448 + 0.0394495i
\(556\) −255.333 + 147.417i −0.459232 + 0.265138i
\(557\) −484.872 −0.870506 −0.435253 0.900308i \(-0.643341\pi\)
−0.435253 + 0.900308i \(0.643341\pi\)
\(558\) 296.829 + 115.311i 0.531952 + 0.206650i
\(559\) 356.250i 0.637298i
\(560\) −59.8528 + 30.8789i −0.106880 + 0.0551410i
\(561\) −349.532 + 729.041i −0.623051 + 1.29954i
\(562\) −64.3178 + 111.402i −0.114444 + 0.198224i
\(563\) −565.382 326.423i −1.00423 0.579793i −0.0947335 0.995503i \(-0.530200\pi\)
−0.909497 + 0.415710i \(0.863533\pi\)
\(564\) 56.9978 + 83.2898i 0.101060 + 0.147677i
\(565\) −8.56474 + 4.94486i −0.0151588 + 0.00875196i
\(566\) 140.836i 0.248827i
\(567\) −148.374 + 547.242i −0.261683 + 0.965154i
\(568\) −108.038 −0.190208
\(569\) −203.792 352.977i −0.358157 0.620347i 0.629496 0.777004i \(-0.283262\pi\)
−0.987653 + 0.156657i \(0.949928\pi\)
\(570\) 290.526 198.816i 0.509695 0.348800i
\(571\) 174.770 302.710i 0.306076 0.530140i −0.671424 0.741073i \(-0.734317\pi\)
0.977500 + 0.210934i \(0.0676504\pi\)
\(572\) −319.853 184.667i −0.559184 0.322845i
\(573\) −594.540 285.047i −1.03759 0.497464i
\(574\) 425.588 219.567i 0.741443 0.382521i
\(575\) −166.609 −0.289756
\(576\) 26.0720 67.1137i 0.0452639 0.116517i
\(577\) 695.947i 1.20615i −0.797686 0.603073i \(-0.793943\pi\)
0.797686 0.603073i \(-0.206057\pi\)
\(578\) 73.3662 + 127.074i 0.126931 + 0.219851i
\(579\) 26.4280 + 344.639i 0.0456442 + 0.595231i
\(580\) −108.120 62.4231i −0.186414 0.107626i
\(581\) 188.104 + 120.808i 0.323759 + 0.207930i
\(582\) 485.927 37.2625i 0.834927 0.0640249i
\(583\) −242.583 420.167i −0.416095 0.720698i
\(584\) 34.1397i 0.0584584i
\(585\) −290.536 + 44.8220i −0.496642 + 0.0766188i
\(586\) 805.453i 1.37449i
\(587\) −45.3007 + 26.1544i −0.0771732 + 0.0445560i −0.538090 0.842887i \(-0.680854\pi\)
0.460917 + 0.887443i \(0.347521\pi\)
\(588\) 251.914 + 151.576i 0.428425 + 0.257782i
\(589\) −431.546 + 747.459i −0.732675 + 1.26903i
\(590\) 125.525 217.416i 0.212755 0.368502i
\(591\) −109.396 + 74.8631i −0.185103 + 0.126672i
\(592\) −79.3677 137.469i −0.134067 0.232211i
\(593\) 21.8727i 0.0368848i 0.999830 + 0.0184424i \(0.00587072\pi\)
−0.999830 + 0.0184424i \(0.994129\pi\)
\(594\) −496.970 150.469i −0.836651 0.253315i
\(595\) 333.308 + 15.7774i 0.560181 + 0.0265166i
\(596\) 211.570 + 366.450i 0.354983 + 0.614849i
\(597\) −24.6626 36.0390i −0.0413109 0.0603668i
\(598\) 144.215 + 83.2624i 0.241162 + 0.139235i
\(599\) −350.512 + 607.105i −0.585162 + 1.01353i 0.409693 + 0.912224i \(0.365636\pi\)
−0.994855 + 0.101307i \(0.967697\pi\)
\(600\) 147.016 + 70.4857i 0.245027 + 0.117476i
\(601\) −34.2071 + 19.7495i −0.0569170 + 0.0328611i −0.528188 0.849127i \(-0.677129\pi\)
0.471271 + 0.881988i \(0.343795\pi\)
\(602\) −259.411 12.2795i −0.430916 0.0203978i
\(603\) 116.864 + 145.506i 0.193805 + 0.241303i
\(604\) 37.9349 0.0628061
\(605\) −133.160 + 76.8798i −0.220099 + 0.127074i
\(606\) 731.051 56.0593i 1.20635 0.0925072i
\(607\) −323.783 186.936i −0.533415 0.307968i 0.208991 0.977918i \(-0.432982\pi\)
−0.742406 + 0.669950i \(0.766315\pi\)
\(608\) 169.002 + 97.5733i 0.277964 + 0.160482i
\(609\) 15.9295 + 544.762i 0.0261568 + 0.894520i
\(610\) 154.248 + 267.166i 0.252866 + 0.437976i
\(611\) 228.424 0.373853
\(612\) −278.126 + 223.380i −0.454454 + 0.365000i
\(613\) −672.296 −1.09673 −0.548366 0.836239i \(-0.684750\pi\)
−0.548366 + 0.836239i \(0.684750\pi\)
\(614\) −288.832 + 166.757i −0.470410 + 0.271591i
\(615\) 314.765 + 150.911i 0.511814 + 0.245384i
\(616\) −145.495 + 226.543i −0.236193 + 0.367765i
\(617\) −231.200 + 400.450i −0.374716 + 0.649028i −0.990285 0.139056i \(-0.955593\pi\)
0.615568 + 0.788084i \(0.288927\pi\)
\(618\) −111.898 163.514i −0.181065 0.264586i
\(619\) 692.305 399.702i 1.11842 0.645723i 0.177426 0.984134i \(-0.443223\pi\)
0.940998 + 0.338411i \(0.109890\pi\)
\(620\) 120.357 0.194125
\(621\) 224.073 + 67.8431i 0.360826 + 0.109248i
\(622\) 857.501i 1.37862i
\(623\) −738.977 + 381.249i −1.18616 + 0.611957i
\(624\) −92.0304 134.482i −0.147485 0.215516i
\(625\) −112.278 + 194.472i −0.179646 + 0.311155i
\(626\) −30.3410 17.5174i −0.0484680 0.0279830i
\(627\) 608.431 1269.04i 0.970385 2.02399i
\(628\) −13.9631 + 8.06161i −0.0222343 + 0.0128370i
\(629\) 786.457i 1.25033i
\(630\) 22.6238 + 213.105i 0.0359107 + 0.338262i
\(631\) −410.154 −0.650006 −0.325003 0.945713i \(-0.605365\pi\)
−0.325003 + 0.945713i \(0.605365\pi\)
\(632\) −185.048 320.513i −0.292798 0.507140i
\(633\) 80.3312 + 1047.57i 0.126906 + 1.65493i
\(634\) 309.958 536.863i 0.488892 0.846786i
\(635\) 25.0573 + 14.4668i 0.0394603 + 0.0227824i
\(636\) −16.3671 213.438i −0.0257344 0.335594i
\(637\) 605.112 276.783i 0.949940 0.434510i
\(638\) −499.098 −0.782286
\(639\) −124.485 + 320.445i −0.194812 + 0.501478i
\(640\) 27.2130i 0.0425204i
\(641\) 543.226 + 940.895i 0.847466 + 1.46785i 0.883462 + 0.468502i \(0.155206\pi\)
−0.0359962 + 0.999352i \(0.511460\pi\)
\(642\) −265.916 127.491i −0.414200 0.198584i
\(643\) −612.173 353.438i −0.952057 0.549671i −0.0583379 0.998297i \(-0.518580\pi\)
−0.893719 + 0.448626i \(0.851913\pi\)
\(644\) 65.6003 102.143i 0.101864 0.158608i
\(645\) −106.909 156.224i −0.165750 0.242207i
\(646\) −483.428 837.322i −0.748341 1.29616i
\(647\) 422.816i 0.653502i 0.945110 + 0.326751i \(0.105954\pi\)
−0.945110 + 0.326751i \(0.894046\pi\)
\(648\) −169.021 154.661i −0.260834 0.238674i
\(649\) 1003.63i 1.54642i
\(650\) 319.570 184.504i 0.491647 0.283852i
\(651\) −275.887 447.137i −0.423790 0.686846i
\(652\) −49.1196 + 85.0776i −0.0753367 + 0.130487i
\(653\) 394.425 683.164i 0.604019 1.04619i −0.388186 0.921581i \(-0.626898\pi\)
0.992206 0.124611i \(-0.0397684\pi\)
\(654\) 519.858 + 249.241i 0.794890 + 0.381103i
\(655\) 100.892 + 174.749i 0.154033 + 0.266793i
\(656\) 193.501i 0.294970i
\(657\) 101.260 + 39.3368i 0.154124 + 0.0598734i
\(658\) 7.87348 166.332i 0.0119658 0.252784i
\(659\) −548.183 949.480i −0.831840 1.44079i −0.896578 0.442887i \(-0.853954\pi\)
0.0647375 0.997902i \(-0.479379\pi\)
\(660\) −195.681 + 15.0054i −0.296486 + 0.0227355i
\(661\) −213.700 123.380i −0.323298 0.186656i 0.329563 0.944133i \(-0.393098\pi\)
−0.652862 + 0.757477i \(0.726432\pi\)
\(662\) 425.784 737.479i 0.643178 1.11402i
\(663\) 61.7308 + 805.011i 0.0931084 + 1.21419i
\(664\) −78.2286 + 45.1653i −0.117814 + 0.0680200i
\(665\) −580.190 27.4638i −0.872466 0.0412989i
\(666\) −499.188 + 77.0115i −0.749531 + 0.115633i
\(667\) 225.032 0.337380
\(668\) 336.048 194.018i 0.503066 0.290446i
\(669\) −415.798 + 867.256i −0.621522 + 1.29635i
\(670\) 61.0867 + 35.2684i 0.0911742 + 0.0526394i
\(671\) 1068.05 + 616.639i 1.59173 + 0.918985i
\(672\) −101.099 + 62.3786i −0.150444 + 0.0928253i
\(673\) 155.614 + 269.532i 0.231225 + 0.400493i 0.958169 0.286204i \(-0.0923935\pi\)
−0.726944 + 0.686697i \(0.759060\pi\)
\(674\) 166.457 0.246969
\(675\) 378.460 354.840i 0.560681 0.525689i
\(676\) −30.8206 −0.0455926
\(677\) −467.683 + 270.017i −0.690817 + 0.398843i −0.803918 0.594740i \(-0.797255\pi\)
0.113101 + 0.993583i \(0.463922\pi\)
\(678\) −14.3959 + 9.85157i −0.0212329 + 0.0145303i
\(679\) −676.576 434.523i −0.996430 0.639945i
\(680\) −67.4137 + 116.764i −0.0991378 + 0.171712i
\(681\) 363.798 758.797i 0.534212 1.11424i
\(682\) 416.691 240.577i 0.610984 0.352752i
\(683\) −694.411 −1.01671 −0.508353 0.861149i \(-0.669746\pi\)
−0.508353 + 0.861149i \(0.669746\pi\)
\(684\) 484.135 388.839i 0.707800 0.568477i
\(685\) 480.916i 0.702067i
\(686\) −180.689 450.166i −0.263394 0.656219i
\(687\) −107.750 + 8.26265i −0.156842 + 0.0120272i
\(688\) 52.4677 90.8767i 0.0762612 0.132088i
\(689\) −419.582 242.246i −0.608972 0.351590i
\(690\) 88.2280 6.76561i 0.127867 0.00980523i
\(691\) −803.725 + 464.031i −1.16313 + 0.671535i −0.952053 0.305933i \(-0.901032\pi\)
−0.211080 + 0.977469i \(0.567698\pi\)
\(692\) 150.616i 0.217653i
\(693\) 504.292 + 692.573i 0.727694 + 0.999383i
\(694\) 387.198 0.557923
\(695\) 177.292 + 307.078i 0.255096 + 0.441839i
\(696\) −198.569 95.2020i −0.285300 0.136785i
\(697\) 479.351 830.260i 0.687734 1.19119i
\(698\) −261.194 150.800i −0.374203 0.216046i
\(699\) 1036.79 709.508i 1.48325 1.01503i
\(700\) −123.336 239.062i −0.176194 0.341517i
\(701\) 717.659 1.02376 0.511882 0.859056i \(-0.328948\pi\)
0.511882 + 0.859056i \(0.328948\pi\)
\(702\) −504.919 + 118.011i −0.719259 + 0.168106i
\(703\) 1368.99i 1.94735i
\(704\) −54.3948 94.2146i −0.0772654 0.133828i
\(705\) 100.169 68.5488i 0.142084 0.0972324i
\(706\) −703.122 405.948i −0.995923 0.574997i
\(707\) −1017.87 653.716i −1.43971 0.924634i
\(708\) 191.440 399.298i 0.270395 0.563980i
\(709\) −273.064 472.960i −0.385139 0.667081i 0.606649 0.794970i \(-0.292513\pi\)
−0.991789 + 0.127889i \(0.959180\pi\)
\(710\) 129.933i 0.183004i
\(711\) −1163.87 + 179.554i −1.63695 + 0.252538i
\(712\) 335.988i 0.471893i
\(713\) −187.877 + 108.471i −0.263502 + 0.152133i
\(714\) 588.315 17.2030i 0.823970 0.0240939i
\(715\) −222.092 + 384.674i −0.310618 + 0.538006i
\(716\) 97.4357 168.764i 0.136083 0.235703i
\(717\) −11.7467 153.185i −0.0163832 0.213648i
\(718\) −24.6274 42.6558i −0.0342999 0.0594092i
\(719\) 23.4875i 0.0326669i −0.999867 0.0163335i \(-0.994801\pi\)
0.999867 0.0163335i \(-0.00519934\pi\)
\(720\) −80.7148 31.3557i −0.112104 0.0435496i
\(721\) −15.4572 + 326.543i −0.0214385 + 0.452903i
\(722\) 586.240 + 1015.40i 0.811967 + 1.40637i
\(723\) 341.130 711.517i 0.471826 0.984117i
\(724\) 144.027 + 83.1541i 0.198932 + 0.114854i
\(725\) 249.328 431.849i 0.343901 0.595654i
\(726\) −223.820 + 153.167i −0.308291 + 0.210973i
\(727\) −656.448 + 379.000i −0.902955 + 0.521321i −0.878158 0.478371i \(-0.841227\pi\)
−0.0247971 + 0.999693i \(0.507894\pi\)
\(728\) −12.7128 + 268.565i −0.0174626 + 0.368908i
\(729\) −653.481 + 323.116i −0.896407 + 0.443232i
\(730\) 41.0584 0.0562443
\(731\) −450.250 + 259.952i −0.615937 + 0.355612i
\(732\) 307.306 + 449.061i 0.419818 + 0.613472i
\(733\) 436.380 + 251.944i 0.595334 + 0.343716i 0.767204 0.641404i \(-0.221648\pi\)
−0.171870 + 0.985120i \(0.554981\pi\)
\(734\) 17.1092 + 9.87800i 0.0233095 + 0.0134578i
\(735\) 182.294 302.966i 0.248019 0.412199i
\(736\) 24.5254 + 42.4793i 0.0333226 + 0.0577164i
\(737\) 281.986 0.382613
\(738\) 573.929 + 222.957i 0.777682 + 0.302110i
\(739\) −735.218 −0.994882 −0.497441 0.867498i \(-0.665727\pi\)
−0.497441 + 0.867498i \(0.665727\pi\)
\(740\) −165.328 + 95.4522i −0.223416 + 0.128989i
\(741\) −107.455 1401.29i −0.145014 1.89107i
\(742\) −190.859 + 297.178i −0.257223 + 0.400510i
\(743\) 121.895 211.129i 0.164058 0.284157i −0.772262 0.635304i \(-0.780875\pi\)
0.936320 + 0.351147i \(0.114208\pi\)
\(744\) 211.672 16.2317i 0.284506 0.0218168i
\(745\) 440.714 254.446i 0.591562 0.341539i
\(746\) −807.844 −1.08290
\(747\) 43.8244 + 284.069i 0.0586672 + 0.380280i
\(748\) 539.000i 0.720588i
\(749\) 223.084 + 432.404i 0.297842 + 0.577308i
\(750\) 195.065 406.859i 0.260086 0.542479i
\(751\) −69.2575 + 119.958i −0.0922204 + 0.159730i −0.908445 0.418004i \(-0.862730\pi\)
0.816225 + 0.577735i \(0.196063\pi\)
\(752\) 58.2693 + 33.6418i 0.0774858 + 0.0447364i
\(753\) −413.400 604.093i −0.549004 0.802249i
\(754\) −431.630 + 249.202i −0.572454 + 0.330506i
\(755\) 45.6227i 0.0604274i
\(756\) 68.5283 + 371.736i 0.0906459 + 0.491715i
\(757\) 448.741 0.592788 0.296394 0.955066i \(-0.404216\pi\)
0.296394 + 0.955066i \(0.404216\pi\)
\(758\) 273.999 + 474.581i 0.361477 + 0.626096i
\(759\) 291.932 199.778i 0.384627 0.263212i
\(760\) 117.347 203.251i 0.154404 0.267436i
\(761\) 334.945 + 193.380i 0.440137 + 0.254113i 0.703656 0.710541i \(-0.251550\pi\)
−0.263519 + 0.964654i \(0.584883\pi\)
\(762\) 46.0193 + 22.0635i 0.0603927 + 0.0289547i
\(763\) −436.121 845.336i −0.571588 1.10791i
\(764\) −439.560 −0.575341
\(765\) 268.650 + 334.490i 0.351176 + 0.437242i
\(766\) 816.466i 1.06588i
\(767\) −501.114 867.955i −0.653343 1.13162i
\(768\) −3.67002 47.8595i −0.00477867 0.0623170i
\(769\) 531.659 + 306.953i 0.691364 + 0.399159i 0.804123 0.594463i \(-0.202635\pi\)
−0.112759 + 0.993622i \(0.535969\pi\)
\(770\) 272.454 + 174.980i 0.353836 + 0.227247i
\(771\) 639.292 49.0230i 0.829173 0.0635837i
\(772\) 115.217 + 199.561i 0.149245 + 0.258499i
\(773\) 244.996i 0.316942i 0.987364 + 0.158471i \(0.0506564\pi\)
−0.987364 + 0.158471i \(0.949344\pi\)
\(774\) −209.089 260.332i −0.270140 0.336346i
\(775\) 480.727i 0.620293i
\(776\) 281.374 162.451i 0.362595 0.209344i
\(777\) 733.583 + 395.408i 0.944122 + 0.508890i
\(778\) −235.655 + 408.167i −0.302899 + 0.524637i
\(779\) −834.407 + 1445.24i −1.07113 + 1.85525i
\(780\) −161.736 + 110.681i −0.207354 + 0.141899i
\(781\) 259.717 + 449.842i 0.332544 + 0.575982i
\(782\) 243.023i 0.310771i
\(783\) −511.170 + 479.268i −0.652835 + 0.612092i
\(784\) 195.124 + 18.5142i 0.248882 + 0.0236150i
\(785\) 9.69536 + 16.7929i 0.0123508 + 0.0213922i
\(786\) 201.005 + 293.725i 0.255732 + 0.373696i
\(787\) 1224.89 + 707.189i 1.55640 + 0.898589i 0.997597 + 0.0692898i \(0.0220733\pi\)
0.558805 + 0.829299i \(0.311260\pi\)
\(788\) −44.1864 + 76.5332i −0.0560742 + 0.0971233i
\(789\) −420.002 201.366i −0.532322 0.255217i
\(790\) −385.467 + 222.549i −0.487933 + 0.281708i
\(791\) 28.7491 + 1.36086i 0.0363452 + 0.00172043i
\(792\) −342.119 + 52.7800i −0.431969 + 0.0666414i
\(793\) 1231.56 1.55304
\(794\) −341.971 + 197.437i −0.430694 + 0.248662i
\(795\) −256.693 + 19.6840i −0.322884 + 0.0247598i
\(796\) −25.2128 14.5566i −0.0316743 0.0182872i
\(797\) 10.1025 + 5.83266i 0.0126756 + 0.00731827i 0.506324 0.862343i \(-0.331004\pi\)
−0.493649 + 0.869661i \(0.664337\pi\)
\(798\) −1024.08 + 29.9454i −1.28331 + 0.0375255i
\(799\) −166.679 288.696i −0.208609 0.361322i
\(800\) 108.693 0.135867
\(801\) −996.552 387.136i −1.24413 0.483316i
\(802\) −312.912 −0.390164
\(803\) 142.149 82.0696i 0.177022 0.102204i
\(804\) 112.189 + 53.7882i 0.139539 + 0.0669007i
\(805\) −122.843 78.8947i −0.152601 0.0980059i
\(806\) 240.242 416.111i 0.298066 0.516266i
\(807\) 217.533 + 317.876i 0.269557 + 0.393899i
\(808\) 423.312 244.399i 0.523900 0.302474i
\(809\) 315.185 0.389599 0.194799 0.980843i \(-0.437594\pi\)
0.194799 + 0.980843i \(0.437594\pi\)
\(810\) −186.004 + 203.274i −0.229635 + 0.250955i
\(811\) 1499.13i 1.84849i 0.381800 + 0.924245i \(0.375304\pi\)
−0.381800 + 0.924245i \(0.624696\pi\)
\(812\) 166.584 + 322.891i 0.205153 + 0.397649i
\(813\) 882.562 + 1289.67i 1.08556 + 1.58631i
\(814\) −381.590 + 660.933i −0.468783 + 0.811957i
\(815\) 102.319 + 59.0740i 0.125545 + 0.0724834i
\(816\) −102.813 + 214.444i −0.125997 + 0.262799i
\(817\) 783.752 452.500i 0.959305 0.553855i
\(818\) 427.696i 0.522856i
\(819\) 781.925 + 347.156i 0.954732 + 0.423877i
\(820\) 232.715 0.283799
\(821\) −638.518 1105.95i −0.777732 1.34707i −0.933246 0.359237i \(-0.883037\pi\)
0.155515 0.987834i \(-0.450296\pi\)
\(822\) 64.8575 + 845.785i 0.0789021 + 1.02894i
\(823\) −456.846 + 791.280i −0.555098 + 0.961458i 0.442798 + 0.896622i \(0.353986\pi\)
−0.997896 + 0.0648368i \(0.979347\pi\)
\(824\) −114.394 66.0455i −0.138828 0.0801523i
\(825\) −59.9342 781.581i −0.0726475 0.947371i
\(826\) −649.294 + 334.980i −0.786070 + 0.405545i
\(827\) 1239.04 1.49823 0.749116 0.662438i \(-0.230478\pi\)
0.749116 + 0.662438i \(0.230478\pi\)
\(828\) 154.254 23.7973i 0.186297 0.0287407i
\(829\) 555.123i 0.669629i −0.942284 0.334815i \(-0.891326\pi\)
0.942284 0.334815i \(-0.108674\pi\)
\(830\) 54.3184 + 94.0822i 0.0654438 + 0.113352i
\(831\) −1038.58 497.938i −1.24980 0.599203i
\(832\) −94.0834 54.3191i −0.113081 0.0652874i
\(833\) −791.359 562.811i −0.950011 0.675643i
\(834\) 353.216 + 516.147i 0.423520 + 0.618882i
\(835\) −233.337 404.151i −0.279445 0.484013i
\(836\) 938.240i 1.12230i
\(837\) 195.751 646.530i 0.233873 0.772437i
\(838\) 714.900i 0.853102i
\(839\) 955.955 551.921i 1.13940 0.657832i 0.193117 0.981176i \(-0.438140\pi\)
0.946281 + 0.323344i \(0.104807\pi\)
\(840\) 75.0201 + 121.587i 0.0893096 + 0.144746i
\(841\) 83.7427 145.047i 0.0995752 0.172469i
\(842\) 32.3134 55.9685i 0.0383770 0.0664709i
\(843\) 246.059 + 117.971i 0.291885 + 0.139941i
\(844\) 350.216 + 606.592i 0.414948 + 0.718711i
\(845\) 37.0666i 0.0438658i
\(846\) 166.922 134.066i 0.197308 0.158470i
\(847\) 446.974 + 21.1579i 0.527714 + 0.0249798i
\(848\) −71.3548 123.590i −0.0841449 0.145743i
\(849\) 297.884 22.8427i 0.350865 0.0269054i
\(850\) −466.375 269.262i −0.548676 0.316778i
\(851\) 172.050 298.000i 0.202174 0.350176i
\(852\) 17.5231 + 228.513i 0.0205670 + 0.268207i
\(853\) 38.6408 22.3093i 0.0452999 0.0261539i −0.477179 0.878806i \(-0.658341\pi\)
0.522479 + 0.852652i \(0.325007\pi\)
\(854\) 42.4503 896.788i 0.0497076 1.05010i
\(855\) −467.640 582.249i −0.546947 0.680993i
\(856\) −196.599 −0.229672
\(857\) −680.850 + 393.089i −0.794458 + 0.458680i −0.841530 0.540211i \(-0.818344\pi\)
0.0470717 + 0.998892i \(0.485011\pi\)
\(858\) −338.714 + 706.477i −0.394771 + 0.823400i
\(859\) 286.832 + 165.602i 0.333914 + 0.192785i 0.657577 0.753387i \(-0.271581\pi\)
−0.323664 + 0.946172i \(0.604915\pi\)
\(860\) −109.294 63.1007i −0.127086 0.0733729i
\(861\) −533.437 864.554i −0.619555 1.00413i
\(862\) −178.575 309.301i −0.207164 0.358818i
\(863\) 183.153 0.212228 0.106114 0.994354i \(-0.466159\pi\)
0.106114 + 0.994354i \(0.466159\pi\)
\(864\) −146.182 44.2598i −0.169192 0.0512266i
\(865\) 181.139 0.209410
\(866\) 1016.81 587.058i 1.17415 0.677896i
\(867\) 256.876 175.788i 0.296281 0.202755i
\(868\) −294.720 189.280i −0.339539 0.218065i
\(869\) −889.687 + 1540.98i −1.02381 + 1.77328i
\(870\) −114.495 + 238.810i −0.131604 + 0.274495i
\(871\) 243.867 140.796i 0.279985 0.161649i
\(872\) 384.346 0.440763
\(873\) −157.629 1021.75i −0.180560 1.17039i
\(874\) 423.031i 0.484018i
\(875\) −661.590 + 341.324i −0.756102 + 0.390084i
\(876\) 72.2092 5.53724i 0.0824306 0.00632105i
\(877\) −560.581 + 970.954i −0.639203 + 1.10713i 0.346405 + 0.938085i \(0.387402\pi\)
−0.985608 + 0.169047i \(0.945931\pi\)
\(878\) −273.142 157.699i −0.311096 0.179611i
\(879\) 1703.62 130.639i 1.93814 0.148623i
\(880\) −113.308 + 65.4184i −0.128759 + 0.0743391i
\(881\) 1389.25i 1.57690i 0.615098 + 0.788450i \(0.289116\pi\)
−0.615098 + 0.788450i \(0.710884\pi\)
\(882\) 279.741 557.411i 0.317167 0.631985i
\(883\) 1358.53 1.53854 0.769268 0.638926i \(-0.220621\pi\)
0.769268 + 0.638926i \(0.220621\pi\)
\(884\) 269.125 + 466.138i 0.304440 + 0.527305i
\(885\) −480.218 230.236i −0.542620 0.260154i
\(886\) −145.107 + 251.332i −0.163777 + 0.283671i
\(887\) −908.326 524.422i −1.02404 0.591231i −0.108770 0.994067i \(-0.534691\pi\)
−0.915272 + 0.402836i \(0.868025\pi\)
\(888\) −277.889 + 190.168i −0.312938 + 0.214153i
\(889\) −38.6067 74.8315i −0.0434271 0.0841749i
\(890\) −404.078 −0.454021
\(891\) −237.653 + 1075.55i −0.266726 + 1.20713i
\(892\) 641.187i 0.718820i
\(893\) 290.138 + 502.535i 0.324903 + 0.562749i
\(894\) 740.767 506.930i 0.828599 0.567036i
\(895\) −202.965 117.182i −0.226776 0.130929i
\(896\) −42.7966 + 66.6367i −0.0477641 + 0.0743713i
\(897\) 152.719 318.535i 0.170255 0.355111i
\(898\) 311.945 + 540.305i 0.347378 + 0.601676i
\(899\) 649.298i 0.722245i
\(900\) 125.240 322.388i 0.139155 0.358209i
\(901\) 707.057i 0.784747i
\(902\) 805.686 465.163i 0.893221 0.515702i
\(903\) 16.1024 + 550.676i 0.0178321 + 0.609829i
\(904\) −5.81469 + 10.0713i −0.00643218 + 0.0111409i
\(905\) 100.006 173.215i 0.110504 0.191398i
\(906\) −6.15279 80.2365i −0.00679116 0.0885613i
\(907\) −325.502 563.785i −0.358877 0.621593i 0.628896 0.777489i \(-0.283507\pi\)
−0.987774 + 0.155896i \(0.950174\pi\)
\(908\) 561.000i 0.617841i
\(909\) −237.143 1537.16i −0.260884 1.69105i
\(910\) 322.992 + 15.2891i 0.354936 + 0.0168012i
\(911\) −371.140 642.834i −0.407399 0.705636i 0.587198 0.809443i \(-0.300231\pi\)
−0.994597 + 0.103807i \(0.966897\pi\)
\(912\) 178.967 373.284i 0.196236 0.409302i
\(913\) 376.113 + 217.149i 0.411953 + 0.237841i
\(914\) −476.892 + 826.002i −0.521764 + 0.903722i
\(915\) 540.067 369.584i 0.590237 0.403917i
\(916\) −62.3924 + 36.0223i −0.0681140 + 0.0393256i
\(917\) 27.7662 586.577i 0.0302793 0.639670i
\(918\) 517.584 + 552.037i 0.563817 + 0.601347i
\(919\) 630.519 0.686093 0.343046 0.939319i \(-0.388541\pi\)
0.343046 + 0.939319i \(0.388541\pi\)
\(920\) 51.0880 29.4957i 0.0555305 0.0320605i
\(921\) 399.556 + 583.864i 0.433829 + 0.633946i
\(922\) −116.175 67.0739i −0.126004 0.0727483i
\(923\) 449.216 + 259.355i 0.486691 + 0.280991i
\(924\) 502.762 + 270.994i 0.544115 + 0.293283i
\(925\) −381.252 660.348i −0.412164 0.713890i
\(926\) −552.113 −0.596234
\(927\) −327.702 + 263.197i −0.353508 + 0.283924i
\(928\) −146.808 −0.158198
\(929\) −164.909 + 95.2100i −0.177512 + 0.102487i −0.586123 0.810222i \(-0.699347\pi\)
0.408611 + 0.912709i \(0.366013\pi\)
\(930\) −19.5212 254.569i −0.0209905 0.273730i
\(931\) 1377.52 + 979.687i 1.47962 + 1.05230i
\(932\) 418.773 725.336i 0.449327 0.778257i
\(933\) −1813.71 + 139.081i −1.94395 + 0.149069i
\(934\) 166.062 95.8760i 0.177797 0.102651i
\(935\) 648.233 0.693297
\(936\) −269.518 + 216.467i −0.287947 + 0.231268i
\(937\) 173.230i 0.184877i 0.995718 + 0.0924384i \(0.0294661\pi\)
−0.995718 + 0.0924384i \(0.970534\pi\)
\(938\) −94.1184 182.430i −0.100339 0.194488i
\(939\) −32.1301 + 67.0158i −0.0342173 + 0.0713693i
\(940\) 40.4596 70.0780i 0.0430421 0.0745511i
\(941\) 1132.98 + 654.124i 1.20401 + 0.695137i 0.961445 0.274997i \(-0.0886770\pi\)
0.242568 + 0.970134i \(0.422010\pi\)
\(942\) 19.3159 + 28.2260i 0.0205052 + 0.0299639i
\(943\) −363.266 + 209.732i −0.385223 + 0.222409i
\(944\) 295.212i 0.312725i
\(945\) 447.071 82.4160i 0.473092 0.0872127i
\(946\) −504.516 −0.533315
\(947\) 101.101 + 175.112i 0.106759 + 0.184912i 0.914456 0.404686i \(-0.132619\pi\)
−0.807696 + 0.589599i \(0.799286\pi\)
\(948\) −647.906 + 443.382i −0.683445 + 0.467703i
\(949\) 81.9553 141.951i 0.0863597 0.149579i
\(950\) 811.820 + 468.705i 0.854547 + 0.493373i
\(951\) −1185.80 568.519i −1.24689 0.597812i
\(952\) 348.705 179.902i 0.366287 0.188973i
\(953\) −123.695 −0.129796 −0.0648978 0.997892i \(-0.520672\pi\)
−0.0648978 + 0.997892i \(0.520672\pi\)
\(954\) −448.790 + 69.2365i −0.470430 + 0.0725749i
\(955\) 528.641i 0.553550i
\(956\) −51.2117 88.7012i −0.0535687 0.0927837i
\(957\) 80.9505 + 1055.65i 0.0845878 + 1.10308i
\(958\) −249.004 143.762i −0.259920 0.150065i
\(959\) 756.313 1177.62i 0.788647 1.22797i
\(960\) −57.5586 + 4.41378i −0.0599569 + 0.00459769i
\(961\) −167.524 290.160i −0.174322 0.301935i
\(962\) 762.117i 0.792221i
\(963\) −226.528 + 583.121i −0.235232 + 0.605525i
\(964\) 526.044i 0.545689i
\(965\) 240.004 138.566i 0.248709 0.143592i
\(966\) −226.684 122.185i −0.234663 0.126485i
\(967\) 640.089 1108.67i 0.661933 1.14650i −0.318174 0.948032i \(-0.603070\pi\)
0.980107 0.198469i \(-0.0635971\pi\)
\(968\) −90.4035 + 156.584i −0.0933921 + 0.161760i
\(969\) −1692.62 + 1158.31i −1.74677 + 1.19537i
\(970\) −195.373 338.396i −0.201416 0.348862i
\(971\) 1011.08i 1.04127i −0.853778 0.520637i \(-0.825695\pi\)
0.853778 0.520637i \(-0.174305\pi\)
\(972\) −299.711 + 382.582i −0.308345 + 0.393603i
\(973\) 48.7920 1030.76i 0.0501460 1.05936i
\(974\) 168.222 + 291.369i 0.172712 + 0.299147i
\(975\) −442.079 646.001i −0.453414 0.662565i
\(976\) 314.162 + 181.381i 0.321887 + 0.185842i
\(977\) 359.962 623.473i 0.368436 0.638150i −0.620885 0.783902i \(-0.713227\pi\)
0.989321 + 0.145751i \(0.0465599\pi\)
\(978\) 187.915 + 90.0943i 0.192142 + 0.0921209i
\(979\) −1398.97 + 807.693i −1.42897 + 0.825019i
\(980\) 22.2662 234.667i 0.0227206 0.239456i
\(981\) 442.855 1139.98i 0.451432 1.16206i
\(982\) 801.142 0.815827
\(983\) −203.077 + 117.247i −0.206589 + 0.119274i −0.599725 0.800206i \(-0.704724\pi\)
0.393136 + 0.919480i \(0.371390\pi\)
\(984\) 409.275 31.3845i 0.415930 0.0318948i
\(985\) 92.0432 + 53.1412i 0.0934449 + 0.0539504i
\(986\) 629.913 + 363.680i 0.638857 + 0.368844i
\(987\) −353.088 + 10.3247i −0.357739 + 0.0104607i
\(988\) −468.467 811.408i −0.474156 0.821263i
\(989\) 227.475 0.230005
\(990\) 63.4763 + 411.452i 0.0641174 + 0.415608i
\(991\) 57.3158 0.0578363 0.0289181 0.999582i \(-0.490794\pi\)
0.0289181 + 0.999582i \(0.490794\pi\)
\(992\) 122.568 70.7645i 0.123556 0.0713352i
\(993\) −1628.91 780.965i −1.64039 0.786470i
\(994\) 204.339 318.167i 0.205572 0.320088i
\(995\) −17.5066 + 30.3223i −0.0175946 + 0.0304747i
\(996\) 108.218 + 158.137i 0.108652 + 0.158772i
\(997\) 763.810 440.986i 0.766108 0.442313i −0.0653764 0.997861i \(-0.520825\pi\)
0.831484 + 0.555548i \(0.187491\pi\)
\(998\) 333.985 0.334654
\(999\) 243.853 + 1043.35i 0.244097 + 1.04439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.3.o.a.13.2 32
3.2 odd 2 378.3.o.a.307.11 32
7.6 odd 2 inner 126.3.o.a.13.7 yes 32
9.2 odd 6 378.3.o.a.181.14 32
9.4 even 3 1134.3.c.e.811.11 16
9.5 odd 6 1134.3.c.d.811.6 16
9.7 even 3 inner 126.3.o.a.97.7 yes 32
21.20 even 2 378.3.o.a.307.14 32
63.13 odd 6 1134.3.c.e.811.14 16
63.20 even 6 378.3.o.a.181.11 32
63.34 odd 6 inner 126.3.o.a.97.2 yes 32
63.41 even 6 1134.3.c.d.811.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.o.a.13.2 32 1.1 even 1 trivial
126.3.o.a.13.7 yes 32 7.6 odd 2 inner
126.3.o.a.97.2 yes 32 63.34 odd 6 inner
126.3.o.a.97.7 yes 32 9.7 even 3 inner
378.3.o.a.181.11 32 63.20 even 6
378.3.o.a.181.14 32 9.2 odd 6
378.3.o.a.307.11 32 3.2 odd 2
378.3.o.a.307.14 32 21.20 even 2
1134.3.c.d.811.3 16 63.41 even 6
1134.3.c.d.811.6 16 9.5 odd 6
1134.3.c.e.811.11 16 9.4 even 3
1134.3.c.e.811.14 16 63.13 odd 6